
HADESS WWW .HADE S S . I O

Enable Vulnerabilities with Audit Vulnerabilities

Organizations must recognize that even vulnerabilities with lower severity ratings can be

critical in a chain of attacks.

Adversaries often use a combination of low and medium severity vulnerabilities to create a pathway

for more significant exploits. Therefore, itʼs essential to address these vulnerabilities promptly and

incorporate them into regular security training and adversary simulation exercises .

By simulating attacks that exploit these vulnerabilities, organizations can better understand potential

attack vectors and strengthen their defenses accordingly. This proactive approach is key to

maintaining robust security in an ever-evolving threat landscape. 🛡✨🔒

Code

In []:

Server That Include Webapps With Modules

fetch by apps

In []:

print('CVE-2023-50785')

import urllib.request
import json
import matplotlib.pyplot as plt
import numpy as np

def fetch_apps(endpoint):
 try:
 with urllib.request.urlopen(endpoint) as response:
 if response.getcode() == 200:
 apps = json.loads(response.read())
 return apps
 else:
 print(f"Error: Unable to fetch apps. Status code: {response.getcode()}")
 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 endpoint = "http://127.0.0.1:8000/apps"
 apps = fetch_apps(endpoint)
 if apps:
 app_names = [app['name'] for app in apps]
 num_modules = [len(app['modules']) for app in apps]

 x = np.arange(len(app_names))
 width = 0.35

 fig, ax = plt.subplots(figsize=(10, 6))
 rects = ax.bar(x, num_modules, width, label='Number of Modules', color='skyblue'

 ax.set_xlabel('App Name')
 ax.set_ylabel('Number of Modules')
 ax.set_title('Modules per App')
 ax.set_xticks(x)
 ax.set_xticklabels(app_names, rotation=45, ha='right')

fetch by moduels

In []:

 ax.legend()

 def autolabel(rects):
 for rect in rects:
 height = rect.get_height()
 ax.annotate('{}'.format(height),
 xy=(rect.get_x() + rect.get_width() / 2, height),
 xytext=(0, 3), # 3 points vertical offset
 textcoords="offset points",
 ha='center', va='bottom')

 autolabel(rects)

 plt.tight_layout()
 plt.show()

import urllib.request
import json
import seaborn as sns
import matplotlib.pyplot as plt

def fetch_modules(endpoint):
 try:
 with urllib.request.urlopen(endpoint) as response:
 if response.getcode() == 200:
 modules = json.loads(response.read())
 return modules
 else:
 print(f"Error: Unable to fetch modules. Status code: {response.getcode()
 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 endpoint = "http://127.0.0.1:8000/modules"
 modules = fetch_modules(endpoint)
 if modules:

Vuln Audit Log In Server And Port

fetch by vuln

In []:

 module_names = [module['name'] for module in modules]
 module_ids = [module['id'] for module in modules]
 module_descriptions = [module['description'] for module in modules]
 module_architectures = [module['Lib_Class_Name'] for module in modules]

 plt.figure(figsize=(10, 6))
 sns.countplot(y=module_architectures)
 plt.title('Module Count by Lib/Class Name')
 plt.xlabel('Number of Modules')
 plt.ylabel('Lib/Class Name')
 plt.tight_layout()
 plt.show()

import requests
from anytree import Node, RenderTree

def fetch_vulnerable_modules(endpoint):
 try:
 response = requests.get(endpoint)
 if response.status_code == 200:
 modules = response.json()
 return modules
 else:
 print(f"Error: Unable to fetch modules. Status code: {response.status_code}"
 except requests.exceptions.RequestException as e:
 print(f"Error: {e}")

def build_module_tree(modules):
 root = Node("Modules")
 for module in modules:
 module_name = module['name']
 module_node = Node(module_name, parent=root)
 for vuln in module['vulnerabilities']:

Tree Diagram:
Modules
├── Access Control
│ └── Brute Force
├── Authentication
│ └── Session Fixation
├── Input and Output
│ ├── Session Fixation
│ └── Cross-Site Scripting (XSS)
├── Import
│ ├── Insecure File Upload
│ └── Denial of Service (DoS)
├── Export
│ ├── Broken Access Control
│ └── Denial of Service (DoS)
├── File Upload
│ ├── Directory Traversal
│ └── Insecure File Upload
├── File Browser
│ ├── Remote Code Execution
│ └── Directory Traversal
└── Web Service
 ├── Session Fixation
 └── Insecure File Upload

Heatmap

In []:

 vuln_title = vuln['title']
 vuln_node = Node(vuln_title, parent=module_node)
 return root

if __name__ == "__main__":
 endpoint = "http://127.0.0.1:5000/modules/vuln"
 modules = fetch_vulnerable_modules(endpoint)
 if modules:
 module_tree = build_module_tree(modules)
 print("Tree Diagram:")
 for pre, _, node in RenderTree(module_tree):
 print("%s%s" % (pre, node.name))

import requests
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

def fetch_vulnerable_modules(endpoint):
 try:
 response = requests.get(endpoint)
 if response.status_code == 200:
 modules = response.json()
 return modules
 else:
 print(f"Error: Unable to fetch modules. Status code: {response.status_code}"
 except requests.exceptions.RequestException as e:
 print(f"Error: {e}")

def generate_heatmap(modules):
 module_names = [module['name'] for module in modules]
 vulnerabilities = []

 for module in modules:
 vuln_count = {'Low': 0, 'Medium': 0, 'High': 0, 'Critical': 0}
 for vuln in module['vulnerabilities']:
 vuln_count[vuln['severity']] += 1

Adversary By Vuln

fetch vuln by module by techniques

In []:

 vulnerabilities.append(list(vuln_count.values()))

 # Create DataFrame for seaborn heatmap
 df = pd.DataFrame(vulnerabilities, columns=['Low', 'Medium', 'High', 'Critical'], in

 plt.figure(figsize=(10, 6))
 sns.heatmap(df, annot=True, cmap="YlGnBu", fmt="d")
 plt.title('Vulnerabilities per Module by Severity')
 plt.xlabel('Severity')
 plt.ylabel('Module')
 plt.xticks(rotation=45, ha='right')
 plt.tight_layout()
 plt.show()

if __name__ == "__main__":
 endpoint = "http://127.0.0.1:5000/modules/vuln"
 modules = fetch_vulnerable_modules(endpoint)
 if modules:
 generate_heatmap(modules)

import requests

def fetch_vulnerabilities():
 vulnerabilities_url = "http://127.0.0.1:5000/modules/vuln"
 response = requests.get(vulnerabilities_url)
 if response.status_code == 200:
 vulnerabilities = response.json()
 return vulnerabilities
 else:
 print("Error fetching vulnerabilities:", response.status_code)
 return None

def fetch_techniques(vulnerability_title):
 techniques_url = f"http://127.0.0.1:10000/techniques/{vulnerability_title}"
 response = requests.get(techniques_url)
 if response.status_code == 200:
 techniques = response.json()
 return techniques
 else:
 print(f"Error fetching techniques for {vulnerability_title}:", response.status_c
 return None

def main():
 vulnerabilities = fetch_vulnerabilities()
 if vulnerabilities:
 for module in vulnerabilities:
 module_name = module['name']
 print(f"Module: {module_name}")
 vulnerabilities_list = module['vulnerabilities']
 for vulnerability in vulnerabilities_list:
 vulnerability_title = vulnerability['title']
 print(f"\tVulnerability Title: {vulnerability_title}")
 print("\tRelated Techniques:")
 techniques = fetch_techniques(vulnerability_title)
 if techniques:
 for technique_id, technique_data in techniques.items():
 print(f"\t - Technique ID: {technique_id}")
 print(f"\t Technique Name: {technique_data['name']}")
 print(f"\t Technique Name: {technique_data['description']}")
 else:
 print("\tNo techniques found.")
 print()
 print()

if __name__ == "__main__":
 main()

Module: Access Control
Vulnerability Title: Brute Force
Related Techniques:
 - Technique ID: T1110
 Technique Name: Brute Force
 Technique Name: Adversaries may use brute force techniques to gain access to

accounts when passwords are unknown or when password hashes are obtained. Without knowle
dge of the password for an account or set of accounts, an adversary may systematically g
uess the password using a repetitive or iterative mechanism. Brute forcing passwords can
take place via interaction with a service that will check the validity of those credenti
als or offline against previously acquired credential data, such as password hashes.

 - Technique ID: T1187
 Technique Name: Forced Authentication
 Technique Name: Adversaries may gather credential material by invoking or for

cing a user to automatically provide authentication information through a mechanism in w
hich they can intercept.

Module: Authentication
Vulnerability Title: Session Fixation
Related Techniques:
 - Technique ID: T1185
 Technique Name: Browser Session Hijacking
 Technique Name: Adversaries may take advantage of security vulnerabilities an

d inherent functionality in browser software to change content, modify user-behaviors, a
nd intercept information as part of various browser session hijacking techniques.

 - Technique ID: T1539
 Technique Name: Steal Web Session Cookie
 Technique Name: An adversary may steal web application or service session coo

kies and use them to gain access to web applications or Internet services as an authenti
cated user without needing credentials. Web applications and services often use session
cookies as an authentication token after a user has authenticated to a website.

 - Technique ID: T1563
 Technique Name: Remote Service Session Hijacking
 Technique Name: Adversaries may take control of preexisting sessions with rem

ote services to move laterally in an environment. Users may use valid credentials to log
into a service specifically designed to accept remote connections, such as telnet, SSH,
and RDP. When a user logs into a service, a session will be established that will allow
them to maintain a continuous interaction with that service.

Module: Input and Output
Vulnerability Title: Session Fixation
Related Techniques:
 - Technique ID: T1185
 Technique Name: Browser Session Hijacking
 Technique Name: Adversaries may take advantage of security vulnerabilities an

d inherent functionality in browser software to change content, modify user-behaviors, a
nd intercept information as part of various browser session hijacking techniques.

 - Technique ID: T1539
 Technique Name: Steal Web Session Cookie
 Technique Name: An adversary may steal web application or service session coo

kies and use them to gain access to web applications or Internet services as an authenti
cated user without needing credentials. Web applications and services often use session
cookies as an authentication token after a user has authenticated to a website.

 - Technique ID: T1563
 Technique Name: Remote Service Session Hijacking
 Technique Name: Adversaries may take control of preexisting sessions with rem

ote services to move laterally in an environment. Users may use valid credentials to log
into a service specifically designed to accept remote connections, such as telnet, SSH,
and RDP. When a user logs into a service, a session will be established that will allow
them to maintain a continuous interaction with that service.

Vulnerability Title: Cross-Site Scripting (XSS)

Related Techniques:
 - Technique ID: T1059
 Technique Name: Command and Scripting Interpreter
 Technique Name: Adversaries may abuse command and script interpreters to exec

ute commands, scripts, or binaries. These interfaces and languages provide ways of inter
acting with computer systems and are a common feature across many different platforms. M
ost systems come with some built-in command-line interface and scripting capabilities, f
or example, macOS and Linux distributions include some flavor of Unix Shell while Window
s installations include the Windows Command Shell and PowerShell.

Module: Import
Vulnerability Title: Insecure File Upload
Related Techniques:
 - Technique ID: T1027
 Technique Name: Obfuscated Files or Information
 Technique Name: Adversaries may attempt to make an executable or file difficu

lt to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents
on the system or in transit. This is common behavior that can be used across different p
latforms and the network to evade defenses.

 - Technique ID: T1083
 Technique Name: File and Directory Discovery
 Technique Name: Adversaries may enumerate files and directories or may search

in specific locations of a host or network share for certain information within a file s
ystem. Adversaries may use the information from File and Directory Discovery during auto
mated discovery to shape follow-on behaviors, including whether or not the adversary ful
ly infects the target and/or attempts specific actions.

 - Technique ID: T1140
 Technique Name: Deobfuscate/Decode Files or Information
 Technique Name: Adversaries may use Obfuscated Files or Information to hide a

rtifacts of an intrusion from analysis. They may require separate mechanisms to decode o
r deobfuscate that information depending on how they intend to use it. Methods for doing
that include built-in functionality of malware or by using utilities present on the syst
em.

 - Technique ID: T1222
 Technique Name: File and Directory Permissions Modification
 Technique Name: Adversaries may modify file or directory permissions/attribut

es to evade access control lists (ACLs) and access protected files. File and directory p
ermissions are commonly managed by ACLs configured by the file or directory owner, or us
ers with the appropriate permissions. File and directory ACL implementations vary by pla
tform, but generally explicitly designate which users or groups can perform which action
s (read, write, execute, etc.).

 - Technique ID: T1647
 Technique Name: Plist File Modification
 Technique Name: Adversaries may modify property list files (plist files) to e

nable other malicious activity, while also potentially evading and bypassing system defe
nses. macOS applications use plist files, such as the info.plist file, to store properti
es and configuration settings that inform the operating system how to handle the applica
tion at runtime. Plist files are structured metadata in key-value pairs formatted in XML
based on Apple's Core Foundation DTD. Plist files can be saved in text or binary format.

Vulnerability Title: Denial of Service (DoS)
Related Techniques:
 - Technique ID: T1007
 Technique Name: System Service Discovery
 Technique Name: Adversaries may try to gather information about registered lo

cal system services. Adversaries may obtain information about services using tools as we
ll as OS utility commands such as sc query, tasklist /svc, systemctl --type=service, and
net start.

 - Technique ID: T1021
 Technique Name: Remote Services
 Technique Name: Adversaries may use Valid Accounts to log into a service that

accepts remote connections, such as telnet, SSH, and VNC. The adversary may then perform
actions as the logged-on user.

 - Technique ID: T1046
 Technique Name: Network Service Discovery
 Technique Name: Adversaries may attempt to get a listing of services running

on remote hosts and local network infrastructure devices, including those that may be vu
lnerable to remote software exploitation. Common methods to acquire this information inc
lude port and/or vulnerability scans using tools that are brought onto a system.

 - Technique ID: T1072
 Technique Name: Software Deployment Tools
 Technique Name: Adversaries may gain access to and use third-party software s

uites installed within an enterprise network, such as administration, monitoring, and de
ployment systems, to move laterally through the network. Third-party applications and so
ftware deployment systems may be in use in the network environment for administration pu
rposes (e.g., SCCM, HBSS, Altiris, etc.).

 - Technique ID: T1102
 Technique Name: Web Service
 Technique Name: Adversaries may use an existing, legitimate external Web serv

ice as a means for relaying data to/from a compromised system. Popular websites and soci
al media acting as a mechanism for C2 may give a significant amount of cover due to the
likelihood that hosts within a network are already communicating with them prior to a co
mpromise. Using common services, such as those offered by Google or Twitter, makes it ea
sier for adversaries to hide in expected noise. Web service providers commonly use SSL/T
LS encryption, giving adversaries an added level of protection.

 - Technique ID: T1133
 Technique Name: External Remote Services
 Technique Name: Adversaries may leverage external-facing remote services to i

nitially access and/or persist within a network. Remote services such as VPNs, Citrix, a
nd other access mechanisms allow users to connect to internal enterprise network resourc
es from external locations. There are often remote service gateways that manage connecti
ons and credential authentication for these services. Services such as Windows Remote Ma
nagement and VNC can also be used externally.

 - Technique ID: T1137
 Technique Name: Office Application Startup
 Technique Name: Adversaries may leverage Microsoft Office-based applications

for persistence between startups. Microsoft Office is a fairly common application suite
on Windows-based operating systems within an enterprise network. There are multiple mech
anisms that can be used with Office for persistence when an Office-based application is
started; this can include the use of Office Template Macros and add-ins.

 - Technique ID: T1210
 Technique Name: Exploitation of Remote Services
 Technique Name: Adversaries may exploit remote services to gain unauthorized

access to internal systems once inside of a network. Exploitation of a software vulnerab
ility occurs when an adversary takes advantage of a programming error in a program, serv
ice, or within the operating system software or kernel itself to execute adversary-contr
olled code. A common goal for post-compromise exploitation of remote services is for lat
eral movement to enable access to a remote system.

 - Technique ID: T1219
 Technique Name: Remote Access Software
 Technique Name: An adversary may use legitimate desktop support and remote ac

cess software to establish an interactive command and control channel to target systems
within networks. These services, such as VNC, Team Viewer, AnyDesk, ScreenConnect, LogMe
in, AmmyyAdmin, and other remote monitoring and management (RMM) tools, are commonly use
d as legitimate technical support software and may be allowed by application control wit
hin a target environment.

 - Technique ID: T1489
 Technique Name: Service Stop
 Technique Name: Adversaries may stop or disable services on a system to rende

r those services unavailable to legitimate users. Stopping critical services or processe
s can inhibit or stop response to an incident or aid in the adversary's overall objectiv
es to cause damage to the environment.

 - Technique ID: T1498
 Technique Name: Network Denial of Service
 Technique Name: Adversaries may perform Network Denial of Service (DoS) attac

ks to degrade or block the availability of targeted resources to users. Network DoS can
be performed by exhausting the network bandwidth services rely on. Example resources inc

lude specific websites, email services, DNS, and web-based applications. Adversaries hav
e been observed conducting network DoS attacks for political purposes and to support oth
er malicious activities, including distraction, hacktivism, and extortion.

 - Technique ID: T1499
 Technique Name: Endpoint Denial of Service
 Technique Name: Adversaries may perform Endpoint Denial of Service (DoS) atta

cks to degrade or block the availability of services to users. Endpoint DoS can be perfo
rmed by exhausting the system resources those services are hosted on or exploiting the s
ystem to cause a persistent crash condition. Example services include websites, email se
rvices, DNS, and web-based applications. Adversaries have been observed conducting DoS a
ttacks for political purposes and to support other malicious activities, including distr
action, hacktivism, and extortion.

 - Technique ID: T1505
 Technique Name: Server Software Component
 Technique Name: Adversaries may abuse legitimate extensible development featu

res of servers to establish persistent access to systems. Enterprise server applications
may include features that allow developers to write and install software or scripts to e
xtend the functionality of the main application. Adversaries may install malicious compo
nents to extend and abuse server applications.

 - Technique ID: T1518
 Technique Name: Software Discovery
 Technique Name: Adversaries may attempt to get a listing of software and soft

ware versions that are installed on a system or in a cloud environment. Adversaries may
use the information from Software Discovery during automated discovery to shape follow-o
n behaviors, including whether or not the adversary fully infects the target and/or atte
mpts specific actions.

 - Technique ID: T1526
 Technique Name: Cloud Service Discovery
 Technique Name: An adversary may attempt to enumerate the cloud services runn

ing on a system after gaining access. These methods can differ from platform-as-a-servic
e (PaaS), to infrastructure-as-a-service (IaaS), or software-as-a-service (SaaS). Many s
ervices exist throughout the various cloud providers and can include Continuous Integrat
ion and Continuous Delivery (CI/CD), Lambda Functions, Azure AD, etc. They may also incl
ude security services, such as AWS GuardDuty and Microsoft Defender for Cloud, and loggi
ng services, such as AWS CloudTrail and Google Cloud Audit Logs.

 - Technique ID: T1538
 Technique Name: Cloud Service Dashboard
 Technique Name: An adversary may use a cloud service dashboard GUI with stole

n credentials to gain useful information from an operational cloud environment, such as
specific services, resources, and features. For example, the GCP Command Center can be u
sed to view all assets, findings of potential security risks, and to run additional quer
ies, such as finding public IP addresses and open ports.

 - Technique ID: T1554
 Technique Name: Compromise Client Software Binary
 Technique Name: Adversaries may modify client software binaries to establish

persistent access to systems. Client software enables users to access services provided
by a server. Common client software types are SSH clients, FTP clients, email clients, a
nd web browsers.

 - Technique ID: T1563
 Technique Name: Remote Service Session Hijacking
 Technique Name: Adversaries may take control of preexisting sessions with rem

ote services to move laterally in an environment. Users may use valid credentials to log
into a service specifically designed to accept remote connections, such as telnet, SSH,
and RDP. When a user logs into a service, a session will be established that will allow
them to maintain a continuous interaction with that service.

 - Technique ID: T1567
 Technique Name: Exfiltration Over Web Service
 Technique Name: Adversaries may use an existing, legitimate external Web serv

ice to exfiltrate data rather than their primary command and control channel. Popular We
b services acting as an exfiltration mechanism may give a significant amount of cover du
e to the likelihood that hosts within a network are already communicating with them prio
r to compromise. Firewall rules may also already exist to permit traffic to these servic
es.

 - Technique ID: T1569

 Technique Name: System Services
 Technique Name: Adversaries may abuse system services or daemons to execute c

ommands or programs. Adversaries can execute malicious content by interacting with or cr
eating services either locally or remotely. Many services are set to run at boot, which
can aid in achieving persistence (Create or Modify System Process), but adversaries can
also abuse services for one-time or temporary execution.

Module: Export
Vulnerability Title: Broken Access Control
Related Techniques:
 - Technique ID: T1006
 Technique Name: Direct Volume Access
 Technique Name: Adversaries may directly access a volume to bypass file acces

s controls and file system monitoring. Windows allows programs to have direct access to
logical volumes. Programs with direct access may read and write files directly from the
drive by analyzing file system data structures. This technique may bypass Windows file a
ccess controls as well as file system monitoring tools.

 - Technique ID: T1134
 Technique Name: Access Token Manipulation
 Technique Name: Adversaries may modify access tokens to operate under a diffe

rent user or system security context to perform actions and bypass access controls. Wind
ows uses access tokens to determine the ownership of a running process. A user can manip
ulate access tokens to make a running process appear as though it is the child of a diff
erent process or belongs to someone other than the user that started the process. When t
his occurs, the process also takes on the security context associated with the new toke
n.

 - Technique ID: T1207
 Technique Name: Rogue Domain Controller
 Technique Name: Adversaries may register a rogue Domain Controller to enable

manipulation of Active Directory data. DCShadow may be used to create a rogue Domain Con
troller (DC). DCShadow is a method of manipulating Active Directory (AD) data, including
objects and schemas, by registering (or reusing an inactive registration) and simulating
the behavior of a DC. Once registered, a rogue DC may be able to inject and replicate ch
anges into AD infrastructure for any domain object, including credentials and keys.

 - Technique ID: T1212
 Technique Name: Exploitation for Credential Access
 Technique Name: Adversaries may exploit software vulnerabilities in an attemp

t to collect credentials. Exploitation of a software vulnerability occurs when an advers
ary takes advantage of a programming error in a program, service, or within the operatin
g system software or kernel itself to execute adversary-controlled code.

 - Technique ID: T1219
 Technique Name: Remote Access Software
 Technique Name: An adversary may use legitimate desktop support and remote ac

cess software to establish an interactive command and control channel to target systems
within networks. These services, such as VNC, Team Viewer, AnyDesk, ScreenConnect, LogMe
in, AmmyyAdmin, and other remote monitoring and management (RMM) tools, are commonly use
d as legitimate technical support software and may be allowed by application control wit
hin a target environment.

 - Technique ID: T1528
 Technique Name: Steal Application Access Token
 Technique Name: Adversaries can steal application access tokens as a means of

acquiring credentials to access remote systems and resources.
 - Technique ID: T1531
 Technique Name: Account Access Removal
 Technique Name: Adversaries may interrupt availability of system and network

resources by inhibiting access to accounts utilized by legitimate users. Accounts may be
deleted, locked, or manipulated (ex: changed credentials) to remove access to accounts.
Adversaries may also subsequently log off and/or perform a System Shutdown/Reboot to set
malicious changes into place.

 - Technique ID: T1548
 Technique Name: Abuse Elevation Control Mechanism
 Technique Name: Adversaries may circumvent mechanisms designed to control ele

vate privileges to gain higher-level permissions. Most modern systems contain native ele

vation control mechanisms that are intended to limit privileges that a user can perform
on a machine. Authorization has to be granted to specific users in order to perform task
s that can be considered of higher risk. An adversary can perform several methods to tak
e advantage of built-in control mechanisms in order to escalate privileges on a system.

 - Technique ID: T1553
 Technique Name: Subvert Trust Controls
 Technique Name: Adversaries may undermine security controls that will either

warn users of untrusted activity or prevent execution of untrusted programs. Operating s
ystems and security products may contain mechanisms to identify programs or websites as
possessing some level of trust. Examples of such features would include a program being
allowed to run because it is signed by a valid code signing certificate, a program promp
ting the user with a warning because it has an attribute set from being downloaded from
the Internet, or getting an indication that you are about to connect to an untrusted sit
e.

 - Technique ID: T1650
 Technique Name: Acquire Access
 Technique Name: Adversaries may purchase or otherwise acquire an existing acc

ess to a target system or network. A variety of online services and initial access broke
r networks are available to sell access to previously compromised systems. In some case
s, adversary groups may form partnerships to share compromised systems with each other.

Vulnerability Title: Denial of Service (DoS)
Related Techniques:
 - Technique ID: T1007
 Technique Name: System Service Discovery
 Technique Name: Adversaries may try to gather information about registered lo

cal system services. Adversaries may obtain information about services using tools as we
ll as OS utility commands such as sc query, tasklist /svc, systemctl --type=service, and
net start.

 - Technique ID: T1021
 Technique Name: Remote Services
 Technique Name: Adversaries may use Valid Accounts to log into a service that

accepts remote connections, such as telnet, SSH, and VNC. The adversary may then perform
actions as the logged-on user.

 - Technique ID: T1046
 Technique Name: Network Service Discovery
 Technique Name: Adversaries may attempt to get a listing of services running

on remote hosts and local network infrastructure devices, including those that may be vu
lnerable to remote software exploitation. Common methods to acquire this information inc
lude port and/or vulnerability scans using tools that are brought onto a system.

 - Technique ID: T1072
 Technique Name: Software Deployment Tools
 Technique Name: Adversaries may gain access to and use third-party software s

uites installed within an enterprise network, such as administration, monitoring, and de
ployment systems, to move laterally through the network. Third-party applications and so
ftware deployment systems may be in use in the network environment for administration pu
rposes (e.g., SCCM, HBSS, Altiris, etc.).

 - Technique ID: T1102
 Technique Name: Web Service
 Technique Name: Adversaries may use an existing, legitimate external Web serv

ice as a means for relaying data to/from a compromised system. Popular websites and soci
al media acting as a mechanism for C2 may give a significant amount of cover due to the
likelihood that hosts within a network are already communicating with them prior to a co
mpromise. Using common services, such as those offered by Google or Twitter, makes it ea
sier for adversaries to hide in expected noise. Web service providers commonly use SSL/T
LS encryption, giving adversaries an added level of protection.

 - Technique ID: T1133
 Technique Name: External Remote Services
 Technique Name: Adversaries may leverage external-facing remote services to i

nitially access and/or persist within a network. Remote services such as VPNs, Citrix, a
nd other access mechanisms allow users to connect to internal enterprise network resourc
es from external locations. There are often remote service gateways that manage connecti
ons and credential authentication for these services. Services such as Windows Remote Ma
nagement and VNC can also be used externally.

 - Technique ID: T1137
 Technique Name: Office Application Startup
 Technique Name: Adversaries may leverage Microsoft Office-based applications

for persistence between startups. Microsoft Office is a fairly common application suite
on Windows-based operating systems within an enterprise network. There are multiple mech
anisms that can be used with Office for persistence when an Office-based application is
started; this can include the use of Office Template Macros and add-ins.

 - Technique ID: T1210
 Technique Name: Exploitation of Remote Services
 Technique Name: Adversaries may exploit remote services to gain unauthorized

access to internal systems once inside of a network. Exploitation of a software vulnerab
ility occurs when an adversary takes advantage of a programming error in a program, serv
ice, or within the operating system software or kernel itself to execute adversary-contr
olled code. A common goal for post-compromise exploitation of remote services is for lat
eral movement to enable access to a remote system.

 - Technique ID: T1219
 Technique Name: Remote Access Software
 Technique Name: An adversary may use legitimate desktop support and remote ac

cess software to establish an interactive command and control channel to target systems
within networks. These services, such as VNC, Team Viewer, AnyDesk, ScreenConnect, LogMe
in, AmmyyAdmin, and other remote monitoring and management (RMM) tools, are commonly use
d as legitimate technical support software and may be allowed by application control wit
hin a target environment.

 - Technique ID: T1489
 Technique Name: Service Stop
 Technique Name: Adversaries may stop or disable services on a system to rende

r those services unavailable to legitimate users. Stopping critical services or processe
s can inhibit or stop response to an incident or aid in the adversary's overall objectiv
es to cause damage to the environment.

 - Technique ID: T1498
 Technique Name: Network Denial of Service
 Technique Name: Adversaries may perform Network Denial of Service (DoS) attac

ks to degrade or block the availability of targeted resources to users. Network DoS can
be performed by exhausting the network bandwidth services rely on. Example resources inc
lude specific websites, email services, DNS, and web-based applications. Adversaries hav
e been observed conducting network DoS attacks for political purposes and to support oth
er malicious activities, including distraction, hacktivism, and extortion.

 - Technique ID: T1499
 Technique Name: Endpoint Denial of Service
 Technique Name: Adversaries may perform Endpoint Denial of Service (DoS) atta

cks to degrade or block the availability of services to users. Endpoint DoS can be perfo
rmed by exhausting the system resources those services are hosted on or exploiting the s
ystem to cause a persistent crash condition. Example services include websites, email se
rvices, DNS, and web-based applications. Adversaries have been observed conducting DoS a
ttacks for political purposes and to support other malicious activities, including distr
action, hacktivism, and extortion.

 - Technique ID: T1505
 Technique Name: Server Software Component
 Technique Name: Adversaries may abuse legitimate extensible development featu

res of servers to establish persistent access to systems. Enterprise server applications
may include features that allow developers to write and install software or scripts to e
xtend the functionality of the main application. Adversaries may install malicious compo
nents to extend and abuse server applications.

 - Technique ID: T1518
 Technique Name: Software Discovery
 Technique Name: Adversaries may attempt to get a listing of software and soft

ware versions that are installed on a system or in a cloud environment. Adversaries may
use the information from Software Discovery during automated discovery to shape follow-o
n behaviors, including whether or not the adversary fully infects the target and/or atte
mpts specific actions.

 - Technique ID: T1526
 Technique Name: Cloud Service Discovery
 Technique Name: An adversary may attempt to enumerate the cloud services runn

ing on a system after gaining access. These methods can differ from platform-as-a-servic

e (PaaS), to infrastructure-as-a-service (IaaS), or software-as-a-service (SaaS). Many s
ervices exist throughout the various cloud providers and can include Continuous Integrat
ion and Continuous Delivery (CI/CD), Lambda Functions, Azure AD, etc. They may also incl
ude security services, such as AWS GuardDuty and Microsoft Defender for Cloud, and loggi
ng services, such as AWS CloudTrail and Google Cloud Audit Logs.

 - Technique ID: T1538
 Technique Name: Cloud Service Dashboard
 Technique Name: An adversary may use a cloud service dashboard GUI with stole

n credentials to gain useful information from an operational cloud environment, such as
specific services, resources, and features. For example, the GCP Command Center can be u
sed to view all assets, findings of potential security risks, and to run additional quer
ies, such as finding public IP addresses and open ports.

 - Technique ID: T1554
 Technique Name: Compromise Client Software Binary
 Technique Name: Adversaries may modify client software binaries to establish

persistent access to systems. Client software enables users to access services provided
by a server. Common client software types are SSH clients, FTP clients, email clients, a
nd web browsers.

 - Technique ID: T1563
 Technique Name: Remote Service Session Hijacking
 Technique Name: Adversaries may take control of preexisting sessions with rem

ote services to move laterally in an environment. Users may use valid credentials to log
into a service specifically designed to accept remote connections, such as telnet, SSH,
and RDP. When a user logs into a service, a session will be established that will allow
them to maintain a continuous interaction with that service.

 - Technique ID: T1567
 Technique Name: Exfiltration Over Web Service
 Technique Name: Adversaries may use an existing, legitimate external Web serv

ice to exfiltrate data rather than their primary command and control channel. Popular We
b services acting as an exfiltration mechanism may give a significant amount of cover du
e to the likelihood that hosts within a network are already communicating with them prio
r to compromise. Firewall rules may also already exist to permit traffic to these servic
es.

 - Technique ID: T1569
 Technique Name: System Services
 Technique Name: Adversaries may abuse system services or daemons to execute c

ommands or programs. Adversaries can execute malicious content by interacting with or cr
eating services either locally or remotely. Many services are set to run at boot, which
can aid in achieving persistence (Create or Modify System Process), but adversaries can
also abuse services for one-time or temporary execution.

Module: File Upload
Vulnerability Title: Directory Traversal
Related Techniques:
 - Technique ID: T1083
 Technique Name: File and Directory Discovery
 Technique Name: Adversaries may enumerate files and directories or may search

in specific locations of a host or network share for certain information within a file s
ystem. Adversaries may use the information from File and Directory Discovery during auto
mated discovery to shape follow-on behaviors, including whether or not the adversary ful
ly infects the target and/or attempts specific actions.

 - Technique ID: T1222
 Technique Name: File and Directory Permissions Modification
 Technique Name: Adversaries may modify file or directory permissions/attribut

es to evade access control lists (ACLs) and access protected files. File and directory p
ermissions are commonly managed by ACLs configured by the file or directory owner, or us
ers with the appropriate permissions. File and directory ACL implementations vary by pla
tform, but generally explicitly designate which users or groups can perform which action
s (read, write, execute, etc.).

Vulnerability Title: Insecure File Upload
Related Techniques:
 - Technique ID: T1027

 Technique Name: Obfuscated Files or Information
 Technique Name: Adversaries may attempt to make an executable or file difficu

lt to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents
on the system or in transit. This is common behavior that can be used across different p
latforms and the network to evade defenses.

 - Technique ID: T1083
 Technique Name: File and Directory Discovery
 Technique Name: Adversaries may enumerate files and directories or may search

in specific locations of a host or network share for certain information within a file s
ystem. Adversaries may use the information from File and Directory Discovery during auto
mated discovery to shape follow-on behaviors, including whether or not the adversary ful
ly infects the target and/or attempts specific actions.

 - Technique ID: T1140
 Technique Name: Deobfuscate/Decode Files or Information
 Technique Name: Adversaries may use Obfuscated Files or Information to hide a

rtifacts of an intrusion from analysis. They may require separate mechanisms to decode o
r deobfuscate that information depending on how they intend to use it. Methods for doing
that include built-in functionality of malware or by using utilities present on the syst
em.

 - Technique ID: T1222
 Technique Name: File and Directory Permissions Modification
 Technique Name: Adversaries may modify file or directory permissions/attribut

es to evade access control lists (ACLs) and access protected files. File and directory p
ermissions are commonly managed by ACLs configured by the file or directory owner, or us
ers with the appropriate permissions. File and directory ACL implementations vary by pla
tform, but generally explicitly designate which users or groups can perform which action
s (read, write, execute, etc.).

 - Technique ID: T1647
 Technique Name: Plist File Modification
 Technique Name: Adversaries may modify property list files (plist files) to e

nable other malicious activity, while also potentially evading and bypassing system defe
nses. macOS applications use plist files, such as the info.plist file, to store properti
es and configuration settings that inform the operating system how to handle the applica
tion at runtime. Plist files are structured metadata in key-value pairs formatted in XML
based on Apple's Core Foundation DTD. Plist files can be saved in text or binary format.

Module: File Browser
Vulnerability Title: Remote Code Execution
Related Techniques:
 - Technique ID: T1018
 Technique Name: Remote System Discovery
 Technique Name: Adversaries may attempt to get a listing of other systems by

IP address, hostname, or other logical identifier on a network that may be used for Late
ral Movement from the current system. Functionality could exist within remote access too
ls to enable this, but utilities available on the operating system could also be used su
ch as Ping or net view using Net.

 - Technique ID: T1021
 Technique Name: Remote Services
 Technique Name: Adversaries may use Valid Accounts to log into a service that

accepts remote connections, such as telnet, SSH, and VNC. The adversary may then perform
actions as the logged-on user.

 - Technique ID: T1127
 Technique Name: Trusted Developer Utilities Proxy Execution
 Technique Name: Adversaries may take advantage of trusted developer utilities

to proxy execution of malicious payloads. There are many utilities used for software dev
elopment related tasks that can be used to execute code in various forms to assist in de
velopment, debugging, and reverse engineering. These utilities may often be signed with
legitimate certificates that allow them to execute on a system and proxy execution of ma
licious code through a trusted process that effectively bypasses application control sol
utions.

 - Technique ID: T1133
 Technique Name: External Remote Services
 Technique Name: Adversaries may leverage external-facing remote services to i

nitially access and/or persist within a network. Remote services such as VPNs, Citrix, a
nd other access mechanisms allow users to connect to internal enterprise network resourc
es from external locations. There are often remote service gateways that manage connecti
ons and credential authentication for these services. Services such as Windows Remote Ma
nagement and VNC can also be used externally.

 - Technique ID: T1140
 Technique Name: Deobfuscate/Decode Files or Information
 Technique Name: Adversaries may use Obfuscated Files or Information to hide a

rtifacts of an intrusion from analysis. They may require separate mechanisms to decode o
r deobfuscate that information depending on how they intend to use it. Methods for doing
that include built-in functionality of malware or by using utilities present on the syst
em.

 - Technique ID: T1202
 Technique Name: Indirect Command Execution
 Technique Name: Adversaries may abuse utilities that allow for command execut

ion to bypass security restrictions that limit the use of command-line interpreters. Var
ious Windows utilities may be used to execute commands, possibly without invoking cmd. F
or example, Forfiles, the Program Compatibility Assistant (pcalua.exe), components of th
e Windows Subsystem for Linux (WSL), as well as other utilities may invoke the execution
of programs and commands from a Command and Scripting Interpreter, Run window, or via sc
ripts.

 - Technique ID: T1203
 Technique Name: Exploitation for Client Execution
 Technique Name: Adversaries may exploit software vulnerabilities in client ap

plications to execute code. Vulnerabilities can exist in software due to unsecure coding
practices that can lead to unanticipated behavior. Adversaries can take advantage of cer
tain vulnerabilities through targeted exploitation for the purpose of arbitrary code exe
cution. Oftentimes the most valuable exploits to an offensive toolkit are those that can
be used to obtain code execution on a remote system because they can be used to gain acc
ess to that system. Users will expect to see files related to the applications they comm
only used to do work, so they are a useful target for exploit research and development b
ecause of their high utility.

 - Technique ID: T1204
 Technique Name: User Execution
 Technique Name: An adversary may rely upon specific actions by a user in orde

r to gain execution. Users may be subjected to social engineering to get them to execute
malicious code by, for example, opening a malicious document file or link. These user ac
tions will typically be observed as follow-on behavior from forms of Phishing.

 - Technique ID: T1210
 Technique Name: Exploitation of Remote Services
 Technique Name: Adversaries may exploit remote services to gain unauthorized

access to internal systems once inside of a network. Exploitation of a software vulnerab
ility occurs when an adversary takes advantage of a programming error in a program, serv
ice, or within the operating system software or kernel itself to execute adversary-contr
olled code. A common goal for post-compromise exploitation of remote services is for lat
eral movement to enable access to a remote system.

 - Technique ID: T1216
 Technique Name: System Script Proxy Execution
 Technique Name: Adversaries may use trusted scripts, often signed with certif

icates, to proxy the execution of malicious files. Several Microsoft signed scripts that
have been downloaded from Microsoft or are default on Windows installations can be used
to proxy execution of other files. This behavior may be abused by adversaries to execute
malicious files that could bypass application control and signature validation on system
s.

 - Technique ID: T1218
 Technique Name: System Binary Proxy Execution
 Technique Name: Adversaries may bypass process and/or signature-based defense

s by proxying execution of malicious content with signed, or otherwise trusted, binarie
s. Binaries used in this technique are often Microsoft-signed files, indicating that the
y have been either downloaded from Microsoft or are already native in the operating syst
em. Binaries signed with trusted digital certificates can typically execute on Windows s
ystems protected by digital signature validation. Several Microsoft signed binaries that
are default on Windows installations can be used to proxy execution of other files or co
mmands.

 - Technique ID: T1219
 Technique Name: Remote Access Software
 Technique Name: An adversary may use legitimate desktop support and remote ac

cess software to establish an interactive command and control channel to target systems
within networks. These services, such as VNC, Team Viewer, AnyDesk, ScreenConnect, LogMe
in, AmmyyAdmin, and other remote monitoring and management (RMM) tools, are commonly use
d as legitimate technical support software and may be allowed by application control wit
hin a target environment.

 - Technique ID: T1480
 Technique Name: Execution Guardrails
 Technique Name: Adversaries may use execution guardrails to constrain executi

on or actions based on adversary supplied and environment specific conditions that are e
xpected to be present on the target. Guardrails ensure that a payload only executes agai
nst an intended target and reduces collateral damage from an adversary’s campaign. Value
s an adversary can provide about a target system or environment to use as guardrails may
include specific network share names, attached physical devices, files, joined Active Di
rectory (AD) domains, and local/external IP addresses.

 - Technique ID: T1546
 Technique Name: Event Triggered Execution
 Technique Name: Adversaries may establish persistence and/or elevate privileg

es using system mechanisms that trigger execution based on specific events. Various oper
ating systems have means to monitor and subscribe to events such as logons or other user
activity such as running specific applications/binaries. Cloud environments may also sup
port various functions and services that monitor and can be invoked in response to speci
fic cloud events.

 - Technique ID: T1547
 Technique Name: Boot or Logon Autostart Execution
 Technique Name: Adversaries may configure system settings to automatically ex

ecute a program during system boot or logon to maintain persistence or gain higher-level
privileges on compromised systems. Operating systems may have mechanisms for automatical
ly running a program on system boot or account logon. These mechanisms may include autom
atically executing programs that are placed in specially designated directories or are r
eferenced by repositories that store configuration information, such as the Windows Regi
stry. An adversary may achieve the same goal by modifying or extending features of the k
ernel.

 - Technique ID: T1563
 Technique Name: Remote Service Session Hijacking
 Technique Name: Adversaries may take control of preexisting sessions with rem

ote services to move laterally in an environment. Users may use valid credentials to log
into a service specifically designed to accept remote connections, such as telnet, SSH,
and RDP. When a user logs into a service, a session will be established that will allow
them to maintain a continuous interaction with that service.

 - Technique ID: T1574
 Technique Name: Hijack Execution Flow
 Technique Name: Adversaries may execute their own malicious payloads by hijac

king the way operating systems run programs. Hijacking execution flow can be for the pur
poses of persistence, since this hijacked execution may reoccur over time. Adversaries m
ay also use these mechanisms to elevate privileges or evade defenses, such as applicatio
n control or other restrictions on execution.

 - Technique ID: T1620
 Technique Name: Reflective Code Loading
 Technique Name: Adversaries may reflectively load code into a process in orde

r to conceal the execution of malicious payloads. Reflective loading involves allocating
then executing payloads directly within the memory of the process, vice creating a threa
d or process backed by a file path on disk. Reflectively loaded payloads may be compiled
binaries, anonymous files (only present in RAM), or just snubs of fileless executable co
de (ex: position-independent shellcode).

 - Technique ID: T1648
 Technique Name: Serverless Execution
 Technique Name: Adversaries may abuse serverless computing, integration, and

automation services to execute arbitrary code in cloud environments. Many cloud provider
s offer a variety of serverless resources, including compute engines, application integr
ation services, and web servers.

Vulnerability Title: Directory Traversal
Related Techniques:
 - Technique ID: T1083
 Technique Name: File and Directory Discovery
 Technique Name: Adversaries may enumerate files and directories or may search

in specific locations of a host or network share for certain information within a file s
ystem. Adversaries may use the information from File and Directory Discovery during auto
mated discovery to shape follow-on behaviors, including whether or not the adversary ful
ly infects the target and/or attempts specific actions.

 - Technique ID: T1222
 Technique Name: File and Directory Permissions Modification
 Technique Name: Adversaries may modify file or directory permissions/attribut

es to evade access control lists (ACLs) and access protected files. File and directory p
ermissions are commonly managed by ACLs configured by the file or directory owner, or us
ers with the appropriate permissions. File and directory ACL implementations vary by pla
tform, but generally explicitly designate which users or groups can perform which action
s (read, write, execute, etc.).

Module: Web Service
Vulnerability Title: Session Fixation
Related Techniques:
 - Technique ID: T1185
 Technique Name: Browser Session Hijacking
 Technique Name: Adversaries may take advantage of security vulnerabilities an

d inherent functionality in browser software to change content, modify user-behaviors, a
nd intercept information as part of various browser session hijacking techniques.

 - Technique ID: T1539
 Technique Name: Steal Web Session Cookie
 Technique Name: An adversary may steal web application or service session coo

kies and use them to gain access to web applications or Internet services as an authenti
cated user without needing credentials. Web applications and services often use session
cookies as an authentication token after a user has authenticated to a website.

 - Technique ID: T1563
 Technique Name: Remote Service Session Hijacking
 Technique Name: Adversaries may take control of preexisting sessions with rem

ote services to move laterally in an environment. Users may use valid credentials to log
into a service specifically designed to accept remote connections, such as telnet, SSH,
and RDP. When a user logs into a service, a session will be established that will allow
them to maintain a continuous interaction with that service.

Vulnerability Title: Insecure File Upload
Related Techniques:
 - Technique ID: T1027
 Technique Name: Obfuscated Files or Information
 Technique Name: Adversaries may attempt to make an executable or file difficu

lt to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents
on the system or in transit. This is common behavior that can be used across different p
latforms and the network to evade defenses.

 - Technique ID: T1083
 Technique Name: File and Directory Discovery
 Technique Name: Adversaries may enumerate files and directories or may search

in specific locations of a host or network share for certain information within a file s
ystem. Adversaries may use the information from File and Directory Discovery during auto
mated discovery to shape follow-on behaviors, including whether or not the adversary ful
ly infects the target and/or attempts specific actions.

 - Technique ID: T1140
 Technique Name: Deobfuscate/Decode Files or Information
 Technique Name: Adversaries may use Obfuscated Files or Information to hide a

rtifacts of an intrusion from analysis. They may require separate mechanisms to decode o
r deobfuscate that information depending on how they intend to use it. Methods for doing
that include built-in functionality of malware or by using utilities present on the syst
em.

 - Technique ID: T1222

 Technique Name: File and Directory Permissions Modification
 Technique Name: Adversaries may modify file or directory permissions/attribut

es to evade access control lists (ACLs) and access protected files. File and directory p
ermissions are commonly managed by ACLs configured by the file or directory owner, or us
ers with the appropriate permissions. File and directory ACL implementations vary by pla
tform, but generally explicitly designate which users or groups can perform which action
s (read, write, execute, etc.).

 - Technique ID: T1647
 Technique Name: Plist File Modification
 Technique Name: Adversaries may modify property list files (plist files) to e

nable other malicious activity, while also potentially evading and bypassing system defe
nses. macOS applications use plist files, such as the info.plist file, to store properti
es and configuration settings that inform the operating system how to handle the applica
tion at runtime. Plist files are structured metadata in key-value pairs formatted in XML
based on Apple's Core Foundation DTD. Plist files can be saved in text or binary format.

In []: import requests
import matplotlib.pyplot as plt

def fetch_vulnerabilities():
 vulnerabilities_url = "http://127.0.0.1:5000/modules/vuln"
 response = requests.get(vulnerabilities_url)
 if response.status_code == 200:
 vulnerabilities = response.json()
 return vulnerabilities
 else:
 print("Error fetching vulnerabilities:", response.status_code)
 return None

def fetch_techniques(vulnerability_title):
 techniques_url = f"http://127.0.0.1:10000/techniques/{vulnerability_title}"
 response = requests.get(techniques_url)
 if response.status_code == 200:
 techniques = response.json()
 return techniques
 else:
 print(f"Error fetching techniques for {vulnerability_title}:", response.status_c
 return None

def main():
 vulnerabilities = fetch_vulnerabilities()
 if vulnerabilities:
 for module in vulnerabilities:
 module_name = module['name']
 print(f"Module: {module_name}")
 vulnerabilities_list = module['vulnerabilities']
 technique_names = []

 # Aggregate techniques for all vulnerabilities in the module
 for vulnerability in vulnerabilities_list:
 vulnerability_title = vulnerability['title']
 techniques = fetch_techniques(vulnerability_title)
 if techniques:
 for _, technique_data in techniques.items():
 technique_names.append(technique_data['name'])

 # Count unique techniques
 unique_techniques = list(set(technique_names))
 technique_counts = [technique_names.count(tech) for tech in unique_technique

 # Create bar plot
 plt.figure(figsize=(10, 6))

Module: Access Control

Module: Authentication

 plt.bar(unique_techniques, technique_counts, color='skyblue')
 plt.xlabel('Techniques')
 plt.ylabel('Frequency')
 plt.title(f'Techniques related to Vulnerabilities in {module_name}')
 plt.xticks(rotation=90)
 plt.tight_layout()
 plt.show()

if __name__ == "__main__":
 main()

Module: Input and Output

Module: Import

Module: Export

Module: File Upload

Module: File Browser

Module: Web Service

DevSecOps Maturity Model

Level 1

Think of maturity level 1 like your first day at the gym. Youʼre not lifting the heavy weights just yet;

youʼre learning the ropes and maybe doing some light cardio. Similarly, at level 1, youʼre just getting

started with integrating security into your DevOps process.

Security practices

Process initiation

Education

Risk awareness

Automation

Level 2

Itʼs the point where you start to incorporate and follow security best practices more systematically.

Adoption of best practices

Continuous security

Partial automation

Regular training

Proactive security

Level 3

It signifies the transition from just setting up DevSecOps practices to actively progressing toward their

maturity.

Advanced automation

Integration of security

Proactive and continuous

Regular reviews and updates

Enhanced training

Level 4

KPIs help in measuring our goals and their priority.

Vulnerability Count by severity

Low Vulnerability Related Techniques Count

Time to pwn Count

In []: import requests
import matplotlib.pyplot as plt

def fetch_vulnerabilities():
 vulnerabilities_url = "http://127.0.0.1:5000/modules/vuln"
 response = requests.get(vulnerabilities_url)
 if response.status_code == 200:
 vulnerabilities = response.json()
 return vulnerabilities
 else:
 print("Error fetching vulnerabilities:", response.status_code)
 return None

def main():
 vulnerabilities = fetch_vulnerabilities()
 if vulnerabilities:
 module_names = []
 vulnerability_counts = []

 # Iterate through each module
 for module in vulnerabilities:
 module_name = module.get('name', 'Unknown Module')
 vulnerability_list = module.get('vulnerabilities', [])
 vulnerability_count = len(vulnerability_list)
 module_names.append(module_name)
 vulnerability_counts.append(vulnerability_count)

 # Create bar plot
 plt.figure(figsize=(10, 6))
 plt.bar(module_names, vulnerability_counts, color='skyblue')
 plt.xlabel('Modules')
 plt.ylabel('Vulnerability Count')
 plt.title('Vulnerability Count by Modules')
 plt.xticks(rotation=45, ha='right')
 plt.tight_layout()
 plt.show()

if __name__ == "__main__":
 main()

Case Study: ManageEngine AD Audit(CVE-2023-50785)

Case Study: Papercut MF

