
WWW .DE V S E COP SGU I D E S . COM

Attacking Vagrant
· · 10 min readJul 1, 2024

Table of contents

Use Provisioning Scripts Wisely

Update Regularly

Box Selection and Maintenance

Secure SSH Access

Network Configuration

Vagrantfile Security

Use Provisioning Scripts Wisely

Update Regularly

Box Selection and Maintenance

Secure SSH Access

Network Configuration

Vagrantfile Security

Use Provisioning Scripts Wisely

Sensitive Data Handling in Vagrant

Step 1: Set Environment Variables

Step 2: Reference Environment Variables in Vagrantfile

Step 3: Use Environment Variables in Provisioning Scripts

Using a Secrets Management Tool

Step 1: Set Environment Variables

Step 2: Reference Environment Variables in Vagrantfile

Step 3: Use Environment Variables in Provisioning Scripts

Using a Secrets Management Tool

Snapshot and Rollback in Vagrant

Creating a Snapshot

Listing Snapshots

Restoring a Snapshot

Deleting a Snapshot

Full Workflow Example

Attacks with Proper sudo Configuration

Limit Access to the Vagrant User

Restrict sudo Commands

Monitor sudo Usage

Disable Passwordless sudo When Not Needed

Untrusted Boxes Attack

Insecure Network Configuration

1. Configuring Insecure Network Settings

2. Exploiting Open Ports

Use Private Networks and Restrict Port Forwarding

2. Restrict Port Forwarding

3. Example Vagrantfile for Secure Network Configuration

Show less

Vagrant, a tool for building and managing virtual machine environments, is widely

used for development purposes. To ensure the security of Vagrant environments, one

of the primary best practices is to manage and isolate environment configurations

properly. This includes keeping the Vagrantfile secure and under version control,

ensuring that sensitive data such as API keys, passwords, and personal information

are never hard-coded directly into it. Instead, use environment variables or encrypted

files to handle sensitive data. Regularly update Vagrant and the underlying software it

manages, such as VirtualBox or Docker, to protect against known vulnerabilities.

Additionally, network configurations should be carefully managed to limit exposure;

for instance, avoid using default insecure settings and restrict network access to only

what's necessary for development.

Another crucial aspect of Vagrant security is user and access management. Only

authorized users should be allowed to create and manage Vagrant environments,

which can be controlled through proper access controls and user permissions.

Utilizing SSH keys instead of passwords for access to Vagrant-managed machines

enhances security, as it mitigates the risk of password-based attacks. Implementing

host-based firewalls and intrusion detection systems can further secure the virtual

environments by monitoring and controlling incoming and outgoing network traffic.

Finally, it is essential to routinely audit and review the security configurations and

practices to adapt to new threats and ensure ongoing compliance with security

policies.

Vagrant is a powerful tool that allows developers to create and configure lightweight,

reproducible, and portable development environments. It is widely used for setting up

development instances consistent with production environments. However, securing

these environments is crucial to prevent vulnerabilities that could be exploited in

production. This article details best practices for securing Vagrant environments

tailored for developers.

Keeping your Vagrant box and the underlying software up-to-date is critical. Regular

updates ensure that security patches and fixes are applied, safeguarding your

environment against known vulnerabilities.

Use Provisioning Scripts Wisely

Update Regularly

Choose trusted and regularly maintained boxes from the Vagrant Cloud or official

repositories. Avoid using boxes from unknown or unverified publishers.

SSH is the default method for interacting with Vagrant boxes. Using secure

passwords or key-based authentication enhances security. Change default

passwords and consider disabling root login via SSH.

Avoid unnecessary port forwarding that can expose your Vagrant environment to the

host machine or network. Use private networking when possible, and if public

networks are necessary, implement firewall rules to restrict access.

COPY

Update Vagrant itself
$ vagrant up --provision

COPY

Box Selection and Maintenance

COPY

Use official boxes whenever possible
$ vagrant init hashicorp/bionic64

COPY

Secure SSH Access

COPY

Change default SSH password
$ echo "vagrant:NEW_SECURE_PASSWORD" | sudo chpasswd

COPY

Network Configuration

COPY

Configure private network
Vagrant.configure("2") do |config|

COPY

The Vagrantfile is the configuration file for your Vagrant environment. Keep it secure

by limiting its permissions and storing it in a secure location.

Provisioning scripts are used to automate the setup process of your Vagrant

environment. Store sensitive data such as passwords or API keys in environment

variables instead of including them in provisioning scripts or Vagrantfiles.

\

Handling sensitive data securely in Vagrant environments is essential to prevent

unauthorized access and potential breaches. Hardcoding sensitive information such

as passwords, API keys, or tokens directly in your Vagrantfiles or provisioning scripts

can lead to significant security risks. Instead, use environment variables or a secrets

management tool to securely store and retrieve this data. Here’s how to do it:

 config.vm.network "private_network", type: "dhcp"
end

Vagrantfile Security

COPY

Limit permissions of the Vagrantfile
$ chmod 600 Vagrantfile

COPY

Use Provisioning Scripts Wisely

COPY

Export sensitive data as environment variable
$ export SECRET_KEY='your_secret_key'

COPY

Sensitive Data Handling in Vagrant

Set the required environment variables on your host machine. This can be done in

your shell configuration file (e.g., .bashrc or .zshrc) or manually for each session.

Modify your Vagrantfile to use these environment variables. You can access them

within the Vagrantfile using Ruby’s ENV hash.

Provisioning scripts can also use environment variables. Here's an example of a shell

script that uses environment variables set on the host machine.

Step 1: Set Environment Variables

COPY

Export sensitive data as environment variables
$ export DB_PASSWORD='your_database_password'
$ export API_KEY='your_api_key'

COPY

Step 2: Reference Environment Variables in Vagrantfile

COPY

Vagrantfile
Vagrant.configure("2") do |config|
 config.vm.provision "shell", inline: <<-SHELL
 echo "Database password is: $DB_PASSWORD"
 echo "API key is: $API_KEY"
 SHELL
end

COPY

Step 3: Use Environment Variables in Provisioning Scripts

COPY

provisioning.sh
#!/bin/bash
echo "Database password is: $DB_PASSWORD"
echo "API key is: $API_KEY"

COPY

Update your Vagrantfile to use this provisioning script.

For more complex environments, a secrets management tool such as HashiCorp Vault

can be used to securely store and retrieve sensitive data.

Step 1: Store Secrets in Vault

First, store your secrets in Vault.

Step 2: Retrieve Secrets in Provisioning Scripts

Retrieve these secrets in your provisioning scripts using the Vault CLI.

COPY

Vagrantfile
Vagrant.configure("2") do |config|
 config.vm.provision "shell", path: "provisioning.sh"
end

COPY

Using a Secrets Management Tool

COPY

Store secrets in Vault
$ vault kv put secret/myapp DB_PASSWORD='your_database_password'
API_KEY='your_api_key'

COPY

COPY

provisioning.sh
#!/bin/bash
Authenticate with Vault (this step may vary based on your setup)
export VAULT_ADDR='http://127.0.0.1:8200'
vault login <your_vault_token>

Retrieve secrets

COPY

Step 3: Update Vagrantfile to Use Provisioning Script

Update your Vagrantfile to use the provisioning script.

Regularly creating snapshots of your Vagrant environment is a best practice that

allows you to revert to a known good state if something goes wrong during

development or testing. Snapshots capture the current state of the virtual machine,

including its disk, memory, and device state. This can save time and effort by quickly

restoring the environment without needing to recreate it from scratch.

Step 1: Start the Vagrant Environment

Ensure your Vagrant environment is up and running.

DB_PASSWORD=$(vault kv get -field=DB_PASSWORD secret/myapp)
API_KEY=$(vault kv get -field=API_KEY secret/myapp)

echo "Database password is: $DB_PASSWORD"
echo "API key is: $API_KEY"

COPY

Vagrantfile
Vagrant.configure("2") do |config|
 config.vm.provision "shell", path: "provisioning.sh"
end

COPY

Snapshot and Rollback in Vagrant

Creating a Snapshot

COPYCOPY

Step 2: Create a Snapshot

Use the vagrant snapshot save command to create a snapshot. Provide a descriptive

name for the snapshot to identify it easily later.

Example

You can list all snapshots created for a Vagrant environment using the vagrant

snapshot list command.

Start the Vagrant environment
$ vagrant up

COPY

Create a snapshot with a descriptive name
$ vagrant snapshot save my_snapshot_name

COPY

COPY

Start the Vagrant environment
$ vagrant up

Create a snapshot named 'initial_setup'
$ vagrant snapshot save initial_setup

COPY

Listing Snapshots

COPY

List all snapshots
$ vagrant snapshot list

COPY

If something goes wrong, you can easily revert to a previously saved snapshot using

the vagrant snapshot restore command.

To free up disk space or manage your snapshots, you can delete a snapshot using the

vagrant snapshot delete command.

Here’s a full workflow example to demonstrate creating, listing, restoring, and deleting

snapshots.

Restoring a Snapshot

COPY

Restore a snapshot by its name
$ vagrant snapshot restore my_snapshot_name

COPY

Deleting a Snapshot

COPY

Delete a snapshot by its name
$ vagrant snapshot delete my_snapshot_name

COPY

Full Workflow Example

COPY

Start the Vagrant environment
$ vagrant up

Create a snapshot named 'initial_setup'
$ vagrant snapshot save initial_setup

List all snapshots
$ vagrant snapshot list

Restore the 'initial_setup' snapshot
$ vagrant snapshot restore initial_setup

COPY

While enabling passwordless sudo for the "vagrant" user may be necessary for

automation and convenience, it is important to do so with caution. Here is how to set

this up:

Add the following line to allow the "vagrant" user to run all commands without a

password:

If required, you can also set this for the root user and the admin group:

To mitigate the risks associated with passwordless sudo , follow these best practices:

Delete the 'initial_setup' snapshot
$ vagrant snapshot delete initial_setup

Attacks with Proper sudo Configuration

COPY

Open the sudoers file
$ sudo visudo

COPY

COPY

Allow passwordless sudo for the vagrant user
vagrant ALL=(ALL) NOPASSWD: ALL

COPY

COPY

Allow passwordless sudo for root and admin group
root ALL=(ALL) NOPASSWD: ALL
%admin ALL=(ALL) NOPASSWD: ALL

COPY

Ensure that the "vagrant" user has a strong password and is not accessible from

external networks. Use SSH keys for authentication instead of passwords.

Instead of allowing the "vagrant" user to run all commands, limit the commands they

can run with sudo .

Log and monitor the usage of sudo to detect any unusual activities. Configure sudo

to send logs to a central logging server or monitor them locally.

Remove the passwordless sudo configuration when it is no longer necessary to

reduce the attack surface.

Limit Access to the Vagrant User

COPY

Generate SSH keys
$ ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

Copy the public key to the Vagrant box
$ ssh-copy-id vagrant@your_vagrant_box_ip

COPY

Restrict sudo Commands

COPY

Allow passwordless sudo for specific commands only
vagrant ALL=(ALL) NOPASSWD: /usr/bin/systemctl, /usr/bin/docker

COPY

Monitor sudo Usage

COPY

Enable logging for sudo commands
Defaults logfile="/var/log/sudo.log"

COPY

Disable Passwordless sudo When Not Needed

When using Vagrant, a tool for building and managing virtual machine environments,

developers often rely on pre-built "boxes" to quickly set up their environments.

However, using Vagrant boxes from untrusted sources can pose significant security

risks. These boxes might contain malware or be configured in a way that can

compromise the security of the host system or the network it operates within.

Attackers could embed malicious code, backdoors, or other vulnerabilities into these

boxes, allowing them to gain unauthorized access or control over the systems using

them.

1. Finding an Untrusted Box

An attacker might post a compromised Vagrant box on a public repository, making it

appear legitimate.

2. Downloading and Using the Untrusted Box

A user unknowingly downloads and uses the compromised box.

COPY

Open the sudoers file
$ sudo visudo

Remove or comment out the passwordless sudo configuration
vagrant ALL=(ALL) NOPASSWD: ALL
root ALL=(ALL) NOPASSWD: ALL
%admin ALL=(ALL) NOPASSWD: ALL

COPY

Untrusted Boxes Attack

COPY

Attacker uploads a compromised box to an untrusted repository
vagrant cloud publish untrusted_user/malicious_box 1.0 virtualbox
path/to/malicious.box --release

COPY

3. Verify Box Integrity

Ensure the integrity of the box by verifying its hash. First, download the hash from the

trusted source and then compare it with the box hash.

4. Example Vagrantfile for a Trusted Box

Here's an example Vagrantfile for using an official Ubuntu box:

COPY

User adds the untrusted box to their Vagrant environment
vagrant box add untrusted_user/malicious_box

Initializing Vagrant with the untrusted box
vagrant init untrusted_user/malicious_box

Bringing up the Vagrant box (potentially running malicious code)
vagrant up

COPY

COPY

Download the box from a trusted source
vagrant box add ubuntu/bionic64

Verify the box integrity (example command, actual hash comparison
may vary)
vagrant box list --box-info

COPY

COPY

Vagrantfile

Vagrant.configure("2") do |config|
 # Use an official Ubuntu 18.04 LTS box
 config.vm.box = "ubuntu/bionic64"

COPY

Insecure network settings in Vagrant can expose your virtual machines to attacks.

Open ports and public network configurations can be exploited by attackers to gain

unauthorized access to your systems.

An attacker can take advantage of default or poorly configured network settings,

leaving the system vulnerable to attacks.

Once the machine is on a public network, attackers can scan for open ports and

exploit any vulnerabilities found.

 # Optional: configure the VM settings
 config.vm.network "private_network", type: "dhcp"
 config.vm.provider "virtualbox" do |vb|
 vb.memory = "1024"
 vb.cpus = 2
 end

 # Optional: provision the VM with shell script
 config.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get upgrade -y
 SHELL
end

Insecure Network Configuration

1. Configuring Insecure Network Settings

COPY

Vagrantfile with insecure public network configuration
Vagrant.configure("2") do |config|
 config.vm.network "public_network"
end

COPY

2. Exploiting Open Ports

Use private networks to ensure that the virtual machine is not exposed to the public

internet. This helps in limiting access to the machine from only the host system or a

specific private network.

Only forward necessary ports and limit exposure to reduce the attack surface. Ensure

that only essential services are accessible and on non-default ports if possible.

Combining private networks and restricted port forwarding provides a more secure

environment.

COPY

Attacker scanning for open ports on the public network
nmap -p 1-65535 victim_ip

COPY

Use Private Networks and Restrict Port Forwarding

COPY

Vagrantfile with secure private network configuration
Vagrant.configure("2") do |config|
 config.vm.network "private_network", type: "dhcp"
end

COPY

2. Restrict Port Forwarding

COPY

Vagrantfile with restricted port forwarding
Vagrant.configure("2") do |config|
 config.vm.network "private_network", type: "dhcp"
 config.vm.network "forwarded_port", guest: 80, host: 8080,
auto_correct: true
end

COPY

3. Example Vagrantfile for Secure Network Configuration

Devops DevSecOps vagrant vagrantfile

Written by

COPY

Vagrantfile

Vagrant.configure("2") do |config|
 # Use an official Ubuntu 18.04 LTS box
 config.vm.box = "ubuntu/bionic64"

 # Configure private network
 config.vm.network "private_network", type: "dhcp"

 # Restrict port forwarding
 config.vm.network "forwarded_port", guest: 80, host: 8080,
auto_correct: true

 # Optional: configure the VM settings
 config.vm.provider "virtualbox" do |vb|
 vb.memory = "1024"
 vb.cpus = 2
 end

 # Optional: provision the VM with a shell script
 config.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get upgrade -y
 SHELL
end

COPY

MORE ARTICLES

Reza Rashidi

Attacking Golang
Golang (or Go) is a statically typed,

compiled programming language

designed at Google. It is known …

Reza Rashidi

Ansible Playbooks
Ansible playbooks are essential tools in

the DevSecOps toolkit, enabling the

automation of complex I…

Reza Rashidi

eBPF cheatsheet
eBPF (Extended Berkeley Packet Filter) is

a powerful technology for monitoring and

analyzing system …

Reza Rashidi Add your bio

Published on

DevSecOpsGuides Add blog description

©2024 DevSecOpsGuides

Archive Privacy policy Terms

Write on Hashnode

Powered by Hashnode - Home for tech writers and readers

· ·

