

2Definitive Guide to Secure Software Delivery

Introduction

 Key Statistics

What is DevSecOps and Why is it Essential for Secure Software Delivery?

Who is Responsible for Secure Software Delivery?

Secure Software Delivery Challenges

 Siloed work culture

 Delayed feedback of security information

 Lack of Open Source Software Visibility

Guiding Principles for Delivering Secure Software

 Establish a collaborative culture that makes security a shared responsibility

Break down functional silos and collaborate continuously

 Build and deploy more secure source code

 Adopt and enforce secure coding methodologies

 Shift Security Left

 Application Security Testing (AST)

4

5

6

8

11

12

13

13

14

15

16

16

16

17

17

Contents

3Definitive Guide to Secure Software Delivery

 Secure the software supply chain

 Govern The Use Of Open Source Software Artifacts

 Ensure Software Integrity Through SLSA Compliance

 The Supply Chain Levels for Software Artifacts (SLSA) Framework

 Produce Comprehensive, Detailed Software Bill of Materials (SBOMs)

 Executive Order 14028

 The Value of SBOMs

 Making SBOM Management Part of Your DevSecOps Practice

 Securing applications with Harness Security Testing Orchestration (STO)

 Establish OSS visibility and governance

 Ensure software artifact integrity

Harness Secure Software Delivery Capabilities at a Glance

Contents

18

19

20

20

21

22

22

22

24

24

24

25

4Definitive Guide to Secure Software Delivery

Introduction
If you’re reading this ebook, you’re well aware of how much more decentralized and complex
software development has become over the last decade or two. You’re also aware that the
speed in which organizations build and deploy modern applications exposes them and their
users to a wide range of security and compliance risks. As a result, software-producing
organizations grapple with two challenging phenomena:

• Traditional application security practices are not effective in a modern DevOps world.
When security scans are run only at the end of the software delivery lifecycle (either
right before or after a service is deployed), the ensuing process of compiling and fixing
vulnerabilities creates massive overhead for developers. Overhead that degrades velocity
and puts production deadlines at risk.

• Regulatory pressure to ensure the integrity of all software components is ramping
up dramatically. Applications are built with an increasing number of open source
software (OSS) components and other 3rd party artifacts, each of which can introduce
new vulnerabilities into the application. Attackers seek to exploit these components’
vulnerabilities, which also puts the software’s consumers at risk.

Software represents the largest under addressed attack surface that organizations face.
The current threat environment, coupled with the drive to deliver applications faster, compels
organizations to integrate security throughout the software development lifecycle in ways that
don’t degrade developer productivity. This practice is formally known as DevSecOps.

Delivering secure software– the outcome of an effective DevSecOps program– is a huge
undertaking. It requires significant cultural changes across multiple functions to drive shared
responsibility, collaboration, transparency, and effective communication. It also requires the
right set of tools, technologies, and use of automation and AI to secure applications at the
speed of development. Implemented correctly, DevSecOps becomes a major success factor in
delivering secure software.

5Definitive Guide to Secure Software Delivery

We’ll provide an overview of what’s required from a tools, technologies, and process
perspective to deliver software that is more secure, faster.

By the end, you should feel comfortable and confident in moving your organization towards
adopting all of the best practices designed to strengthen your security posture and minimize
risk for your business.

Key Statistics

More than 80%
of software
vulnerabilities are
introduced through
open source software
(OSS) and 3rd party
components

Total cost of software
supply chain cyber
attacks to businesses
will exceed $80.6
billion globally by
2026, up from $45.8
billion in 2023
JUNIPER RESEARCH

Digital supply chain
attacks are becoming
more aggressive,
sophisticated, and
diverse. By 2025, 45%
of organizations will
have experienced at
least one
GARTNER RESEARCH

What is DevSecOps
and Why is it Essential
for Secure Software
Delivery?

7Definitive Guide to Secure Software Delivery

What is DevSecOps
and Why is it Essential for
Secure Software Delivery?
DevSecOps, short for development, security, and operations, is an approach to software
development that integrates security practices throughout the entire software development
lifecycle. It emphasizes collaboration and communication between development teams, security
teams, and operations teams to ensure that security is built into every stage of the software
development process.

Within the context of software development pipelines, DevSecOps aims to “shift security left”,
which essentially means as early as possible in the development process. Quite frankly, it
involves integrating security practices and tools into the development pipeline from the very
beginning. By doing so, security becomes an integral part of the software development process
rather than a late-stage add-on.

This approach makes it significantly easier for organizations to identify and resolve security
vulnerabilities early on, and meet regulatory obligations. It’s also important to note that
DevSecOps is built upon a culture of collaboration and shared responsibility. It breaks down
silos and encourages cross-functional teams to work together towards a common goal of
building more secure applications at high velocity.

Who is Responsible
for Secure Software
Delivery?

9Definitive Guide to Secure Software Delivery

Who is Responsible for Secure
Software Delivery?

In DevSecOps programs, there are several primary stakeholders. These stakeholders
collaborate consistently to achieve the common goal of building secure and reliable software.
Let’s take a look at who’s involved and what the scope of their roles are below:

• Development Teams: Dev teams are responsible for writing code, designing software
architecture, and implementing new features. In DevSecOps, dev teams need to embrace
security as an integral part of their work. They should understand and follow secure coding
practices, conduct code reviews, and integrate security testing into their processes. By
incorporating security from the beginning, dev teams can minimize vulnerabilities and
ensure that the software is built with security in mind.

• Security Teams: Application security teams, more commonly referred to as AppSec, are
responsible for identifying and mitigating software and infrastructure security risks and
ensuring compliance with industry standards and regulations. In DevSecOps, security
teams collaborate closely with developers to provide guidance on secure coding practices,
perform security assessments, and conduct penetration testing. They also help in
defining security policies, monitoring environments and systems for potential threats, and
responding to security incidents.

• Operations Teams: Operations teams at large are responsible for deploying, managing, and
maintaining the software in production environments. With traditional DevOps, essentially
IT operations support developers with pipelines and tooling, along with the underlying
infrastructure resources. In DevSecOps, Ops works closely with development and security
teams to ensure that the software is deployed securely and that proper security controls
are in place. They collaborate on infrastructure design, configuration management, and
continuous monitoring of systems for any security vulnerabilities or anomalies. Operations
teams also play a critical role in incident response and recovery in case of security
breaches or system failures.

10Definitive Guide to Secure Software Delivery

• Quality Assurance Teams: Quality assurance teams, better known as QA, are responsible
for testing and ensuring the quality of the software. In DevSecOps, QA teams collaborate
with development and security teams to incorporate security testing into their test plans.
They perform functional testing, performance testing, and security testing to identify any
vulnerabilities or weaknesses in the software. By including security testing as part of their
QA processes, they help in identifying and addressing security.

• Management and Leadership: Management and leadership teams have a vital role in
driving the adoption of DevSecOps practices within the organization. They set the vision,
allocate resources, and establish a culture of security and collaboration. Management
teams need to prioritize security initiatives, provide training and education on security best
practices, and ensure that security is integrated into the organization’s overall strategy.
They also play a crucial role in fostering communication and collaboration between different
teams and departments.

As you can see, the list of stakeholders is quite long. Though it’s ideal for collaboration, getting
all of these teams together is not easy. Each stakeholder group has their own set of agendas
and direction to comply with, and sometimes these goals conflict with those of the teams they
need to work with. This is just one of a few notable challenges that organizations experience
when building and maintaining a meaningful DevSecOps process. We’ll cover these issues in
more detail in the next section.

Secure Software
Delivery Challenges

12Definitive Guide to Secure Software Delivery

Secure Software Delivery
Challenges Challenges
As we alluded to in the previous section, there are several challenges that organizations
face when implementing a DevSecOps practice. These challenges can hinder the successful
integration of security controls into the software development process. Understanding these
challenges is crucial for organizations to address them effectively and ensure the smooth
adoption of DevSecOps principles.

Siloed Work Culture

One of the main obstacles in achieving a working DevSecOps model is organizational culture.
Traditionally, development, security, and operations teams have worked in silos, with limited
communication and impromptu collaboration. To overcome this challenge, organizations
need to foster a culture of shared responsibility and collaboration. This involves breaking
down barriers between teams, promoting open communication, and encouraging a mindset
where security is everyone’s responsibility. By creating a culture that prioritizes security and
encourages collaboration, organizations can effectively address the challenges associated with
DevSecOps implementation.

Security Tool Management Complexity

Building secure software from raw code to development to deployment becomes complex
because of the myriad of available tools and security scanners. Organizations tend to use
multiple SAST, DAST, secrets, and container scanning tools in their development environments.
The outputs from all these tools are disparate and there is no uniform data format or language.

Consequently, developers don’t get a deduplicated and prioritized list of vulnerabilities to
remedy, which software teams must normalize all the output, track exemptions, and verifying
fixes. This all requires synchronization between DevOps and security teams; it also takes a
lot of time and labor away from other work. In addition, DevOps and security teams need to
act on the information provided from security testing, but ensuring that these are the only
vulnerabilities is challenging.

13Definitive Guide to Secure Software Delivery

Organizations need to choose tools that align with their specific requirements and integrate
well with the underlying devops platform and pipelines. Automation is a key aspect of
DevSecOps, and organizations should seek a platform approach where security tooling and
workflows are integrated seamlessly within the devops platform itself, as opposed to applying a
collection of point solutions that are complex to manage.

Delayed Feedback of Security Information

In many DevOps programs, most security testing is done right before code has reached
production. All of the release stages where security testing could have been applied are past,
and fixing security issues requires reworking each stage. This results in a delayed feedback
loop of vulnerability information from security teams back to developers. Developers need to
move forward but by the time the security testing feedback arrives it could be days or weeks
later, forcing developers to drop their current projects to hunt for and fix vulnerable code.

Lack of Open Source Software Visibility

Modern applications comprise an increasing number of open source software components
and 3rd party artifacts, each of which comprise vulnerabilities that pose security risks to the
application’s users. Lack of visibility into the potential vulnerabilities of these components
and the inability to verify their integrity has led to several high profile catastrophic breaches
in recent years. In 2021, Log4j, an open-source logging framework maintained by Apache
and used in a myriad of different applications, was the root of exploits that put thousands
of systems at risk. Log4j’s communication functionality was vulnerable and thus provided an
opening for an attacker to inject malicious code into the logs which could then be executed on
the system. After its discovery, security researchers saw millions of attempted exploits, many
of which turned into successful denial-of-service (DoS) attacks.

Guiding Principles
for Delivering Secure
Software

15Definitive Guide to Secure Software Delivery

Guiding Principles for
Delivering Secure Software
At a high level, building and running an effective DevSecOps program means that your
organization is able to operate a secure delivery platform, test for software vulnerabilities,
prioritize and remediate vulnerabilities, prevent the release of insecure code, and ensure the
integrity of software and all of its artifacts. Below are detailed descriptions of the elements and
required capabilities to achieve a successful DevSecOps practice.

Establish a Collaborative Culture That Makes
Security a Shared Responsibility

The success of any DevSecOps practice is really in the hands of its stakeholders, so before
setting out to acquire, configure and deploy new tools and technologies,

If your organization builds, sells, or consumes software (which today is every conceivable
organization on the planet), then every single employee has an impact on the overall security
posture– not just those with ‘security’ in their titles. At its core, DevSecOps is a culture of
shared responsibility, and operating with a common security-oriented mindset determines how
well DevSecOps processes fit into place and can drive better decision making when choosing
DevOps platforms, tooling, and individual security solutions.

Mindsets don’t change overnight, but alignment and a sense of security accountability can be
achieved through the following:

• Commitment to regular internal security training– tailored to DevSecOps– that includes
developers, DevOps engineers, and security engineers. Skills gaps and needs shouldn’t
be underestimated.

• Developer adoption of secure coding methodologies and resources

• Security engineering contributes to application and environment architecture, design
reviews. It’s always easier to identify and fix security issues early in the software
development lifecycle.

16Definitive Guide to Secure Software Delivery

Break Down Functional Silos and Collaborate Continuously

Since DevSecOps is a result of the confluence of software development, IT operations, and
security, breaking down silos and actively collaborating on a continuous basis is critical for
success. Typically, DevOps-centric organizations operating without any formal DevSecOps
framework see security entering the picture like an unwelcome party crasher. Process changes
or tooling that is suddenly imposed (as opposed to collaboratively chosen and instantiated)
invariably results in development pipeline friction and unnecessary toil for developers. A
common scenario involves security mandating additional application security checks without
consideration for their placement within the pipeline, or for how much workload is required to
process scanner output and remediate vulnerabilities, which inevitably falls to developers.

• Driving collaboration and operating as a cohesive DevSecOps team involves:

• Defining and agreeing upon a set of measurable security objectives, such as mean time to
remediation and % reduction in CVE alert noise.

• Involvement from software developers and DevOps teams throughout the evaluation and
procurement processes for new security tools

• Ensuring no DevSecOps process has a single functional gatekeeper

• Iteratively optimizing tooling choices and security practices for developer productivity
and velocity

Build and Deploy More Secure Code

Adopt and Enforce Secure Coding Methodologies

Strengthening application security posture starts with writing robust and secure code.
Development teams should endeavor to adopt secure coding guidelines and best practices to
write code that is more resilient against common security threats. This includes practices such
as input validation, output encoding, and proper handling of sensitive data. By following secure
coding practices, developers can minimize the introduction of vulnerabilities into the codebase.

17Definitive Guide to Secure Software Delivery

Shift Security Left

Implementing shift-left security is a crucial step in securing application code as it moves
through development pipelines. This approach involves integrating security practices early in
the software development lifecycle, starting from the initial stages of coding and extending
throughout the entire development and deployment process. By shifting security testing further
left, organizations can identify and address vulnerabilities at an early stage, reducing the risk of
security breaches and ensuring the delivery of secure applications.

Shifting security left successfully starts with the integration and orchestration of different
types of security scanners throughout development pipelines. There are several categories of
application security tests that DevSecOps teams need to adopt and employ in order to catch
and remediate vulnerabilities throughout the software development lifecycle. The techniques
employed by each type of security scanner are complimentary. Combined, they are very
effective in surfacing known security issues before an application hits production.

Application Security Testing (AST)

SAST (Static Application Security Testing) Scanners

Static application security testing (SAST) involves analyzing application source code to detect security
vulnerabilities that could potentially be exploited. SAST is applied early in the SLDC, prior to code being
compiled. SAST scanners should be run on code on a regular basis, such as during periodic builds, at
each code check-in, or during a code release. Catching and fixing vulnerabilities in the code base at an

early stage has a dramatic impact on the quality and security posture of the final application.

SCA (Software Composition Analysis)

SCA tools are used to identify open source software within a code base, for the purpose of evaluating
security, license compliance and overall code quality. As the vast majority of modern applications are built
with open source software components, it is very important to be aware not only of the inherent security
risks associated with a particular artifact, but also of licensing considerations regarding the use of that
artifact or library.

Container Scanning

A rapidly-growing number of modern applications are built as collections of small composable elements
called containers. A container packages up a short piece of code– the container image– along with all of
its dependencies, binaries, and libraries. Container scanning tools are purpose built to analyze containers
and their contents for known security issues.

18Definitive Guide to Secure Software Delivery

DAST (Dynamic Application Security Testing) Scanners

Dynamic application security testing involves analyzing running applications. This methodology applies
mainly to web applications and services and is used to find run-time vulnerabilities and environment-

related issues. DAST scanners are run in later pipeline stages prior to deployment.

Figure 1: Orchestration of ASTs in a software development pipeline

Secure The Software Supply Chain

Achieving robust application security requires that DevSecOps take into account the entire
software supply chain, which is defined as the sum total of all the code, people, systems, and
processes that contribute to development and delivery of software artifacts, both inside and
outside of an organization. Software supply chains are increasingly attractive threat vectors
for attackers, and they are very hard to defend. Look no further than some of the major recent
breaches such as Solarwinds, Log4j, and CodeCov to understand how critical it is to be able to
identify and address security vulnerabilities in open source software artifacts and ensure the
overall integrity of an application for customers and users.

With that said, let’s take a look at the critical capabilities DevSecOps teams are responsible for
achieving.

19Definitive Guide to Secure Software Delivery

Govern The Use Of Open Source Software Artifacts

Open-source software (OSS) has proliferated to the point where OSS artifacts are used in an
overwhelming majority of applications. With this widespread use comes significant security and
compliance risks. Each OSS component brings potential vulnerabilities into the applications
that incorporate it, and it is incumbent upon every software producing organization to not use
these artifacts blindly, but to properly vet them and govern their use throughout development
pipelines. DevSecOps needs to track the deployment status of all artifacts and provide a
real time view to customers to understand what artifacts are being used and where they are
deployed. Furthermore, clear licensing policies and guidelines should be in place to ensure that
users can confidently use the OSS artifact without infringing upon any legal requirements.

In the context of CI and CD pipelines, the best approach to establishing open source
governance is through policy-as-code based on the Open Policy Agent (OPA) standard.

A good start to policy-based open source governance is to define rules for allowing or denying
the use of OSS components based on criteria such as supplier, version, PURL (package URL),
and license.

DevSecOps teams may create policies to block the use of a specific version of a component
because it has known vulnerabilities or does not meet their organization’s security standards. In
this case, they can add that version of the component to the deny list, and any attempts to use
it within the organization will be blocked.

Additionally, customers may want to block components from specific suppliers if they have had
a history of security issues or if they do not meet their organization’s compliance requirements.
By specifying the supplier in the deny list, the customer can prevent any components from
that supplier from being used within their organization. Or customers may want to block a
component if it’s not coming from a specific supplier.

The deny list is an important tool for customers to ensure the security and compliance of their
organization by preventing the use of components that do not meet their standards.

Similarly, DevSecOps teams can define policies to allow the use of specific OSS artifacts that
are approved by virtue of the fact they come from trusted suppliers, are contained in specific
package types, and have safe licenses.

20Definitive Guide to Secure Software Delivery

By enforcing these types of ‘deny’ and ‘allow’ rules, organizations can reduce the risk of
security vulnerabilities, ensure compliance with licensing requirements, and maintain control
over their software supply chain.

Ensure Software Integrity Through SLSA Compliance

Given the growing security risks inherent to today’s software supply chains, it is increasingly
important to software consumers to be able to trust the software they procure and use. But
how would users and consumers know that a piece of software is indeed trustworthy? In
determining the trustworthiness of a software artifact, you’d want to know about things like,
who wrote the code? Who built it? Where (on which development platform) was it built? What
components are in it?

Making a decision whether to trust software is possible once provenance– the record of a
software’s origins and chain of custody– can be verified. SLSA gives software-producing
organizations the ability to capture information about any aspect of the SW chain, to verify
properties of artifacts and their build, and to reduce risk of security issues.

In practice, it is essential for software producing organizations to adopt and adhere to the
SLSA framework requirements and implement a means of verifying and generating software
attestations which are authenticated statements (metadata) about software artifacts
throughout their software supply chains.

The Supply Chain Levels for Software Artifacts (SLSA) Framework

Supply-chain Levels for Software Artifacts (SLSA) is a set of incrementally adoptable guidelines for
supply chain security, established by industry consensus. The specification set by SLSA is useful for both
software producers and consumers: producers can follow SLSA’s guidelines to make their software supply
chain more secure, and consumers can use SLSA to make decisions about whether to trust a software
package.The SLSA framework offers:

• A common vocabulary to talk about software supply chain security

• A way to secure your incoming supply chain by evaluating the trustworthiness of the artifacts
you consume

• An actionable checklist to improve your own software’s security

• A way to measure your efforts toward compliance with Executive Order 14028 standards

21Definitive Guide to Secure Software Delivery

Produce Comprehensive, Detailed Software Bill of Materials
(SBOMs)

An SBOM is a detailed, machine-readable inventory of all libraries, modules, and
dependencies involved in building a software artifact. It offers valuable transparency into
the software’s anatomy, ensuring both traceability and security. According to the National
Telecommunications and Information Administration, a software bill of materials should
document the following parameters:

• Supplier Name
The name of an entity that creates, defines, and identifies components

• Component Name
Designation assigned to a unit of software defined by the original supplier

• Version of the Component
Identifier used by the supplier to specify a change in software from a previously identified
version

• Other Unique Identifiers
Other identifiers that are used to identify a component, or serve as a look-up key for
relevant databases

• Dependency Relationship
Characterizing the relationship that an upstream component X is included in software Y

• Author of SBOM Data
The name of the entity that creates the SBOM data for this component

• Timestamp
Record of the date and time of the SBOM data assembly

*source: https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

22Definitive Guide to Secure Software Delivery

By having an accurate and up-to-date SBOM, organizations can effectively manage and
mitigate potential security risks. It enables them to identify and track vulnerable components,
apply necessary patches and updates, and respond quickly to emerging threats. Additionally,
an SBOM facilitates transparency and accountability by providing visibility into the software
supply chain, allowing organizations to make informed decisions about the software they use
and distribute.

Different industry standards have emerged for creating SBOMs, with CycloneDX and Software
Package Data Exchange (SPDX) being the most prominent. CycloneDX is a lightweight software
bill of materials (SBOM) standard designed by OWASP for use in application security contexts
and supply chain component analysis. Software Package Data Exchange (SPDX) is an open
standard by The Linux Foundation for communicating software bill of materials information,
including provenance, license, security, and other related information. The significance of
SBOMs has been further underlined by Executive Order 14028, pushing it to the forefront of
cybersecurity discussions.

Executive Order 14028

Issued by The White House in May, 2021, Executive Order 14028 aims to bolster the nation’s cybersecurity
infrastructure. A key focus of this order is enhancing software supply chain security, and SBOMs
have been highlighted as a critical tool in this context. The order has accelerated the adoption and
standardization of SBOMs, pushing organizations to implement robust SBOM management practices.

The Value of SBOMs

• Transparency: Provides full visibility into the components in use and their metadata

• Compliance: Ensures adherence to Executing Order 14028 and to licensing requirements

• Security: Enables swift response to new vulnerabilities by precisely identifying impacted components

Making SBOM Management Part of Your DevSecOps Practice

SBOMs have a life cycle of their own, throughout which they need to be generated, updated, verified,
and signed. Typically, an SBOM is first generated within the build phase, where much of the critical
data for a reliable detailed SBOM exists. Updates can happen frequently; for example, scanning
software dependencies recursively after a build may require changes to the SBOM. Ultimately, lifecycle
management needs to be automated and easily orchestrated across software development pipelines
without slowing down developers as they build their applications.

23Definitive Guide to Secure Software Delivery

How Harness Provides The Foundation For Effective DevSecOps

Harness takes a holistic, platform-based approach to securing CI/CD pipelines along with the
software supply chain that enhances collaboration, governance and control, and developer
productivity. Powered by two fully-integrated Harness Platform modules (Security Test
Orchestration (STO) and Software Supply Chain Assurance (SSCA)), Harness DevSecOps
enables you to orchestrate vulnerability scanners anywhere in your pipeline, intelligently
remediate vulnerabilities quickly using AI, govern OSS components with detailed SBOM, and
ensure artifact integrity for SLSA compliance.

24Definitive Guide to Secure Software Delivery

Securing Applications with Harness Security
Testing Orchestration (STO)

Harness makes security testing orchestration flexible and simple, allowing organizations to step
away from bolted-on point solutions and put an end to the flood of disparate vulnerability data
sets that complicate remediation efforts. Instead, Harness streamlines vulnerability detection,
deduplication, prioritization, and remediation in ways that minimize both security risk and
developer toil. Developers benefit from AI-driven remediation assistance, along with security
exemption management that mitigates unnecessary deployment roadblocks.

Establish OSS visibility and Governance

Modern applications are built with a myriad of open source software (OSS) artifacts and
3rd party components which introduce new vulnerabilities that put both software vendors
and consumers at risk. Tracking the usage of OSS components across software artifacts
and environments and enforcing policies governing their use is an essential DevSecOps
capability that relies on a detailed software bill of materials (SBOM). The SBOM is essential for
understanding the components and dependencies within an application, which in turn enables
your organization to manage open-source component risks effectively. In the event a zero-day
vulnerability is discovered, Harness SSCA enables rapid remediation by tracing the vulnerability
back to impacted artifacts.

Ensure Software Artifact Integrity

Software supply chain attacks are becoming more aggressive, sophisticated, and diverse. In
the wake of high profile breaches such as Solarwinds and Log4j, there is substantial pressure
on organizations to implement safe development practices and ensure the integrity of their
applications and all of their artifacts. Harness SSCA brings your DevSecOps practices into
alignment with Supply Chain Levels for Software Artifacts (SLSA) Level-2 and enables you to
meet the requirements of Executive Order 14028.

Harness Secure
Software Delivery
Capabilities at a Glance

26Definitive Guide to Secure Software Delivery

Harness Secure Software
Delivery Capabilities
at a Glance
• Seamless integration with over 40 commercial and open source security scanners

• Orchestration of application security tests anywhere in your pipelines

• Policy-as-Code governance of the security pipeline with OPA

• Automatic deduplication and prioritization of vulnerabilities

• AI-driven vulnerability remediation guidance

• Generation and attestation of SLSA Level-3 provenance with Harness CI hosted builds

• Generation and attestation of SBOMs

• SLSA Level-2 provenance verification

• Rapid remediation of zero-day vulnerabilities

27Definitive Guide to Secure Software Delivery

The Modern Software Delivery Platform™

Follow us on

/harnessio www.harness.io

/harnessinc

Contact us on

