
WWW .HADE S S . I OHADESS

Adaptive 
DLL Hijacking

Adaptive 
DLL Hijacking



Introduction
Dynamic-Link Library (DLL) hijacking has been a focal technique for adversarial operations over
the years, evolving from a simple exploitation method into a sophisticated and adaptive strategy
for compromising software systems. The essence of DLL hijacking lies in the ability to insert
malicious code into legitimate processes by manipulating the DLL loading mechanism within
Windows operating systems. This technique leverages the inherent trust that software places in
DLLs to execute unauthorized code, often bypassing traditional security measures. As defenders
have become more vigilant, attackers have responded with increasingly complex
implementations, making DLL hijacking a continually evolving battlefield.

Our journey into the depths of DLL hijacking has revealed numerous subtleties that impact its
practical application. While the basic concept remains straightforward, achieving reliable and
stealthy execution in real-world environments demands a deep understanding of various
underlying mechanisms. This includes the intricacies of export table cloning, dynamic Import
Address Table (IAT) patching, stack walking, and runtime table reconstruction. Each of these
methods addresses specific challenges encountered during hijacking attempts, providing
avenues to maintain process stability and evade detection. This introduction aims to shed light
on these advanced techniques, distilled from years of operational experience and shared
through our Dark Side Ops courses.

For those who have dabbled in DLL hijacking and encountered roadblocks, this discussion will
serve as a detailed guide to overcoming common pitfalls. The initial thrill of executing a basic
DLL hijack often gives way to frustration when the technique fails to scale to more complex
scenarios. This post addresses these frustrations by delving into the reasons why simple hijacks
fail and how adaptive methods can be employed to achieve more reliable and covert operations.
By dissecting the mechanics of both static and dynamic sinks of DLL execution, we offer insights
that can bridge the gap between theoretical understanding and practical success.

The concept of "execution sinks" is crucial for understanding how DLLs are loaded and initialized
within a process. Static sinks involve the inclusion of a DLL in a program's dependency graph,
resulting in initialization during process startup. In contrast, dynamic sinks occur when a DLL is
loaded on demand during runtime through functions like LoadLibrary. Each scenario presents
unique challenges for hijackers, particularly concerning the handling of export tables and
maintaining the stability of the host process. Our exploration will clarify these distinctions and
provide strategies for navigating them effectively.

Function proxying emerges as a vital technique for ensuring the stability and continuity of
hijacked processes. By redirecting function calls from the hijacked DLL to the legitimate one,
attackers can maintain the expected behavior of the target application while executing their
malicious payload. This section will cover various methods for implementing function proxying,
from simple export forwarding to more dynamic approaches like runtime linking and stack
patching. Understanding these techniques is essential for anyone looking to master DLL
hijacking in complex environments.

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.



Document info

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are
safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected.
Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats. 

At Hadess, our mission is twofold: to unleash the power of white hat hacking in punishing black
hat hackers and to fortify the digital defenses of our clients. We are committed to employing our
elite team of expert cybersecurity professionals to identify, neutralize, and bring to justice those
who seek to exploit vulnerabilities. Simultaneously, we provide comprehensive solutions and
services to protect our client's digital assets, ensuring their resilience against cyber attacks. With
an unwavering focus on integrity, innovation, and client satisfaction, we strive to be the guardian
of trust and security in the digital realm.

Security Researcher
Amir Gholizadeh (@arimaqz), Surya Dev Singh (@kryolite_secure)

HADESS





Key Findings





HADESS.IO

blue screen of death



Attacks

01



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



HADESS.IO Adaptive DLL Hijacking



Conclusion
In conclusion, adaptive DLL hijacking represents a sophisticated and evolving threat in the
cybersecurity landscape. By exploiting the Windows DLL loading mechanism, attackers can inject
malicious code into legitimate processes, bypassing traditional security measures. The advanced
techniques of export table cloning, dynamic IAT patching, stack walking, and runtime table
reconstruction not only enhance the effectiveness of these attacks but also ensure the stability
and functionality of the compromised process. This underscores the importance of a deep
understanding of the Windows loader and the need for continuous vigilance and adaptation in
cybersecurity practices.

To counter these sophisticated threats, it is imperative for cybersecurity professionals to be
equipped with the knowledge of tools and frameworks like Siofra, DLLSpy, and Robber, which
facilitate the identification and exploitation of DLL hijacking vulnerabilities. By leveraging these
tools, defenders can better understand the mechanisms of adaptive DLL hijacking, enabling them
to develop robust mitigation strategies. As the threat landscape continues to evolve, staying
ahead requires a commitment to ongoing education and the implementation of advanced
defensive measures to protect against these complex attacks.



"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity
services.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website: 

WWW.HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.


