
WWW .DE V S E COP SGU I D E S . COM

Ansible Playbooks
· · 33 min readJun 17, 2024

Table of contents

Ansible Inventory Structure

INI Format Inventory

YAML Format Inventory

Ansible Playbook Structure

Example Playbook: setup_webserver.yml

Running the Playbook

Ansible Playbook: SSH Audit

Explanation:

Ansible Playbook: Linux Kernel Audit

Explanation:

Ansible Playbook: Nginx Audit

Explanation:

Ansible Playbook: Apache Audit

Explanation:

Ansible Playbook: Environment Secret Audit

Explanation:

Ansible Playbook: SCM (GitLab) Audit

Explanation:

Ansible Playbook: Docker Container Audit

https://rezaduty-1685945445294.hashnode.dev/ansible-playbooks

Explanation:

Ansible Playbook: Kubernetes Pod Audit

Explanation:

Ansible Playbook: Database Audit (MySQL and PostgreSQL)

Explanation:

Ansible Playbook: Manage AWS Security Group Rules

Explanation:

Ansible Playbook: Monitor Critical Files

Explanation:

Ansible Playbook: Log Collection and Analysis

Explanation:

Ansible Playbook: Firewall Rules Management with iptables

Explanation:

Ansible Playbook: Backup and Restore Procedures

Explanation:

References

Show less

Ansible playbooks are essential tools in the DevSecOps toolkit, enabling the

automation of complex IT tasks while ensuring security and compliance are integral to

every step. These playbooks, written in YAML, define a series of tasks to be executed

on remote machines, allowing for consistent and repeatable configurations. In the

context of DevSecOps, playbooks can automate security tasks such as patch

management, vulnerability assessments, and the application of security policies,

integrating security measures directly into the development and deployment

pipelines. This automation reduces human error, speeds up the deployment process,

and ensures that security practices are consistently applied across all environments.

Moreover, Ansible playbooks support the principle of "security as code," where

security practices are codified and version-controlled alongside application code.

This approach ensures that security configurations are transparent, auditable, and

easily updated in response to emerging threats or compliance requirements. By

leveraging Ansible’s extensive library of modules, DevSecOps teams can enforce

secure configurations, manage firewalls, monitor systems for compliance, and

remediate issues automatically. This integration of Ansible playbooks within

DevSecOps pipelines not only enhances security posture but also aligns with agile

methodologies, promoting rapid and secure delivery of software.

Ansible inventory files define the hosts and groups of hosts on which Ansible

commands, modules, and playbooks operate. The inventory can be static (defined in

INI or YAML format) or dynamic (using a script or plugin).

Create a file named inventory.ini :

Ansible Inventory Structure

INI Format Inventory

COPY

[webservers]
web1 ansible_host=192.168.1.10 ansible_user=username
ansible_ssh_pass=password
web2 ansible_host=192.168.1.11 ansible_user=username
ansible_ssh_pass=password

[dbservers]
db1 ansible_host=192.168.1.20 ansible_user=username
ansible_ssh_pass=password
db2 ansible_host=192.168.1.21 ansible_user=username
ansible_ssh_pass=password

COPY

[webservers] and [dbservers] define groups of hosts.

ansible_host , ansible_user , and ansible_ssh_pass provide the necessary

connection details.

[all:vars] defines variables applied to all hosts.

Create a file named inventory.yml :

[all:vars]
ansible_python_interpreter=/usr/bin/python3

YAML Format Inventory

COPY

all:
 vars:
 ansible_python_interpreter: /usr/bin/python3
 children:
 webservers:
 hosts:
 web1:
 ansible_host: 192.168.1.10
 ansible_user: username
 ansible_ssh_pass: password
 web2:
 ansible_host: 192.168.1.11
 ansible_user: username
 ansible_ssh_pass: password
 dbservers:
 hosts:
 db1:
 ansible_host: 192.168.1.20
 ansible_user: username
 ansible_ssh_pass: password
 db2:
 ansible_host: 192.168.1.21

COPY

all is the top-level group containing all hosts.

vars defines variables applied to all hosts.

children groups hosts into webservers and dbservers .

An Ansible playbook is a YAML file that defines a series of tasks to be executed on

specified hosts. Each playbook consists of one or more plays, and each play targets a

group of hosts.

 ansible_user: username
 ansible_ssh_pass: password

Ansible Playbook Structure

Example Playbook: setup_webserver.yml

COPY

- name: Setup Web Server
 hosts: webservers
 become: yes
 tasks:
 - name: Install Nginx
 ansible.builtin.yum:
 name: nginx
 state: present

 - name: Start and enable Nginx
 ansible.builtin.systemd:
 name: nginx
 state: started
 enabled: yes

 - name: Copy Nginx configuration
 ansible.builtin.copy:

COPY

Playbook Header:

name : Description of the play.

hosts : Target hosts for the play (e.g., webservers).

become : Indicates that tasks should be executed with elevated privileges

(yes for sudo).

Tasks:

Install Nginx:

Use the ansible.builtin.yum module to install Nginx.

Start and enable Nginx:

Use the ansible.builtin.systemd module to start and enable the Nginx

service.

Copy Nginx configuration:

Use the ansible.builtin.copy module to copy the local Nginx

configuration file to the remote host.

Restart Nginx:

 src: /path/to/local/nginx.conf
 dest: /etc/nginx/nginx.conf
 owner: root
 group: root
 mode: '0644'
 backup: yes

 - name: Restart Nginx
 ansible.builtin.systemd:
 name: nginx
 state: restarted

Use the ansible.builtin.systemd module to restart Nginx.

To run the playbook, navigate to the directory containing setup_webserver.yml and

execute the following command:

Replace inventory.yml with the path to your Ansible inventory file. This command

runs the playbook on the hosts specified in the webservers group of the inventory file.

If you use the INI format, the command would be the same, just ensure the inventory

file name is correct:

This playbook designed to audit SSH configurations on remote hosts. This playbook

will check the SSH daemon configuration file (/etc/ssh/sshd_config) to ensure it

complies with your security policies.

Create a playbook named ssh_audit.yml with the following content:

Running the Playbook

COPY

ansible-playbook -i inventory.yml setup_webserver.yml

COPY

COPY

ansible-playbook -i inventory.ini setup_webserver.yml

COPY

Ansible Playbook: SSH Audit

COPY

- name: Audit SSH Configuration
 hosts: all
 become: yes
 gather_facts: no

COPY

 tasks:
 - name: Check if /etc/ssh/sshd_config exists
 ansible.builtin.stat:
 path: /etc/ssh/sshd_config
 register: sshd_config

 - name: Read the SSH configuration file
 ansible.builtin.command: cat /etc/ssh/sshd_config
 when: sshd_config.stat.exists
 register: sshd_config_content

 - name: Ensure PermitRootLogin is set to no
 ansible.builtin.debug:
 msg: "PermitRootLogin is set correctly"
 when: "'PermitRootLogin no' in sshd_config_content.stdout"

 - name: Ensure PasswordAuthentication is set to no
 ansible.builtin.debug:
 msg: "PasswordAuthentication is set correctly"
 when: "'PasswordAuthentication no' in
sshd_config_content.stdout"

 - name: Ensure X11Forwarding is set to no
 ansible.builtin.debug:
 msg: "X11Forwarding is set correctly"
 when: "'X11Forwarding no' in sshd_config_content.stdout"

 - name: Print SSH configuration file if it exists
 ansible.builtin.debug:
 msg: "{{ sshd_config_content.stdout }}"
 when: sshd_config.stat.exists

 - name: Fail if PermitRootLogin is not set to no
 ansible.builtin.fail:
 msg: "PermitRootLogin is not set to 'no'"
 when: sshd_config.stat.exists and "'PermitRootLogin no' not in

1. Playbook Header:

name : A description of the playbook.

hosts : Specifies the target hosts (here, all means it will run on all hosts

defined in your inventory).

become: yes : Run tasks with elevated privileges (i.e., sudo).

gather_facts: no : Skip gathering facts for faster execution.

2. Tasks:

Check if /etc/ssh/sshd_config exists:

Use the ansible.builtin.stat module to check if the SSH configuration

file exists.

Read the SSH configuration file:

Use the ansible.builtin.command module to read the contents of

/etc/ssh/sshd_config and register the output.

sshd_config_content.stdout"

 - name: Fail if PasswordAuthentication is not set to no
 ansible.builtin.fail:
 msg: "PasswordAuthentication is not set to 'no'"
 when: sshd_config.stat.exists and "'PasswordAuthentication no'
not in sshd_config_content.stdout"

 - name: Fail if X11Forwarding is not set to no
 ansible.builtin.fail:
 msg: "X11Forwarding is not set to 'no'"
 when: sshd_config.stat.exists and "'X11Forwarding no' not in
sshd_config_content.stdout"

Explanation:

Ensure specific settings:

Use the ansible.builtin.debug module to print a message if certain

settings (PermitRootLogin no , PasswordAuthentication no , X11Forwarding

no) are found in the SSH configuration.

Fail the playbook if settings are incorrect:

Use the ansible.builtin.fail module to fail the playbook if the specific

settings are not found, indicating non-compliance.

playbook designed to audit the Linux kernel version on remote hosts. This playbook

will check the current kernel version and compare it against a specified version to

ensure it meets your security or compliance requirements.

Create a playbook named kernel_audit.yml with the following content:

Ansible Playbook: Linux Kernel Audit

COPY

- name: Audit Linux Kernel Version
 hosts: all
 become: yes
 gather_facts: no

 vars:
 min_kernel_version: "5.4.0"

 tasks:
 - name: Get current kernel version
 ansible.builtin.command: uname -r
 register: kernel_version

 - name: Print current kernel version
 ansible.builtin.debug:
 msg: "Current kernel version is {{ kernel_version.stdout }}"

COPY

http://ansible.builtin.fail/

1. Playbook Header:

name : A description of the playbook.

hosts : Specifies the target hosts (here, all means it will run on all hosts

defined in your inventory).

become: yes : Run tasks with elevated privileges (i.e., sudo).

gather_facts: no : Skip gathering facts for faster execution.

2. Variables:

min_kernel_version : Define the minimum required kernel version for

compliance.

 - name: Compare kernel version
 ansible.builtin.shell: |
 current_version=$(echo "{{ kernel_version.stdout }}" | sed
's/-.*//')
 min_version="{{ min_kernel_version }}"
 if ["$(printf '%s\n' "$min_version" "$current_version" | sort
-V | head -n1)" = "$min_version"]; then
 exit 0
 else
 exit 1
 fi
 register: kernel_comparison
 ignore_errors: yes

 - name: Fail if kernel version is below minimum required
 ansible.builtin.fail:
 msg: "Kernel version {{ kernel_version.stdout }} is below the
minimum required version {{ min_kernel_version }}"
 when: kernel_comparison.rc != 0

Explanation:

3. Tasks:

Get current kernel version:

Use the ansible.builtin.command module to run the uname -r command

and register the output in the kernel_version variable.

Print current kernel version:

Use the ansible.builtin.debug module to print the current kernel

version.

Compare kernel version:

Use the ansible.builtin.shell module to compare the current kernel

version with the minimum required version.

This task uses sed to strip any extra suffix from the kernel version (e.g.,

-generic), then compares the versions using sort -V for proper version

sorting.

The ignore_errors: yes directive ensures that the playbook continues

even if the kernel version is below the required version, allowing the next

task to handle the failure condition.

Fail if kernel version is below minimum required:

Use the ansible.builtin.fail module to fail the playbook if the kernel

version is below the minimum required version.

Ansible playbook designed to audit Nginx configurations on remote hosts. This

playbook will check for common security settings and best practices in the Nginx

configuration file (/etc/nginx/nginx.conf).

Create a playbook named nginx_audit.yml with the following content:

Ansible Playbook: Nginx Audit

COPYCOPY

http://ansible.builtin.shell/
http://ansible.builtin.fail/

COPY

- name: Audit Nginx Configuration
 hosts: webservers
 become: yes
 gather_facts: no

 tasks:
 - name: Check if /etc/nginx/nginx.conf exists
 ansible.builtin.stat:
 path: /etc/nginx/nginx.conf
 register: nginx_conf

 - name: Read Nginx configuration file
 ansible.builtin.command: cat /etc/nginx/nginx.conf
 when: nginx_conf.stat.exists
 register: nginx_conf_content

 - name: Ensure server_tokens is set to off
 ansible.builtin.debug:
 msg: "server_tokens is set correctly"
 when: "'server_tokens off;' in nginx_conf_content.stdout"

 - name: Ensure SSL protocols are properly configured
 ansible.builtin.debug:
 msg: "SSL protocols are configured correctly"
 when: "'ssl_protocols TLSv1.2 TLSv1.3;' in
nginx_conf_content.stdout"

 - name: Ensure HTTP methods are restricted
 ansible.builtin.debug:
 msg: "HTTP methods are restricted"
 when: "'limit_except GET POST {' in nginx_conf_content.stdout"

 - name: Print Nginx configuration file
 ansible.builtin.debug:
 msg: "{{ nginx_conf_content.stdout }}"

COPY

1. Playbook Header:

name : A description of the playbook.

hosts : Specifies the target hosts (here, webservers is used, assuming this

group is defined in your inventory).

become: yes : Run tasks with elevated privileges (i.e., sudo).

gather_facts: no : Skip gathering facts for faster execution.

2. Tasks:

Check if /etc/nginx/nginx.conf exists:

 when: nginx_conf.stat.exists

 - name: Fail if server_tokens is not set to off
 ansible.builtin.fail:
 msg: "server_tokens is not set to 'off'"
 when: nginx_conf.stat.exists and "'server_tokens off;' not in
nginx_conf_content.stdout"

 - name: Fail if SSL protocols are not properly configured
 ansible.builtin.fail:
 msg: "SSL protocols are not properly configured (TLSv1.2 and
TLSv1.3)"
 when: nginx_conf.stat.exists and "'ssl_protocols TLSv1.2
TLSv1.3;' not in nginx_conf_content.stdout"

 - name: Fail if HTTP methods are not restricted
 ansible.builtin.fail:
 msg: "HTTP methods are not restricted (limit_except GET POST)"
 when: nginx_conf.stat.exists and "'limit_except GET POST {' not
in nginx_conf_content.stdout"

Explanation:

Use the ansible.builtin.stat module to check if the Nginx configuration

file exists.

Read Nginx configuration file:

Use the ansible.builtin.command module to read the contents of

/etc/nginx/nginx.conf and register the output.

Ensure server_tokens is set to off:

Use the ansible.builtin.debug module to print a message if

server_tokens off; is found in the Nginx configuration.

Ensure SSL protocols are properly configured:

Use the ansible.builtin.debug module to print a message if

ssl_protocols TLSv1.2 TLSv1.3; is found in the Nginx configuration.

Ensure HTTP methods are restricted:

Use the ansible.builtin.debug module to print a message if limit_except

GET POST { is found in the Nginx configuration.

Print Nginx configuration file:

Use the ansible.builtin.debug module to print the contents of the Nginx

configuration file.

Fail if server_tokens is not set to off:

Use the ansible.builtin.fail module to fail the playbook if

server_tokens off; is not found in the Nginx configuration.

Fail if SSL protocols are not properly configured:

Use the ansible.builtin.fail module to fail the playbook if

ssl_protocols TLSv1.2 TLSv1.3; is not found in the Nginx configuration.

Fail if HTTP methods are not restricted:

http://ansible.builtin.fail/
http://ansible.builtin.fail/

Use the ansible.builtin.fail module to fail the playbook if limit_except

GET POST { is not found in the Nginx configuration.

Create a playbook named apache_audit.yml with the following content:

Ansible playbook designed to audit the Apache HTTP server configurations on remote

hosts. This playbook will check for common security settings and best practices in

the Apache configuration file (/etc/httpd/conf/httpd.conf or

/etc/apache2/apache2.conf , depending on the Linux distribution).

Ansible Playbook: Apache Audit

COPY

- name: Audit Apache Configuration
 hosts: webservers
 become: yes
 gather_facts: no

 tasks:
 - name: Determine Apache configuration file location
 ansible.builtin.shell: |
 if [-f /etc/httpd/conf/httpd.conf]; then
 echo /etc/httpd/conf/httpd.conf
 elif [-f /etc/apache2/apache2.conf]; then
 echo /etc/apache2/apache2.conf
 else
 echo "Apache configuration file not found"
 fi
 register: apache_conf_path

 - name: Check if Apache configuration file exists
 ansible.builtin.stat:
 path: "{{ apache_conf_path.stdout }}"
 register: apache_conf

COPY

http://ansible.builtin.fail/

 - name: Read Apache configuration file
 ansible.builtin.command: cat {{ apache_conf_path.stdout }}
 when: apache_conf.stat.exists
 register: apache_conf_content

 - name: Ensure ServerTokens is set to Prod
 ansible.builtin.debug:
 msg: "ServerTokens is set correctly"
 when: "'ServerTokens Prod' in apache_conf_content.stdout"

 - name: Ensure ServerSignature is set to Off
 ansible.builtin.debug:
 msg: "ServerSignature is set correctly"
 when: "'ServerSignature Off' in apache_conf_content.stdout"

 - name: Ensure TraceEnable is set to Off
 ansible.builtin.debug:
 msg: "TraceEnable is set correctly"
 when: "'TraceEnable Off' in apache_conf_content.stdout"

 - name: Print Apache configuration file
 ansible.builtin.debug:
 msg: "{{ apache_conf_content.stdout }}"
 when: apache_conf.stat.exists

 - name: Fail if ServerTokens is not set to Prod
 ansible.builtin.fail:
 msg: "ServerTokens is not set to 'Prod'"
 when: apache_conf.stat.exists and "'ServerTokens Prod' not in
apache_conf_content.stdout"

 - name: Fail if ServerSignature is not set to Off
 ansible.builtin.fail:
 msg: "ServerSignature is not set to 'Off'"
 when: apache_conf.stat.exists and "'ServerSignature Off' not in
apache_conf_content.stdout"

1. Playbook Header:

name : A description of the playbook.

hosts : Specifies the target hosts (e.g., webservers).

become: yes : Run tasks with elevated privileges (i.e., sudo).

gather_facts: no : Skip gathering facts for faster execution.

2. Tasks:

Determine Apache configuration file location:

Use the ansible.builtin.shell module to determine the location of the

Apache configuration file. The file could be in different locations based

on the distribution.

Check if Apache configuration file exists:

Use the ansible.builtin.stat module to check if the determined Apache

configuration file exists.

Read Apache configuration file:

Use the ansible.builtin.command module to read the contents of the

Apache configuration file and register the output.

Ensure ServerTokens is set to Prod :

Use the ansible.builtin.debug module to print a message if ServerTokens

Prod is found in the Apache configuration.

 - name: Fail if TraceEnable is not set to Off
 ansible.builtin.fail:
 msg: "TraceEnable is not set to 'Off'"
 when: apache_conf.stat.exists and "'TraceEnable Off' not in
apache_conf_content.stdout"

Explanation:

http://ansible.builtin.shell/

Ensure ServerSignature is set to Off :

Use the ansible.builtin.debug module to print a message if

ServerSignature Off is found in the Apache configuration.

Ensure TraceEnable is set to Off :

Use the ansible.builtin.debug module to print a message if TraceEnable

Off is found in the Apache configuration.

Print Apache configuration file:

Use the ansible.builtin.debug module to print the contents of the

Apache configuration file.

Fail if ServerTokens is not set to Prod :

Use the ansible.builtin.fail module to fail the playbook if ServerTokens

Prod is not found in the Apache configuration.

Fail if ServerSignature is not set to Off :

Use the ansible.builtin.fail module to fail the playbook if

ServerSignature Off is not found in the Apache configuration.

Fail if TraceEnable is not set to Off :

Use the ansible.builtin.fail module to fail the playbook if TraceEnable

Off is not found in the Apache configuration.

Create a playbook named env_secret_audit.yml with the following content:

Ansible playbook designed to audit environment variables on remote hosts to ensure

that no secrets (e.g., passwords, API keys) are exposed in the environment variables.

Ansible Playbook: Environment Secret Audit

COPYCOPY

http://ansible.builtin.fail/
http://ansible.builtin.fail/
http://ansible.builtin.fail/

- name: Audit Environment Variables for Secrets
 hosts: all
 become: yes
 gather_facts: no

 vars:
 secret_patterns:
 - "password"
 - "secret"
 - "api_key"
 - "token"

 tasks:
 - name: Check for environment variables containing secrets
 ansible.builtin.shell: printenv
 register: env_vars

 - name: Print all environment variables
 ansible.builtin.debug:
 msg: "{{ env_vars.stdout_lines }}"

 - name: Fail if any environment variables contain secrets
 ansible.builtin.fail:
 msg: "Environment variables contain sensitive information: {{
item }}"
 with_items: "{{ env_vars.stdout_lines }}"
 when: item | regex_search(secret_patterns | join('|'),
ignorecase=True)

 - name: Print safe message if no secrets are found
 ansible.builtin.debug:
 msg: "No sensitive information found in environment
variables."

1. Playbook Header:

name : A description of the playbook.

hosts : Specifies the target hosts (e.g., all).

become: yes : Run tasks with elevated privileges (i.e., sudo).

gather_facts: no : Skip gathering facts for faster execution.

2. Variables:

secret_patterns : A list of patterns that represent possible secret keys (e.g.,

password , secret , api_key , token). You can add more patterns as needed.

3. Tasks:

Check for environment variables containing secrets:

Use the ansible.builtin.shell module to execute the printenv

command, which prints all environment variables, and register the

output.

Print all environment variables:

Use the ansible.builtin.debug module to print all environment variables.

This is useful for debugging and verifying what is being checked.

Fail if any environment variables contain secrets:

Use the ansible.builtin.fail module to fail the playbook if any

environment variables match the secret patterns. The regex_search

function is used to check if any of the patterns are found in the

environment variables.

 when: env_vars.stdout_lines | selectattr('search', 'none',
secret_patterns | join('|'), ignorecase=True) | list | length == 0

Explanation:

http://ansible.builtin.shell/
http://ansible.builtin.fail/

Print safe message if no secrets are found:

Use the ansible.builtin.debug module to print a message indicating that

no sensitive information was found in the environment variables. This

task only runs if none of the patterns match.

Create a playbook named scm_audit.yml with the following content:

Ansible playbook designed to audit GitLab or a generic Git server to ensure security

and compliance with best practices. This playbook will check for common security

settings, such as ensuring that repositories are private, two-factor authentication is

enabled, and checking for default branch protection.

Ansible Playbook: SCM (GitLab) Audit

COPY

- name: Audit GitLab Configuration
 hosts: scm_servers
 become: yes
 gather_facts: no

 vars:
 gitlab_url: "https://gitlab.example.com"
 gitlab_api_token: "your_personal_access_token"

 tasks:
 - name: Check if GitLab API is accessible
 ansible.builtin.uri:
 url: "{{ gitlab_url }}/api/v4/projects"
 method: GET
 headers:
 PRIVATE-TOKEN: "{{ gitlab_api_token }}"
 register: gitlab_projects

 - name: Print list of projects

COPY

 ansible.builtin.debug:
 msg: "{{ gitlab_projects.json }}"

 - name: Fail if GitLab API is not accessible
 ansible.builtin.fail:
 msg: "Cannot access GitLab API. Check URL and token."
 when: gitlab_projects.status != 200

 - name: Check repository settings
 ansible.builtin.uri:
 url: "{{ gitlab_url }}/api/v4/projects/{{ item.id }}"
 method: GET
 headers:
 PRIVATE-TOKEN: "{{ gitlab_api_token }}"
 with_items: "{{ gitlab_projects.json }}"
 register: repo_settings

 - name: Ensure repositories are private
 ansible.builtin.debug:
 msg: "Repository {{ item.json.name }} is private"
 when: item.json.visibility == "private"

 - name: Fail if repository is not private
 ansible.builtin.fail:
 msg: "Repository {{ item.json.name }} is not private"
 when: item.json.visibility != "private"

 - name: Ensure 2FA is enabled for all users
 ansible.builtin.uri:
 url: "{{ gitlab_url }}/api/v4/users"
 method: GET
 headers:
 PRIVATE-TOKEN: "{{ gitlab_api_token }}"
 register: gitlab_users

 - name: Check if 2FA is enabled for each user
 ansible.builtin.uri:

1. Playbook Header:

name : A description of the playbook.

hosts : Specifies the target hosts (e.g., scm_servers).

become: yes : Run tasks with elevated privileges (i.e., sudo).

 url: "{{ gitlab_url }}/api/v4/users/{{ item.id }}"
 method: GET
 headers:
 PRIVATE-TOKEN: "{{ gitlab_api_token }}"
 with_items: "{{ gitlab_users.json }}"
 register: user_settings

 - name: Fail if any user does not have 2FA enabled
 ansible.builtin.fail:
 msg: "User {{ item.json.username }} does not have 2FA enabled"
 when: not item.json.two_factor_enabled

 - name: Ensure default branch protection
 ansible.builtin.uri:
 url: "{{ gitlab_url }}/api/v4/projects/{{ item.id
}}/protected_branches"
 method: GET
 headers:
 PRIVATE-TOKEN: "{{ gitlab_api_token }}"
 with_items: "{{ gitlab_projects.json }}"
 register: protected_branches

 - name: Fail if default branch is not protected
 ansible.builtin.fail:
 msg: "Default branch of repository {{ item.id }} is not
protected"
 when: item.json | length == 0

Explanation:

gather_facts: no : Skip gathering facts for faster execution.

2. Variables:

gitlab_url : The base URL for your GitLab instance.

gitlab_api_token : Your GitLab personal access token.

3. Tasks:

Check if GitLab API is accessible:

Use the ansible.builtin.uri module to send a GET request to the GitLab

API to list projects.

Register the response in gitlab_projects .

Print list of projects:

Use the ansible.builtin.debug module to print the list of projects

retrieved from GitLab.

Fail if GitLab API is not accessible:

Use the ansible.builtin.fail module to fail the playbook if the GitLab

API is not accessible.

Check repository settings:

Use the ansible.builtin.uri module to get settings for each project.

Register the response in repo_settings .

Ensure repositories are private:

Use the ansible.builtin.debug module to print a message if the

repository is private.

Fail if repository is not private:

Use the ansible.builtin.fail module to fail the playbook if any

repository is not private.

http://ansible.builtin.fail/
http://ansible.builtin.fail/

Ensure 2FA is enabled for all users:

Use the ansible.builtin.uri module to list all users.

Register the response in gitlab_users .

Check if 2FA is enabled for each user:

Use the ansible.builtin.uri module to get settings for each user.

Register the response in user_settings .

Fail if any user does not have 2FA enabled:

Use the ansible.builtin.fail module to fail the playbook if any user

does not have 2FA enabled.

Ensure default branch protection:

Use the ansible.builtin.uri module to check if the default branch of

each project is protected.

Register the response in protected_branches .

Fail if default branch is not protected:

Use the ansible.builtin.fail module to fail the playbook if the default

branch of any repository is not protected.

Create a playbook named docker_audit.yml with the following content:

Ansible playbook designed to audit Docker containers on remote hosts. This playbook

will check for common security settings and best practices, such as ensuring that

containers are running with non-root users, verifying that containers are using the

latest image versions, and checking for exposed ports.

Ansible Playbook: Docker Container Audit

COPYCOPY

http://ansible.builtin.fail/
http://ansible.builtin.fail/

- name: Audit Docker Containers
 hosts: docker_hosts
 become: yes
 gather_facts: no

 tasks:
 - name: Check if Docker is installed
 ansible.builtin.command: docker --version
 register: docker_version
 changed_when: false
 ignore_errors: yes

 - name: Fail if Docker is not installed
 ansible.builtin.fail:
 msg: "Docker is not installed on this host."
 when: docker_version.rc != 0

 - name: List all running Docker containers
 ansible.builtin.command: docker ps --format "{{ '{{.ID}}' }}"
 register: docker_containers

 - name: Get details of each container
 ansible.builtin.command: docker inspect {{ item }}
 with_items: "{{ docker_containers.stdout_lines }}"
 register: container_details

 - name: Ensure containers are running as non-root users
 ansible.builtin.debug:
 msg: "Container {{ item.item }} is running as non-root user:
{{ item.stdout[0].Config.User }}"
 with_items: "{{ container_details.results }}"
 when: item.stdout[0].Config.User != ""

 - name: Fail if any container is running as root
 ansible.builtin.fail:

1. Playbook Header:

 msg: "Container {{ item.item }} is running as root user."
 with_items: "{{ container_details.results }}"
 when: item.stdout[0].Config.User == ""

 - name: Ensure containers are using the latest image versions
 ansible.builtin.command: docker images --format "{{
'{{.Repository}}:{{.Tag}}' }}" | grep {{ item.stdout[0].Config.Image
}}
 with_items: "{{ container_details.results }}"
 register: image_check

 - name: Fail if any container is not using the latest image
version
 ansible.builtin.fail:
 msg: "Container {{ item.item }} is not using the latest image
version."
 with_items: "{{ image_check.results }}"
 when: item.stdout | regex_search('latest') == None

 - name: Check for exposed ports
 ansible.builtin.debug:
 msg: "Container {{ item.item }} has exposed ports: {{
item.stdout[0].NetworkSettings.Ports }}"
 with_items: "{{ container_details.results }}"
 when: item.stdout[0].NetworkSettings.Ports != {}

 - name: Fail if any container has exposed ports
 ansible.builtin.fail:
 msg: "Container {{ item.item }} has exposed ports: {{
item.stdout[0].NetworkSettings.Ports }}"
 with_items: "{{ container_details.results }}"
 when: item.stdout[0].NetworkSettings.Ports != {}

Explanation:

name : A description of the playbook.

hosts : Specifies the target hosts (e.g., docker_hosts).

become: yes : Run tasks with elevated privileges (i.e., sudo).

gather_facts: no : Skip gathering facts for faster execution.

2. Tasks:

Check if Docker is installed:

Use the ansible.builtin.command module to check the Docker version

and register the output.

Ignore errors to handle hosts where Docker might not be installed.

Fail if Docker is not installed:

Use the ansible.builtin.fail module to fail the playbook if Docker is not

installed.

List all running Docker containers:

Use the ansible.builtin.command module to list all running Docker

containers and register the output.

Get details of each container:

Use the ansible.builtin.command module to inspect each running

container and register the details.

Ensure containers are running as non-root users:

Use the ansible.builtin.debug module to print a message if the

container is running as a non-root user.

Fail if any container is running as root:

Use the ansible.builtin.fail module to fail the playbook if any

container is running as root.

http://ansible.builtin.fail/
http://ansible.builtin.fail/

Ensure containers are using the latest image versions:

Use the ansible.builtin.command module to check if the container is

using the latest image version and register the output.

Fail if any container is not using the latest image version:

Use the ansible.builtin.fail module to fail the playbook if any

container is not using the latest image version.

Check for exposed ports:

Use the ansible.builtin.debug module to print a message if the

container has exposed ports.

Fail if any container has exposed ports:

Use the ansible.builtin.fail module to fail the playbook if any

container has exposed ports.

Create a playbook named k8s_pod_audit.yml with the following content:

Ansible playbook designed to audit Kubernetes pods on remote hosts. This playbook

will check for common security settings and best practices, such as ensuring that

pods are not running as root, using the latest image versions, and not exposing

unnecessary ports.

1. Playbook Header:

name : A description of the playbook.

hosts : Specifies the target hosts (e.g., k8s_nodes).

become: yes : Run tasks with elevated privileges (i.e., sudo).

gather_facts: no : Skip gathering facts for faster execution.

Ansible Playbook: Kubernetes Pod Audit

Explanation:

http://ansible.builtin.fail/
http://ansible.builtin.fail/

2. Variables:

kubeconfig_path : Path to the Kubernetes configuration file. Update this path

based on your environment.

3. Tasks:

Ensure kubectl is installed:

Use the ansible.builtin.command module to check if kubectl is installed

and register the output.

Ignore errors to handle hosts where kubectl might not be installed.

Fail if kubectl is not installed:

Use the ansible.builtin.fail module to fail the playbook if kubectl is

not installed.

List all pods in all namespaces:

Use the ansible.builtin.command module to list all pods in all

namespaces in JSON format and register the output.

Parse pod details:

Use the ansible.builtin.set_fact module to parse the JSON output into

a list of pods.

Ensure pods are running as non-root users:

Use the ansible.builtin.debug module to print a message if the pod is

running as a non-root user.

Fail if any pod is running as root:

Use the ansible.builtin.fail module to fail the playbook if any pod is

running as root.

Ensure containers in pods are using the latest image versions:

http://ansible.builtin.fail/
http://ansible.builtin.fail/

Use the ansible.builtin.shell module to check if the container is using

the latest image version. This uses docker pull to ensure the latest

image is available locally.

Ignore errors and do not mark the task as changed.

Fail if any container is not using the latest image version:

Use the ansible.builtin.fail module to fail the playbook if any

container is not using the latest image version.

Check for exposed ports:

Use the ansible.builtin.debug module to print a message if the pod has

exposed ports.

Fail if any pod has exposed ports:

Use the ansible.builtin.fail module to fail the playbook if any pod has

exposed ports.

Create a playbook named db_audit.yml with the following content:

Ansible playbook designed to audit MySQL and PostgreSQL databases. This playbook

will check for common security settings and best practices, such as ensuring that

remote root access is disabled, verifying password policies, and checking for

outdated database versions.

Ansible Playbook: Database Audit (MySQL and PostgreSQL)

COPY

- name: Audit MySQL and PostgreSQL Databases
 hosts: db_servers
 become: yes
 gather_facts: no

 vars:

COPY

http://ansible.builtin.shell/
http://ansible.builtin.fail/
http://ansible.builtin.fail/

 mysql_root_user: root
 mysql_root_password: your_mysql_root_password
 pgsql_root_user: postgres
 pgsql_root_password: your_pgsql_root_password

 tasks:
 - name: Ensure MySQL is installed
 ansible.builtin.command: mysql --version
 register: mysql_version
 changed_when: false
 ignore_errors: yes

 - name: Fail if MySQL is not installed
 ansible.builtin.fail:
 msg: "MySQL is not installed on this host."
 when: mysql_version.rc != 0

 - name: Ensure PostgreSQL is installed
 ansible.builtin.command: psql --version
 register: pgsql_version
 changed_when: false
 ignore_errors: yes

 - name: Fail if PostgreSQL is not installed
 ansible.builtin.fail:
 msg: "PostgreSQL is not installed on this host."
 when: pgsql_version.rc != 0

 - name: Check MySQL remote root access
 ansible.builtin.shell: >
 mysql -u{{ mysql_root_user }} -p{{ mysql_root_password }} -e
"SELECT user, host FROM mysql.user WHERE user='root' AND
host!='localhost';"
 register: mysql_remote_root
 changed_when: false
 ignore_errors: yes

 - name: Fail if MySQL remote root access is enabled
 ansible.builtin.fail:
 msg: "MySQL remote root access is enabled."
 when: mysql_remote_root.stdout_lines | length > 0

 - name: Check PostgreSQL remote root access
 ansible.builtin.shell: >
 PGPASSWORD={{ pgsql_root_password }} psql -U {{
pgsql_root_user }} -c "\du"
 register: pgsql_users
 changed_when: false
 ignore_errors: yes

 - name: Fail if PostgreSQL remote root access is enabled
 ansible.builtin.fail:
 msg: "PostgreSQL remote root access is enabled."
 when: pgsql_users.stdout | regex_search('postgres') and not
pgsql_users.stdout | regex_search('localhost')

 - name: Check MySQL password policy
 ansible.builtin.shell: >
 mysql -u{{ mysql_root_user }} -p{{ mysql_root_password }} -e
"SHOW VARIABLES LIKE 'validate_password%';"
 register: mysql_password_policy
 changed_when: false

 - name: Ensure MySQL password policy is strong
 ansible.builtin.debug:
 msg: "MySQL password policy: {{ mysql_password_policy.stdout
}}"

 - name: Fail if MySQL password policy is weak
 ansible.builtin.fail:
 msg: "MySQL password policy is weak: {{
mysql_password_policy.stdout }}"
 when: mysql_password_policy.stdout | regex_search('LOW|MEDIUM')

1. Playbook Header:

name : A description of the playbook.

hosts : Specifies the target hosts (e.g., db_servers).

become: yes : Run tasks with elevated privileges (i.e., sudo).

gather_facts: no : Skip gathering facts for faster execution.

 - name: Check PostgreSQL password policy
 ansible.builtin.shell: >
 PGPASSWORD={{ pgsql_root_password }} psql -U {{
pgsql_root_user }} -c "SHOW password_encryption;"
 register: pgsql_password_policy
 changed_when: false

 - name: Ensure PostgreSQL password policy is strong
 ansible.builtin.debug:
 msg: "PostgreSQL password policy: {{
pgsql_password_policy.stdout }}"

 - name: Fail if PostgreSQL password policy is weak
 ansible.builtin.fail:
 msg: "PostgreSQL password policy is weak: {{
pgsql_password_policy.stdout }}"
 when: not pgsql_password_policy.stdout | regex_search('scram-
sha-256')

 - name: Check MySQL version
 ansible.builtin.debug:
 msg: "MySQL version: {{ mysql_version.stdout }}"

 - name: Check PostgreSQL version
 ansible.builtin.debug:
 msg: "PostgreSQL version: {{ pgsql_version.stdout }}"

Explanation:

2. Variables:

mysql_root_user : MySQL root user.

mysql_root_password : MySQL root user password.

pgsql_root_user : PostgreSQL root user.

pgsql_root_password : PostgreSQL root user password.

3. Tasks:

Ensure MySQL is installed:

Use the ansible.builtin.command module to check the MySQL version

and register the output.

Ignore errors to handle hosts where MySQL might not be installed.

Fail if MySQL is not installed:

Use the ansible.builtin.fail module to fail the playbook if MySQL is not

installed.

Ensure PostgreSQL is installed:

Use the ansible.builtin.command module to check the PostgreSQL

version and register the output.

Ignore errors to handle hosts where PostgreSQL might not be installed.

Fail if PostgreSQL is not installed:

Use the ansible.builtin.fail module to fail the playbook if PostgreSQL

is not installed.

Check MySQL remote root access:

Use the ansible.builtin.shell module to check for remote root access

in MySQL and register the output.

Fail if MySQL remote root access is enabled:

http://ansible.builtin.fail/
http://ansible.builtin.fail/
http://ansible.builtin.shell/

Use the ansible.builtin.fail module to fail the playbook if MySQL

remote root access is enabled.

Check PostgreSQL remote root access:

Use the ansible.builtin.shell module to check for remote root access

in PostgreSQL and register the output.

Fail if PostgreSQL remote root access is enabled:

Use the ansible.builtin.fail module to fail the playbook if PostgreSQL

remote root access is enabled.

Check MySQL password policy:

Use the ansible.builtin.shell module to check the MySQL password

policy and register the output.

Ensure MySQL password policy is strong:

Use the ansible.builtin.debug module to print the MySQL password

policy.

Fail if MySQL password policy is weak:

Use the ansible.builtin.fail module to fail the playbook if the MySQL

password policy is weak.

Check PostgreSQL password policy:

Use the ansible.builtin.shell module to check the PostgreSQL

password policy and register the output.

Ensure PostgreSQL password policy is strong:

Use the ansible.builtin.debug module to print the PostgreSQL password

policy.

Fail if PostgreSQL password policy is weak:

http://ansible.builtin.fail/
http://ansible.builtin.shell/
http://ansible.builtin.fail/
http://ansible.builtin.shell/
http://ansible.builtin.fail/
http://ansible.builtin.shell/

Use the ansible.builtin.fail module to fail the playbook if the

PostgreSQL password policy is weak.

Check MySQL version:

Use the ansible.builtin.debug module to print the MySQL version.

Check PostgreSQL version:

Use the ansible.builtin.debug module to print the PostgreSQL version.

Create a playbook named manage_security_groups.yml with the following content:

Below is an Ansible playbook designed to automate the management of AWS security

group rules for EC2 instances. This playbook will use the

amazon.aws.ec 2_security_group module to ensure that specific security group rules

are in place.

Ansible Playbook: Manage AWS Security Group Rules

COPY

- name: Manage AWS Security Group Rules
 hosts: localhost
 gather_facts: no
 tasks:
 - name: Ensure security group exists
 amazon.aws.ec2_security_group:
 name: my_security_group
 description: Security group for my EC2 instances
 vpc_id: vpc-0abcd1234efgh5678 # Replace with your VPC ID
 region: us-east-1 # Replace with your desired AWS region
 state: present
 register: sg_result

 - name: Ensure security group rules
 amazon.aws.ec2_security_group:

COPY

http://ansible.builtin.fail/
http://amazon.aws.ec/

1. Playbook Header:

name : A description of the playbook.

hosts : Specifies the target host(s). In this case, it's localhost because the

AWS tasks are executed from the control node.

 name: my_security_group
 vpc_id: vpc-0abcd1234efgh5678 # Replace with your VPC ID
 region: us-east-1 # Replace with your desired AWS region
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: 0.0.0.0/0 # SSH from anywhere (modify as needed)
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0 # HTTP from anywhere
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0 # HTTPS from anywhere
 rules_egress:
 - proto: all
 from_port: -1
 to_port: -1
 cidr_ip: 0.0.0.0/0 # Allow all outbound traffic
 register: sg_rules_result

 - name: Output security group details
 ansible.builtin.debug:
 msg: "Security Group {{ sg_result.group_id }} has been updated
with rules: {{ sg_rules_result }}"

Explanation:

http://localhost/

gather_facts: no : Skip gathering facts for faster execution.

2. Tasks:

Ensure security group exists:

Use the amazon.aws.ec 2_security_group module to create or ensure the

existence of a security group named my_security_group .

The vpc_id and region should be specified according to your AWS

setup.

Register the result in sg_result to capture details about the security

group.

Ensure security group rules:

Use the amazon.aws.ec 2_security_group module again to ensure specific

rules are applied to the security group.

Define the inbound rules (e.g., SSH, HTTP, HTTPS) and outbound rules

(e.g., allow all outbound traffic).

Register the result in sg_rules_result to capture details about the rules

applied.

Output security group details:

Use the ansible.builtin.debug module to print out details about the

security group and the applied rules for verification purposes.

Create a playbook named monitor_files.yml with the following content:

Ansible playbook designed to monitor critical files for unauthorized changes. This

playbook will leverage the ansible.builtin.stat module to check the file attributes

and the ansible.builtin.copy module to save a baseline snapshot of the file for future

comparison.

Ansible Playbook: Monitor Critical Files

http://amazon.aws.ec/
http://amazon.aws.ec/

COPY

- name: Monitor Critical Files for Unauthorized Changes
 hosts: monitored_servers
 become: yes
 gather_facts: no

 vars:
 critical_files:
 - /etc/passwd
 - /etc/shadow
 - /etc/ssh/sshd_config
 - /etc/sudoers

 tasks:
 - name: Ensure baseline directory exists
 ansible.builtin.file:
 path: /var/baseline
 state: directory
 mode: '0755'

 - name: Create baseline snapshots if not exist
 ansible.builtin.copy:
 src: "{{ item }}"
 dest: "/var/baseline/{{ item | basename }}.baseline"
 remote_src: yes
 force: no
 with_items: "{{ critical_files }}"

 - name: Check current file attributes
 ansible.builtin.stat:
 path: "{{ item }}"
 with_items: "{{ critical_files }}"
 register: current_files

 - name: Check baseline file attributes
 ansible.builtin.stat:

COPY

1. Playbook Header:

name : A description of the playbook.

hosts : Specifies the target hosts (e.g., monitored_servers).

become: yes : Run tasks with elevated privileges (i.e., sudo).

gather_facts: no : Skip gathering facts for faster execution.

 path: "/var/baseline/{{ item | basename }}.baseline"
 with_items: "{{ critical_files }}"
 register: baseline_files

 - name: Compare current and baseline attributes
 ansible.builtin.shell: >
 diff -q "{{ item.0.stat.path }}" "{{ item.1.stat.path }}"
 with_together:
 - "{{ current_files.results }}"
 - "{{ baseline_files.results }}"
 register: diff_results
 ignore_errors: yes

 - name: Report changes if any
 ansible.builtin.debug:
 msg: "File {{ item.item.0.stat.path }} has changed"
 with_items: "{{ diff_results.results }}"
 when: item.rc == 1

 - name: Fail if unauthorized changes detected
 ansible.builtin.fail:
 msg: "Unauthorized changes detected in file {{
item.item.0.stat.path }}"
 with_items: "{{ diff_results.results }}"
 when: item.rc == 1

Explanation:

2. Variables:

critical_files : A list of critical files to be monitored.

3. Tasks:

Ensure baseline directory exists:

Use the ansible.builtin.file module to ensure the directory

/var/baseline exists, where baseline snapshots will be stored.

Create baseline snapshots if not exist:

Use the ansible.builtin.copy module to create a baseline snapshot of

each critical file. The force: no option ensures that the baseline is only

created if it does not already exist.

Check current file attributes:

Use the ansible.builtin.stat module to gather the current attributes of

each critical file and register the results.

Check baseline file attributes:

Use the ansible.builtin.stat module to gather the attributes of each

baseline file and register the results.

Compare current and baseline attributes:

Use the ansible.builtin.shell module with the diff command to

compare the current file attributes with the baseline attributes. The

results are registered and errors are ignored.

Report changes if any:

Use the ansible.builtin.debug module to print a message if any file has

changed.

Fail if unauthorized changes detected:

http://ansible.builtin.shell/

Use the ansible.builtin.fail module to fail the playbook if any

unauthorized changes are detected.

Centralizing logs from various sources such as syslog and application logs for

security analysis is a crucial task in ensuring comprehensive monitoring and analysis

capabilities. Below is an Ansible playbook that demonstrates how to collect logs from

remote servers and centralize them on a centralized logging server using rsyslog .

Create a playbook named log_collection_analysis.yml with the following content:

Ansible Playbook: Log Collection and Analysis

COPY

- name: Log Collection and Analysis
 hosts: all
 become: yes
 tasks:
 - name: Install rsyslog
 ansible.builtin.package:
 name: rsyslog
 state: present

 - name: Configure rsyslog for centralized logging
 ansible.builtin.lineinfile:
 path: /etc/rsyslog.conf
 regexp: "^#*\\s*\\$ModLoad imtcp"
 line: "$ModLoad imtcp"
 state: present
 backup: yes

 - name: Ensure rsyslog listens on TCP port 514
 ansible.builtin.lineinfile:
 path: /etc/rsyslog.conf
 regexp: "^#*\\s*\\$InputTCPServerRun 514"
 line: "$InputTCPServerRun 514"

COPY

http://ansible.builtin.fail/

 state: present
 backup: yes

 - name: Restart rsyslog service
 ansible.builtin.service:
 name: rsyslog
 state: restarted

 - name: Ensure rsyslog service is enabled
 ansible.builtin.service:
 name: rsyslog
 enabled: yes
 state: started

- name: Forward logs to centralized server
 hosts: centralized_logging_server
 become: yes
 tasks:
 - name: Install rsyslog
 ansible.builtin.package:
 name: rsyslog
 state: present

 - name: Configure rsyslog to receive logs from clients
 ansible.builtin.lineinfile:
 path: /etc/rsyslog.conf
 regexp: "^#*\\s*\$ModLoad imtcp"
 line: "$ModLoad imtcp"
 state: present
 backup: yes

 - name: Ensure rsyslog listens on TCP port 514
 ansible.builtin.lineinfile:
 path: /etc/rsyslog.conf
 regexp: "^#*\\s*\$InputTCPServerRun 514"
 line: "$InputTCPServerRun 514"
 state: present

1. Playbook Structure:

The playbook consists of two plays:

First Play (Log Collection Configuration on All Hosts):

Installs rsyslog on all hosts (hosts: all).

Configures rsyslog to listen for incoming logs over TCP ($ModLoad

imtcp and $InputTCPServerRun 514).

Restarts and enables the rsyslog service to apply the configuration

changes.

Second Play (Centralized Logging Server Configuration):

Installs rsyslog on the centralized logging server (hosts:

centralized_logging_server).

Configures rsyslog on the centralized server to receive logs from

clients ($ModLoad imtcp and $InputTCPServerRun 514).

Restarts and enables the rsyslog service on the centralized server

to apply the configuration changes.

 backup: yes

 - name: Restart rsyslog service
 ansible.builtin.service:
 name: rsyslog
 state: restarted

 - name: Ensure rsyslog service is enabled
 ansible.builtin.service:
 name: rsyslog
 enabled: yes
 state: started

Explanation:

2. Tasks:

Install rsyslog: Ensures that rsyslog is installed on the hosts.

Configure rsyslog:

Uses ansible.builtin.lineinfile module to modify /etc/rsyslog.conf to

enable TCP logging and specify the TCP port 514 for logging.

Restart and enable rsyslog service: Ensures that the rsyslog service is

restarted and enabled to apply the configuration changes.

Automating firewall rule updates based on security policies and requirements analysis

is crucial for maintaining a secure environment. Below is an Ansible playbook that

demonstrates how to manage firewall rules on Linux servers using iptables .

Adjustments can be made depending on your specific firewall solution (e.g.,

firewalld for CentOS/RHEL, ufw for Ubuntu).

Create a playbook named firewall_management.yml with the following content:

Ansible Playbook: Firewall Rules Management with iptables

COPY

- name: Firewall Rules Management
 hosts: firewall_servers
 become: yes
 tasks:
 - name: Allow SSH (Port 22) from specific IP addresses
 ansible.builtin.iptables:
 chain: INPUT
 protocol: tcp
 destination_port: 22
 source: "{{ item }}"
 jump: ACCEPT
 with_items:
 - 192.168.1.100 # Replace with your allowed IP addresses

COPY

1. Playbook Structure:

The playbook contains a single play targeting firewall_servers .

The become: yes directive ensures that tasks are executed with root

privileges.

2. Tasks:

Allow SSH (Port 22) from specific IP addresses:

 - 192.168.1.101
 - 10.0.0.1

 - name: Allow HTTP (Port 80) from any IP
 ansible.builtin.iptables:
 chain: INPUT
 protocol: tcp
 destination_port: 80
 jump: ACCEPT

 - name: Allow HTTPS (Port 443) from any IP
 ansible.builtin.iptables:
 chain: INPUT
 protocol: tcp
 destination_port: 443
 jump: ACCEPT

 - name: Deny all other inbound traffic
 ansible.builtin.iptables:
 chain: INPUT
 policy: DROP

 - name: Save iptables rules
 ansible.builtin.shell: iptables-save > /etc/sysconfig/iptables

Explanation:

Uses the ansible.builtin.iptables module to allow SSH (TCP port 22)

connections from specified IP addresses (192.168.1.100 , 192.168.1.101 ,

10.0.0.1).

Loops through the list of allowed IP addresses using with_items .

Allow HTTP (Port 80) from any IP:

Allows HTTP (TCP port 80) traffic from any IP address.

Allow HTTPS (Port 443) from any IP:

Allows HTTPS (TCP port 443) traffic from any IP address.

Deny all other inbound traffic:

Sets the default policy for inbound traffic to DROP , effectively denying all

other incoming connections.

Save iptables rules:

Uses the ansible.builtin.shell module to save the current iptables

rules to /etc/sysconfig/iptables (adjust this path for your distribution).

Automating backup tasks and ensuring robust restoration processes are critical for

maintaining data integrity and availability. Below is an Ansible playbook that

demonstrates how to automate backup and restore procedures for a directory,

including encryption of backups using tar and gpg (GNU Privacy Guard).

Create a playbook named backup_restore.yml with the following content:

Ansible Playbook: Backup and Restore Procedures

COPY

- name: Backup and Restore Procedures
 hosts: backup_server
 become: yes

COPY

http://ansible.builtin.shell/

 vars:
 backup_directory: "/backup"
 source_directory: "/path/to/your/source"
 encrypted_backup_file: "backup.tar.gz.gpg"
 encryption_passphrase: "your_encryption_passphrase"

 tasks:
 - name: Ensure backup directory exists
 ansible.builtin.file:
 path: "{{ backup_directory }}"
 state: directory
 mode: '0755'

 - name: Backup directory with encryption
 ansible.builtin.shell: |
 tar -czf - "{{ source_directory }}" | gpg --symmetric --
passphrase "{{ encryption_passphrase }}" -o "{{ backup_directory }}/{{
encrypted_backup_file }}"
 args:
 warn: no
 environment:
 GNUPGHOME: "{{ backup_directory }}/.gnupg"
 register: backup_result

 - name: Report backup status
 ansible.builtin.debug:
 msg: "Backup task result: {{ backup_result.stdout_lines }}"

- name: Restore Backup
 hosts: restore_server
 become: yes
 vars:
 backup_directory: "/backup"
 encrypted_backup_file: "backup.tar.gz.gpg"
 decryption_passphrase: "your_encryption_passphrase"
 restore_directory: "/path/to/restore"

1. Playbook Structure:

The playbook is divided into two plays:

Backup Procedure: Executes on backup_server to create an encrypted

backup of the specified directory.

Restore Procedure: Executes on restore_server to decrypt and restore

the backup to a specified directory.

2. Tasks:

Ensure backup/restore directory exists: Uses ansible.builtin.file module

to ensure that the backup or restore directory exists with the correct

 tasks:
 - name: Ensure restore directory exists
 ansible.builtin.file:
 path: "{{ restore_directory }}"
 state: directory
 mode: '0755'

 - name: Decrypt and extract backup
 ansible.builtin.shell: |
 gpg --decrypt --passphrase "{{ decryption_passphrase }}" "{{
backup_directory }}/{{ encrypted_backup_file }}" | tar -xzf - -C "{{
restore_directory }}"
 args:
 warn: no
 environment:
 GNUPGHOME: "{{ backup_directory }}/.gnupg"
 register: restore_result

 - name: Report restore status
 ansible.builtin.debug:
 msg: "Restore task result: {{ restore_result.stdout_lines }}"

Explanation:

permissions (mode: '0755').

Backup directory with encryption: Uses ansible.builtin.shell module to

create a backup of source_directory using tar and encrypt it with gpg . The

encryption_passphrase is used to symmetrically encrypt the backup file. The

GNUPGHOME environment variable ensures the GPG keyring is stored within the

backup directory for security.

Report backup status: Uses ansible.builtin.debug module to print the result

of the backup task.

Decrypt and extract backup: On the restore server, uses

ansible.builtin.shell module to decrypt the encrypted backup file using

gpg and extract it using tar to the restore_directory . The

decryption_passphrase is used for decryption.

Report restore status: Uses ansible.builtin.debug module to print the result

of the restore task.

3. Variables:

backup_directory : Directory where backups are stored.

source_directory : Directory to be backed up.

encrypted_backup_file : Name of the encrypted backup file.

encryption_passphrase : Passphrase used for encrypting the backup.

decryption_passphrase : Passphrase used for decrypting the backup.

Hands-On Security in DevOps by Tony Hsiang-Chih Hsu

References

http://ansible.builtin.shell/
http://ansible.builtin.shell/

MORE ARTICLES

Reza Rashidi

eBPF cheatsheet

Reza Rashidi

DevSecOps Security
Architecture

Subscribe to our newsletter
Read articles from DevSecOpsGuides directly
inside your inbox. Subscribe to the newsletter,

and don't miss out.

Enter your email address SUBSCRIBE

ansible Devops DevSecOps audit AWS

Written by

Reza Rashidi

Published on

DevSecOpsGuides

Follow

Follow

https://hashnode.com/@rezaduty
https://rezaduty-1685945445294.hashnode.dev/ebpf-cheatsheet?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/ebpf-cheatsheet?source=more_articles_bottom_blogs
https://hashnode.com/@rezaduty
https://rezaduty-1685945445294.hashnode.dev/devsecops-security-architecture?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/devsecops-security-architecture?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/devsecops-security-architecture?source=more_articles_bottom_blogs
https://hashnode.com/@rezaduty
https://hashnode.com/@rezaduty
https://blog.devsecopsguides.com/tag/ansible?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/devops?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/devsecops?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/audit?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/aws?source=tags_bottom_blogs
https://hashnode.com/@rezaduty
https://hashnode.com/@rezaduty
https://blog.devsecopsguides.com/
https://blog.devsecopsguides.com/

©2024 DevSecOpsGuides

Archive Privacy policy Terms

Write on Hashnode

Powered by Hashnode - Home for tech writers and readers

· ·

eBPF (Extended Berkeley Packet Filter) is

a powerful technology for monitoring and

analyzing system …

In the rapidly evolving landscape of

cybersecurity, DevSecOps Security

Architecture emerges as a cri…

Reza Rashidi

Attacking Secrets
A Secrets and Vault Manager is a critical

tool in modern IT infrastructure, designed

to securely sto…

https://blog.devsecopsguides.com/archive
https://hashnode.com/privacy?source=blog-footer
https://hashnode.com/terms?source=blog-footer
https://hashnode.com/onboard?unlock-blog=true&source=blog-footer
https://hashnode.com/?source=blog-footer
https://rezaduty-1685945445294.hashnode.dev/ebpf-cheatsheet?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/ebpf-cheatsheet?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/ebpf-cheatsheet?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/ebpf-cheatsheet?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/devsecops-security-architecture?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/devsecops-security-architecture?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/devsecops-security-architecture?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/devsecops-security-architecture?source=more_articles_bottom_blogs
https://hashnode.com/@rezaduty
https://rezaduty-1685945445294.hashnode.dev/attacking-secrets?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-secrets?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-secrets?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-secrets?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-secrets?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-secrets?source=more_articles_bottom_blogs
https://hashnode.com/@rezaduty

