

YV
G 7))
Lz

INTRODUCTION

Dynamic-Link Library (DLL) hijacking has been a focal technique for adversarial operations over
the years, evolving from a simple exploitation method into a sophisticated and adaptive strategy
for compromising software systems. The essence of DLL hijacking lies in the ability to insert
malicious code into legitimate processes by manipulating the DLL loading mechanism within
Windows operating systems. This technique leverages the inherent trust that software places in
DLLs to execute unauthorized code, often bypassing traditional security measures. As defenders
have become more vigilant, attackers have responded with increasingly complex
implementations, making DLL hijacking a continually evolving battlefield.

Our journey into the depths of DLL hijacking has revealed numerous subtleties that impact its
practical application. While the basic concept remains straightforward, achieving reliable and
stealthy execution in real-world environments demands a deep understanding of various
underlying mechanisms. This includes the intricacies of export table cloning, dynamic Import
Address Table (IAT) patching, stack walking, and runtime table reconstruction. Each of these
methods addresses specific challenges encountered during hijacking attempts, providing
avenues to maintain process stability and evade detection. This introduction aims to shed light
on these advanced techniques, distilled from years of operational experience and shared
through our Dark Side Ops courses.

For those who have dabbled in DLL hijacking and encountered roadblocks, this discussion will
serve as a detailed guide to overcoming common pitfalls. The initial thrill of executing a basic
DLL hijack often gives way to frustration when the technique fails to scale to more complex
scenarios. This post addresses these frustrations by delving into the reasons why simple hijacks
fail and how adaptive methods can be employed to achieve more reliable and covert operations.
By dissecting the mechanics of both static and dynamic sinks of DLL execution, we offer insights
that can bridge the gap between theoretical understanding and practical success.

The concept of "execution sinks" is crucial for understanding how DLLs are loaded and initialized
within a process. Static sinks involve the inclusion of a DLL in a program's dependency graph,
resulting in initialization during process startup. In contrast, dynamic sinks occur when a DLL is
loaded on demand during runtime through functions like LoadLibrary. Each scenario presents
unique challenges for hijackers, particularly concerning the handling of export tables and
maintaining the stability of the host process. Our exploration will clarify these distinctions and
provide strategies for navigating them effectively.

Function proxying emerges as a vital technique for ensuring the stability and continuity of
hijacked processes. By redirecting function calls from the hijacked DLL to the legitimate one,
attackers can maintain the expected behavior of the target application while executing their
malicious payload. This section will cover various methods for implementing function proxying,
from simple export forwarding to more dynamic approaches like runtime linking and stack
patching. Understanding these techniques is essential for anyone looking to master DLL
hijacking in complex environments.

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

DOCUMENT INFO

HADESS

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are
safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected.
Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

At Hadess, our mission is twofold: to unleash the power of white hat hacking in punishing black
hat hackers and to fortify the digital defenses of our clients. We are committed to employing our
elite team of expert cybersecurity professionals to identify, neutralize, and bring to justice those
who seek to exploit vulnerabilities. Simultaneously, we provide comprehensive solutions and
services to protect our client's digital assets, ensuring their resilience against cyber attacks. With
an unwavering focus on integrity, innovation, and client satisfaction, we strive to be the guardian
of trust and security in the digital realm.

Security Researcher
Amir Gholizadeh (@arimagz), Surya Dev Singh (@kryolite_secure)

TABLE OF CONTENT

N « Introduction to DLL Hijacking
o Brief overview of what DLL hijacking is.
o Importance of understanding this attack
vector.
« Basic Concepts and Terminology
o Explanation of module search order.
o RnownDLLs and “safe search.”
« Advanced Technigques
o Export table cloning: Cloning export
functions.
o Dynamic IAT patching: Modifying the Import
Address Table.
o Stack walking: Manipulating the call stack.
o Run-time table reconstruction: Rebuilding
tables during execution.
o Tooling and Exploitation Frameworks
o Mentioning tools like Siofra78, DLLSpy9, and
Robber10.

EXECUTIVE SUMMARY

DLL hijacking is a critical attack vector where malicious code is injected into
legitimate processes by exploiting the DLL loading mechanism in Windows
systems. Understanding this technique is essential for robust cybersecurity
defense. Key concepts include the module search order and KnownDLLs,
which influence how DLLs are located and loaded. Advanced methods such as
export table cloning, dynamic IAT patching, stack walking, and runtime table
reconstruction enhance the effectiveness of DLL hijacks by ensuring stable
and covert execution. Tools like Siofra, DLLSpy, and Robber play a significant
role in facilitating these advanced techniques, underscoring the need for
comprehensive knowledge and preparation to counteract such sophisticated
attacks.

Key Findings

Lastly, we address the critical issue of the loader lock, a synchronization
mechanism within the Windows loader that can cause deadlocks or crashes if
mishandled during DLL initialization. By discussing the implications of loader
lock and providing practical solutions like starting new threads or employing
function hooking, we aim to equip practitioners with the knowledge to avoid
common pitfalls. Our goal is to ensure that hijacked processes remain stable
and functional, thereby enhancing the effectiveness and stealth of the hijack.
The culmination of these insights and techniques is encapsulated in our
project, Koppeling, which automates advanced DLL hijacking preparations and
promises to be a valuable tool for the community.

ABSTRACT

Adaptive DLL hijacking is an advanced attack technique that leverages the
dynamic loading mechanism of Windows DLLs to inject malicious code into
legitimate processes. This method exploits weaknesses in the module search
order and KnownDLLs to achieve unauthorized code execution. Understanding
DLL hijacking is crucial for cybersecurity professionals, as it bypasses
traditional security measures and can lead to significant system compromise.

The complexity of adaptive DLL hijacking lies in its advanced techniques,
including export table cloning, dynamic Import Address Table [IAT] patching,
stack walking, and runtime table reconstruction. These methods ensure the
malicious DLL maintains functionality and stability within the target process,
avoiding crashes and detection. These techniques require a deep
understanding of the Windows loader and the ability to manipulate it
dynamically, highlighting the sophistication of the attack.

To combat this threat, various tools and frameworks like Siofra, DLLSpy, and
Robber have been developed to discover and exploit DLL hijacking
vulnerabilities. These tools automate the process of identifying vulnerable
applications and creating malicious DLLs. For defenders, knowledge of these
tools and techniques is essential to identify and mitigate potential hijacking
attempts, ensuring robust protection against this adaptive and evolving
threat.

HADESS.I0

A problem has been detected and Windows has been shut down to prevent damage
to your computer.

The problem seems to be caused by the following file: example.sys
PAGE FAULT IN MONPAGED AREA
If this is the first time you've seen this stop error screen,
restart your computer. If this screen appears again, follow
these steps:

Check to make sure any new hardware or software is properly installed.
If this 15 a new installation, ask your hardware or software manufacturer
for any Windows updates you might need.

If problems continue, disable or remove any newly installed hardware
or software. Disable BIOS memory options such as caching or shadowing.
If you need to use Safe Mode to remove or disable cemponents, restart
your computer, press F8 to select Advanced Startup Options, and then
select Safe Mode,

Technical information:
=+= STOP: OxBOOB0650 (OxFFFFFE86009AD0GG, 6x00000000008000608, OxFFFFFEEAD3BZA35E, 0x0008008000008600)

*#= pxample.sys - Address FFFFFE30809A0000 base at FFFFFE300699A060, DateStamp 08808000

blue screen of death

01

ATTACKS

—
HADESS.IO Adaptive DLL Hijacking

What is DLL Hijacking

DLL hijacking is a technique where an attacker exploits the way applications
load Dynamic Link Libraries (DLLs) in Windows. When an application is launched,
it searches for necessary DLLs in specific directories. If an attacker places a
malicious DLL with the same name as a legitimate one in a directory that's
searched first, the application may load the malicious DLL instead of the
legitimate one, allowing the attacker to execute arbitrary code. Terms such as
DLL Search Order Hijacking , DLL Load Order Hijacking , DLL Spoofing, DLL
Injection and DLL Side-Loading are often mistakenly used to say the same. There
are several Techniques that can be used to Hijack the DLL

Known DLLs and Safe Search

Known DLLs

Windows has a list of "Known DLL" names maintained in the registry. these are a
set of system DLLs that Windows applications load by default. The Known DLLs
list is maintained in the Windows Registry under the

HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet|Control|Session Manager|KnownDLLs
key. This list includes essential DLLs that the system can trust and ensures
they are loaded from a secure, predefined location (typically the system
directory).

How does it Work ?

When an application attempts to load a DLL, Windows checks if the DLL name is in
the Known DLLs list. If it is, Windows bypasses the usual search order and loads
the DLL from the system directory, thus avoiding the risk of DLL hijacking.

Safe Search

Safe DLL search is a mechanism in Windows to improve the security of DLL loading
processes. By default, Windows uses a specific search order to locate and load
DLLs. Safe DLL search mode changes the search order to prioritize secure
locations over potentially vulnerable directories.

—
HADESS.IO Adaptive DLL Hijacking

How Does it Work ?

These are the search Order that is being followed if SafeDllSearchMode 1is
Enable / Disable:

Safe DLL search mode is enabled by default in modern versions of Windows (e.g.,
Windows 10, Windows Server 2016 and later). but can also be Enabled if its not
it can be enable by creating on DWORD value name SafeDllSearchMode at
HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlSession Manager and set it to 1
to enable it .

—
HADESS.IO Adaptive DLL Hijacking

Export table cloning : Cloning Export Function

What is Export Table

Every DLL has an export table which lists all the functions and data that other
modules (executables or other DLLs) can call. Each function in the export table
has a name and an address pointing to its location in memory.

How Export Table Cloning Process Work

1. Identifying Target DLL

The attacker identifies a DLL that is loaded by a target application and
contains functions they wish to hijack.

2. Creating the Malicious DLL

They create a malicious DLL with the same filename as the legitimate one.

3. Extracting Export Table

Using tools (like NetClone from Koppeling project) or manual analysis, the
attacker extracts the export table from the legitimate DLL. This includes
copying the EAT, ENPT, and ordinal table entries to malicious dl1

4, Modifying Function Addresses

The attacker replaces the addresses in the EAT with addresses pointing to their
malicious code. This step is crucial as it redirects legitimate function calls
to malicious code.

Attacker can implement proxying also to maintain the original functiomality of
the application while also running the malicious code.

—
HADESS.IO Adaptive DLL Hijacking

Implementation

Prepare a hijack scenario with an incorrect DLL, which will give intentional
error :

Now use the NetClone.exe to clone the wkscli.dll functions to kernell32.dll and
output them as wkscli.dll . which will act as as proxy to actual wkscli.dll.

—
HADESS.IO Adaptive DLL Hijacking

Dynamic IAT patching: Modifying the Import Address
Table

Dynamic Import Address Table (IAT) patching is a technique used in DLL hijacking
to intercept and modify function calls made by an application to a DLL. The goal
is to redirect these calls to malicious functions while maintaining the
application's original functionality. But unlike Export Function Cloning , this
technique work after the DLL is loaded in memory.

How Dynamic IAT Patching works ?

1-

Application Startup

» The vulnerable application starts and begins loading its required DLLs.

DLL Search Order and Loading

- The application finds and loads malicious_example.dll instead of the

legitimate example.dll due to search order and naming conventions.

Load Original DLL within Malicious DLL

- Inside malicious example.dll, use LoadlLibrary to load the original

example.dll .

Store the handle and use GetProcAddress to retrieve the addresses of the
original functions.

Locate and Patch IAT

- Parse the PE headers of the application to locate the IAT.
« Overwrite the entries in the IAT that point to the original example.dll

functions with addresses pointing to functions in malicious_example.dll .

Example: IAT Entry for FunctionA originally -> Address: 8x12345678 ©
(example.dll!FunctionA)

Patched IAT Entry for FunctionA -> Address: @xabcdefl2
(malicious_example.dll!FunctionA)

—
HADESS.IO Adaptive DLL Hijacking

5. Function Call Redirection

+ When the application calls FunctionA, it now jumps to
malicious_example.dll!FunctionA .

6. Malicious Code Execution and Proxying

« Inside malicious_example.dll!FunctionA :
Execute any malicious actions (e.g., logging data, modifying parameters).

- Call the original FunctionA in example.dll using the stored address
obtained from GetProcAddress .

it 7. *%Return Results to Application#

. The results from the original FunctionA are returned to the application,
maintaining expected behavior and functionality.

Advantages of Dynamic IAT Patching

. Stealth: By modifying the IAT at runtime, the technique is less likely to be
detected by static analysis tools.

- Persistence: The malicious DLL remains active, continually intercepting and
redirecting function calls.

« Functionality: Ensures the application continues to operate normally,
reducing the chance of detection by users or security mechanisms.

|
HADESS.IO Adaptive DLL Hijacking

Example Code Snippet (Simplified)

Here is a simplified conceptual example in C++ to illustrate the process:

// Inside malicious_example.dll

// Load the original DLL
HMODULE hOriginal = LoadLibrary("example.dll");

// Get the address of the original FunctionA

typedef void (*OriginalFunctionA)();

OriginalFunctionA pOriginalFunctionA =
(OriginalFunctionA)GetProcAddress(hOriginal, "FunctionA");

// Malicious implementation of FunctionA

extern "C" __declspec(dllexport) void FunctionA() {
// Execute malicious actions
i AaC

// Call the original FunctionA
pOriginalFunctionA();

}

// Code to patch the IAT (simplified for illustration purposes)
void PatchIAT(HMODULE hModule, const char* originalDLLName, const char
functionName, void* newFunction) {
// Locate and parse the IAT of hModule
// Overwrite the IAT entry for functionName to point to newFunction
[l aas

—
HADESS.IO Adaptive DLL Hijacking

Common Tool for Used in DLL

Siofra

Siofra is a tool designed to identify and exploit DLL hijacking vulnerabilities :

It is able to simulate the Windows loader in order to give

visibility into all of the dependencies (and corresponding vulnerabilities) of
a PE on disk, or alternatively an image file in memory corresponding to an
active

process.

More significantly, the tool has the ability to easily generate DLLs to

exploit these types of vulnerabilities via PE infection with dynamic shellcode
creation.

These infected DLLs retain the code (DllMain, exported functions) as well as the
resources of a DLL to seamlessly preserve the functionality of the application
loading

them, while at the same time allowing the researcher to specify an executable
payload

to be either run as a separate process or loaded into the target as a module.

The tool contains automated methods of combining UAC auto-elevation criteria
with

the aforementioned functionality in order to scan for UAC bypass vulnerabilities.

Here is one example for Windows Defender Binary on windows 10 x64 Home/Pro :

|
HADESS.IO Adaptive DLL Hijacking

PowerShell
Siofra64.exe —-mode file-scan -f "c:\Program Files\Windows uershe

Defender\MpCmdRun.exe"
--enum-dependency --dll-hijack

MpCmdRun.exe
msvert.dll [KnownDLL]
KERNEL32.d1l1 [KnownDLL]
OLEAUT32.dl1 [KnownDLL]
msvcp_win.dll [Base]
api-ms-win-crt-string-11-1-0.d1l1 [API set]
ucrtbase.dll [Base]
combase.dll [KnownDLL]
RPCRT4.dl1l [KnownDLL]
bcryptPrimitives.dll [Base]
ADVAPI32.d11 [KnownDLL]
api-ms-win-eventing-controller-11-1-0.dl1 [API set]
sechost.dll [KnownDLL]
OLE32.d11 [KnownDLL]
GDI32.d1l1 [KnownDLL]
api-ms-win-gdi-internal-uap-11-1-8.d1ll [API set]
gdi32full.d1ll [Base]
USER32.d11 [KnownDLL]
win32u.d1ll [Base]
SspiCli.dll [!]
mpclient.dll [!]
CRYPT32.dl1 [Basel
MSASN1.dll [Base]
WINTRUST.dl1l [Base]

[!] Module SspiCli.dll vulnerable at c:\Program Files\Windows

Defender\SspiCli.dll
(real path: C:\WINDOWS\system32\SspiCli.dll)

You can find more details at : https://github.com/Cybereason/siofra

—
HADESS.IO Adaptive DLL Hijacking

DLLSpy

DLLSpy is again tool that detects DLL hijacking in running processes, services
and in their binaries.

Dl1lSpy Uses Engines for its functionality :

Dynamic = First, scan the loaded modules by iterating the process loaded module
list. Then checks if any of those modules could be hijacked by trying to write
to their file location on disk and by checking if they could be overwritten.
This is done after duplicating the access token of explorer.exe, which is a weak
token. We do that in order to test whether we have write permission to the DLL
location and the DLL itself as a regular user.

Static - Locate all strings that contain a DLL name or DLL Path in the binary
files of running processes.

Recursive — Statically scan all the DLLs of the processes previously examined.
The goal is to find more DLLs that are loaded by those DLLs and see if they are
vulnerable to hijacking

C:\Users\john'Desktop\DLLSpy.exe S

-
I
I
I
I

hS %
((
I I
I I
I I
((

((
| ()
| | }
(A) |
| | I) ||
| M TAY PAVAY) |
((/A AN)|

Usage: DLLSpy.exe
-d [mandatory] Find DLL hijacking in all running processes and services.
-5 [optional] Search for DLL references in the binary files of current running
processes and services.
=r n [optional] Recursion search for DLL references in found DLL files privous
scan.
n is the number is the level of the recursion
-0 [optional] Output path for the results in csv format of
By ommiting this option, a defulat result file would be created
on the desktop of the current user.
Named after the name of the computer .csv

—
HADESS.IO Adaptive DLL Hijacking

Robbers

Robber is open source tool for finding executables prone to DLL hijacking.
Robber use simple mechanism to figure out DLLs that prone to hijacking :

. Scan import table of executable and find out DLLs that linked to executable

. Search for DLL files placed inside executable that match with linked DLL
{current working directory of the executable has highest priority)
If any DLL found, scan the export table of theme

. Compare import table of executable with export table of DLL and if any
matching was found, the executable and matched common functions flag as DLL
hijack candidate.

Here are 1its features :

- Ability to select scan type (signed/unsigned applications)

- Determine executable signer
Determine wich referenced DLLs candidate for hijacking
Determine exported methed names of candidate DLLs

« Configure rules to determine which hijacks is best or good choice for use and
show theme in different colors

« Ability to check write permission of executable directory that is a good
candidate for hijacking

i
!

I Pragee Nem [uil) o Tem Coreg S nart e oo e 1L i e e il

T T TN T

-]
]
o
L]
=
a
L]
L]
L]
L
]
=
L]
L]
-]
]

—
HADESS.IO Adaptive DLL Hijacking

Importance of understanding this attack vector

This attack method allows malicious actors to introduce harmful code into
legitimate processes, granting them persistent and often elevated access to
compromised systems. Defense against this attack vector requires a deep
understanding of how it actually works. Furthermore this knowledge helps develop
mitigation strategies against DLL hijacking.

Explanation of module search order

In order to find the appropriate DLL when importing it inm the program, the
system searches for it in the following order:

1. HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlSession ManagerKnownDLLs
!. Application Directory

3. C:WindowsSystem32

4. C:WindowsSystem

. C:Windows

6. Current Directory

7. PATH variables directory

Stack walking: Manipulating the call stack

Stack walking is the process of traversing the call stack to examine the
sequence of function calls.

Before talking about it in detail, let's recap the call stack:

A stack data structure uses the LIFO mechanism and stores information about
functions. When a function is executed, the local variables, parameters, and
return addresses are pushed onto the stack creating a stack frame. When a
function returns, its stack frame is popped off as well.

—
HADESS.IO Adaptive DLL Hijacking

Manipulating the Call Stack

Manipulating the call stack can lead to various outcomes, including:

Return-Oriented Programming (ROP):

Reusing existing code snippets (gadgets) to execute arbitrary code.

Involves carefully crafting a sequence of return addresses to control program
flow.

Often used in exploitation scenarios.

Stack Buffer Overflows:

Overwriting data on the stack to modify return addresses or corrupt other
data.

Can lead to arbitrary code execution.

Exception Handling Hijacking:

Interfering with the normal exception handling process.

Can be used to bypass security checks or execute malicious code.

Debugger and Profiler Functionality:

These tools manipulate the call stack to inspect program state and
performance.

—
HADESS.IO Adaptive DLL Hijacking

Run-time table reconstruction: Rebuilding tables
during execution

To reflectively load DLLs in memory, the program must reconstruct and rebuild
the necessary tables like IAT and relecation.

The IAT is a crucial component of a DLL as it maps function calls within the DLL
to their corresponding addresses in external libraries. When a DLL is loaded
reflectively, it lacks a predefined base address. Therefore, the DLL must
dynamically resolve these addresses. This involves:

. Locating the IAT: The DLL's PE header contains information about the IAT's
location within the DLL's data section.

« Parsing Import Descriptors: The IAT consists of import descriptors, which
contain information about imported libraries and function names. These
descriptors are parsed to identify the required libraries and their exported
functions.

Loading Dependent Libraries: The reflective DLL must explicitly load the
necessary libraries using functions like LoadLibrary.

» Resolving Import Addresses: For each imported function, the DLL must obtain
the function's address from the loaded library using functions like
GetProcAddress. The resolved addresses are then written back to the IAT.

Relocation Handling: Relocations are adjustments made to memory addresses within
a DLL to accommodate different loading addresses. In a reflectively loaded DLL,
the Lloading address is unknown beforehand, necessitating relocation processing.
This involves:

« Locating the Relocation Table: The PE header points to the relocation table,
which contains information about memory locations that require adjustments.

. Applying Relocations: The DLL iterates through the relocation table,
calculating the address offset based on the DLL's actual leoading address. The
necessary adjustments are made to the target memory locations.

By sucecessfully rebuilding the IAT and handling relecations, the reflective DLL
becomes self-sufficient, capable of functioning independently within the target
process's memory space. This level of control makes it a potent tool for both
legitimate and malicious purposes. However, it also significantly increases the
complexity of the DLL's implementation and makes it a challenging target for
analysis and detection.

—
HADESS.IO Adaptive DLL Hijacking

Adaptive DLL Hijacking Techniques

DLL hijacking has been a cornerstone in the arsenal of many penetration testers
and malicious actors for years. Its effectiveness lies in its ability te
manipulate how applications load DLLs, often leading to code execution in
privileged contexts. This post dives deep into advanced DLL hijacking
techniques, addressing common pitfalls and providing solutions for stability and
execution control. If you've struggled with DLL hijacking in the real world,
this guide is for you.

Refresher

This guide assumes familiarity with the basics of DLL hijacking, such as module
search order, KnownDLLs, and “"safe search.” If you need a refresher, check out
these resources:

) T .
. DLL Hijacking

- Understanding How DLL Hijacking Works
» Lateral Movement: SCM and DLL Hijacking Primer

Tools for discovering and exploiting DLL hijacks:
« Siofra
« DLLSpY
- Robber

Basic DLL Hijack Example

Here's a simple DLL hijack example:

void BeUnsafe() { ©
HHODULE module = LoadLibrary("functions.dll1"});
AT

}

BOOL WINAPI D11Main(HINSTANCE instance, DWORD reason, LPVOID reserved)
{
if (reason != DLL_PROCESS_ATTACH)
return TRUE;
// Execute malicious code
system("start calc.exe");
return TRUE;

This basic example is easy to exploit but often fails in real-world scenarios
due to process instability and the complexity of maintaining proper
functionality.

HADESS.IO Adaptive DLL Hijacking

Advanced Techniques
Execution Sinks
Two primary sinks from which DLL execution can originate:

- Static Sink (IAT): Occurs during process initialization or dynamic loading.
The subsystem calculates dependencies and initializes them sequentially,
verifying the export table.

« Dynamic Sink (LoadLibrary): Active code requests a new module without
specifying required functions, often followed by GetProcAddress .

Function Proxying
To maintain process stability, proxy functionality to the real DLL:

- Export Forwarding: Redirect exports to another module.

#pragma comment(linker, "/export:ReadThing=real.ReadThing") ©
#pragma comment(linker, "/export:WriteThing=real.WriteThing")

- Stack Patching: Walk backward from DLlIMain and replace the return value for
LoadLibrary with a different module handle.

HMODULE hRealDll = LoadLibrary("real.dll"); Eﬁ
HMODULE hCurrentDll = NULL:
__asm {

mov eax, [ebp+4]
mov hCurrentDll, eax
}
if (hCurrentDll == hOurDll) {
_asm {
mov eax, hRealD1l
mov [ebp+4], eax

|
HADESS.IO Adaptive DLL Hijacking

« Run-Time Linking: Remap function pointers dynamically in DI11Main .

BOOL WINAPI D11Main(HINSTANCE instance, DWORD reason, LPVOID reserved) qﬁ
{
if (reason != DLL_PROCESS_ATTACH)
return TRUE:;

HMODULE hRealD1ll = LoadLibrary("real.dll1");
if (!hRealDll)
return FALSE;

FARPROC realFunction = GetProcAddress(hRealDll, "FunctionName");
if (!realFunction)
return FALSE;

// Code to patch function pointers dynamically
return TRUE;

- Run-Time Generation: Rebuild the entire export address table at runtime.

BOOL WINAPI D11Main(HINSTANCE instance, DWORD reason, LPVOID reserved) Qﬁ
{
if (reason != DLL_PROCESS_ATTACH)
return TRUE;

HMODULE hRealDll = FindModule(instance):
if (!hRealDll)
return FALSE;

ProxyExports (hRealDll);
return TRUE:

|
HADESS.IO Adaptive DLL Hijacking

Loader Lock

The loader lock can cause deadlocks or crashes if not handled correctly. Avoid
calling functions like LoadLibrary, CreateThread , or synchronization functions
within DLliMain . Use threading to execute complex code outside D1llMain .

BOOL WINAPI DLlMain(HINSTANCE instance, DWORD reason, LPVOID reserved) ©
{
if (reasom != DLL_PROCESS_ATTACH)
return TRUE:;
DWORD dwThreadId;
HANDLE hThread = CreateThread(MNULL, @, ThreadFunmnc, NULL, @, &dwThreadId);
if (hThread == NULL)
return FALSE;
CloseHandle(hThread) ;
return TRUE;
}
DWORD WINAPI ThreadFunc(LPVOID LpParam)
{
/f Complex code here
return 8;
}

Function Hooking for Stability

Implement hooks to maintain stability and ensure execution control after the
loader finishes.

BOOL WINAPI DLLMain(HINSTAMCE instance, DWORD reason, LPVOID reserved) ©
{

if (reason != DLL_PROCESS_ATTACH)

return TRUE;

/f Implement hooks to maintain stability

HookFunction() ;

return TRUE;
}

vold HookFumction()

{
}

J/f Code to hook functions and ensure execution control

Conclusion

In conclusion, adaptive DLL hijacking represents a sophisticated and evolving threat in the
cybersecurity landscape. By exploiting the Windows DLL loading mechanism, attackers can inject
malicious code into legitimate processes, bypassing traditional security measures. The advanced
techniques of export table cloning, dynamic IAT patching, stack walking, and runtime table
reconstruction not only enhance the effectiveness of these attacks but also ensure the stability
and functionality of the compromised process. This underscores the importance of a deep
understanding of the Windows loader and the need for continuous vigilance and adaptation in
cybersecurity practices.

To counter these sophisticated threats, it is imperative for cybersecurity professionals to be
equipped with the knowledge of tools and frameworks like Siofra, DLLSpy, and Robber, which
facilitate the identification and exploitation of DLL hijacking vulnerabilities. By leveraging these
tools, defenders can better understand the mechanisms of adaptive DLL hijacking, enabling them
to develop robust mitigation strategies. As the threat landscape continues to evolve, staying
ahead requires a commitment to ongoing education and the implementation of advanced
defensive measures to protect against these complex attacks.

AN

—~
™
S

N

A HADESS

cat ~/.hadess

"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity

services.
Website: Email
WWW.HADESS.I0 MARKETING@HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

