

You make **possible**

Designing IPSec VPNs with Firepower Threat Defense integration for Scale and High Availability

Abstract

This session covers the design and deployment aspects of integrating IPSec VPNs with Firepower Threat Defense (FTD) services. VPN (FlexVPN/DMVPN) and FTD deployment options will be reviewed with high availability and scalability in mind. The second part contains a detailed walk through of an example deployment which will help to understand the configuration and packet flow between different setup components. Proper understating of how each of the components of the deployment work is a key for successful design and operation. This session is aimed at Network Specialists and Architects involved in designing, managing and troubleshooting security solutions. This is NOT an introductory session; attendees should have existing knowledge of FlexVPN/DMVPN and FTD capabilities.

cisco / ila

For your reference

- There are slides in your PDF that will not be presented.
- They are valuable, but included only "For your reference".

cisco /

Example Design Requitements

- Large Scale Deployment 40000 locations
- Hub-and-spoke topology
- Provide security using cryptographically protected tunnels.
- Headend redundancy with 15 seconds convergence
- Mix of ASA and IOS routers on branch locations
- · IPS inspection for the spoke-to-spoke traffic using FTD

Session Objectives

- Large scale IPSec VPN deployments, i.e. deployments exceeding single platform limits.
- VPN Design Selection.
- Understand challenges of inserting a security appliance into a VPN topology (Firewall, IPS)

Agenda

- IPSec VPN Solutions Overview
- IPSec VPN High Availability and Scalability
- Selecting a VPN Design
- FTD Deployment and Interface Modes
- FTD Resiliency and Scalability
- Scalable VPN with FTD Integration Deployment Example
- IPSec VPN Best Practices
- Conclusion

IPSec VPN Solutions Overview IPSec VPN High Availability and Scalability Selecting a VPN Design FTD Deployment and Interface Modes FTD Resiliency and Scalability Scalable VPN with FTD Integration Deployment Example **IPSec VPN Best Practices** Conclusion

cisco ile

Underlay & Overlay

cisco live!

Underlay & Overlay

cisco live!

IPSec VPNs per platform

BRKSEC-3629 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 10

What about SD-WAN?

cisco live!

Crypto Map

- Crypto Map was the first implementation of IPSec VPNs used on Cisco devices.
- Aligned to the IPsec protocol, were traffic that is about to be encrypted is defined by an ACL (crypto ACL).
- Configuration nightmare:
 - Mismatched/not mirrored ACL entries.
 - · ACL must be updated every time new networks are added.

```
crypto isakmp policy 10
encr aes
authentication pre-share
group 2
crypto isakmp key ciscol23 address 172.16.1.1
!
crypto ipsec transform-set TS esp-aes esp-sha-hmac
mode tunnel
!
access-list 110 permit ip 10.20.10.0/24 10.10.10.0/24
access-list 110 permit ip 10.20.10.0/24 10.10.20.0/24
access-list 110 permit ip 10.20.10.0/24 10.10.30.0/24
```

```
crypto map outside_map 10 ipsec-isakmp
set peer 172.16.1.1
set transform-set TS
match address 110
!
interface GigabitEthernet0/0
ip address 172.17.1.1 255.255.255.0
crypto map outside map
```

Crypto Map - Packet Flow

Dynamic Crypto Map

- Dynamic Crypto Map dynamically accepts remote (initiating) peer's IP address.
- By default, any proposed traffic selector will be accepted from an authenticate peer.
- By design requires more TCAM space (IOS-XE).
- The DVTI technology replaces dynamic crypto maps as a dynamic hub-and-spoke method for establishing tunnels.

Crypto Map Summary

- Crypto Map is a legacy VPN solution with many limitations:
 - Does not support multicast.
 - A crypto map and VTI using the same physical interface is not supported.
 - It is not supported on port-channel interface (IOS-XE).
 - Multi-VRF limitations; fvrf=vrf1 and ivrf=global not supported.
 - Limited HA capabilities (IOS-XE does not support stateful IPSec failover).
 - IOS-XE architecture has scaling limitations for dynamic crypto map.
- IOS-XE IKEv2 multi-SA SVTI replaces Static Crypto Map
- IOS-XE IKEv2 multi-SA DVTI replaces Dynamic Crypto Map
- VTI on ASA 9.7.1+
- VTI on FTD on 6.6 roadmap

Tunnel Interface

cisco live!

Tunnel Interface

- Tunnel Interface interconnects underlay and overlay network.
- Supports various encapsulation types GRE IPv4/IPv6, Native IPSec IPv4/IPv6
- Main building block for IOS IPSec VPNs mGRE (DMVPN), Static/Dynamic (FlexVPN)

IPSec Virtual Tunnel Interface

- IPsec Virtual Tunnel Interface (VTI) provides a virtual routable interface for terminating IPsec tunnels and an easy way to define protection between sites to form an overlay network.
- Simplifies the configuration of IPsec for protection of remote links, support multicast, and simplify network management and load balancing.
- The VTI tunnel is always up.

IOS Tunnel Interface - Packet Flow

Interface feature (NAT, PBR, QoS, NetFlow, ...)

IOS Tunnel Interface - Packet Flow

Interface feature (NAT, PBR, QoS, NetFlow, ...)

Virtual Interface Types

	GRE over IPSec	IPsec Native	CLI
Dynamic	Virtual-Template Virtual-Access Dynamic GRE/IPSec	Virtual-Template Virtual-Access DVTI DVTI Multi-SA	interface Tunnel <>
Static	Tunnel interface Static GRE/IPSec	Tunnel Interface SVTI SVTI Multi-SA	interface Virtual-Template <>

cisco live

IPSec Tunnel Interface Types - Static

Static Tunnel Interface

interface Tunnel1		
ip unnumbered Loopback1		
tunnel source GigabitEthernet2		
tunnel mode gre ipv4		
tunnel destination 10.0.0.2		
tunnel protection ipsec profile default		

cisco ile

IPSec Tunnel Interface Types - Dynamic

interface Virtual-Template1 type tunnel ip unnumbered Loopback1 tunnel source GigabitEthernet2 tunnel protection ipsec profile default interface Virtual-Access1 ip unnumbered Loopback1 tunnel source GigabitEthernet2 tunnel destination 10.0.0.1 tunnel protection ipsec profile default no tunnel protection ipsec initiate

cisco Live!

IOS Tunnel interface types - with GRE

Tunnel Type	Encapsulation	Configuration	Use Cases
Static GRE/IPSec *		<pre>interface Tunnel <id> tunnel mode gre {ip ipv6} tunnel protection ipsec profile default</id></pre>	 p2p GRE p2p GRE over IPSec FlexVPN Spoke w/ shortcuts
Dynamic GRE/IPSe c	IP IPsec GRE IP L4 Data Encrypted	<pre>interface Virtual-Template <id> type tunnel tunnel mode gre {ip ipv6} tunnel protection ipsec profile default</id></pre>	 FlexVPN Hub FlexVPN Spoke w/ shortcuts
mGRE over IPSec*		<pre>interface Tunnel <id> tunnel mode gre multipoint [ipv6] tunnel protection ipsec profile default</id></pre>	DMVPN DMVPN DMVPN

- Enables tunneling of non-IP protocols (e.g. MPLS, NHRP)
- Required for dynamic mesh scenarios
- "tunnel mode gre ip" is the default on static and dynamic tunnel interfaces

* IPSec protection is optional

IOS Tunnel interface types - without GRE

Tunnel Type	Encapsulation	Configuration	ι	Jse Cases
Native IPsec (SVTI)		<pre>interface Tunnel <id> tunnel mode ipsec {ipv4 ipv6} tunnel protection ipsec profile default</id></pre>	 p2p Flex\short Flex\ 	PSec /PN Spoke w/o ccuts /PN inter-Hub
Native IPsec (DVTI)	IP IPsec IP L4 Data	<pre>interface Virtual-Template <id> type tunnel tunnel mode ipsec {ipv4 ipv6} tunnel protection ipsec profile default</id></pre>	 Flex short 	/PN Hub w/o cuts VPN
Native IPsec Multi-SA SVTI	Encrypted	<pre>interface tunnel <id> tunnel mode ipsec <ipv4 ipv6> tunnel protection ipsec profile default tunnel protection ipsec policy ipv4 ACL</ipv4 ipv6></id></pre>	 Stati repla 	c Crypto Map cement for 3 rd party s
Native IPsec Multi-SA DVTI	-15-2(1)T+	<pre>interface Virtual-Template <id> type tunnel tunnel mode ipsec {ipv4 ipv6} tunnel protection ipsec profile default</id></pre>	 Dyna repla peers 	nmic Crypto Map cement for 3 rd party s
 Less o 	verhead - no GRE			Crypto Map

- Multi-SA support
- Mixed Mode IPv4 over IPv6 (tunnel mode ipsec ipv4 v6-overlay) or vice versa

cisco / ille

compatibility

Traffic Permitted by Protection Type

	IPv4 only	IPv6 only	IPv4 & IPv6 (Dual Stack)	IP Multicast	Non-IP
Crypto Map	Yes	Yes	No	No	No
Native IPsec IPv4 Tunnel (SVTI/DVTI)	Yes	Yes	No	Yes	No
Native IPsec IPv6 Tunnel (SVTI/DVTI)	Yes	Yes	No	Yes	No
GRE over IPSec*	Yes	Yes	Yes	Yes	Yes
Recommended					

* With Static and Dynamic Tunnel

cisco ile

FlexVPN - Mode Auto to Rule Them All

 Automatic transport and encapsulation protocol detection

cisco live!

IKEv2 Dynamic VTI - Configuration		
Va1: 192.168.1.1/32	Tu1: 192.168.1.2/32	
10.0.1.0/24	Spoke 10.0.2.0/24	
Gi2: 10.0.12.1/24	Gi2: 10.0.23.2/24	
Hub	Spoke	
<pre>crypto ikev2 authorization policy default route set remote ipv4 10.0.0.0 255.0.0.0 ! crypto ikev2 profile default match identity remote any authentication remote pre-share key cisco authentication local pre-share key cisco aaa authorization group psk list flex default local virtual-template 1</pre>	<pre>crypto ikev2 authorization policy default route set remote ipv4 10.0.2.0 255.255.255.0 ! crypto ikev2 profile default match identity remote address 10.0.12.1 authentication remote pre-share key cisco authentication local pre-share key cisco aaa authorization group psk list flex default local</pre>	
<pre>interface Virtual-Template1 type tunnel ip unnumbered Loopback1 ip ospf 1 area 1 tunnel source GigabitEthernet2 tunnel mode ipsec ipv4 tunnel protection ipsec profile default</pre>	<pre>interface Tunnel1 ip address 192.168.1.2 255.255.255.255 tunnel source GigabitEthernet2 tunnel mode ipsec ipv4 tunnel destination 10.0.12.1 tunnel protection ipsec profile default ! interface GigabitEthernet2</pre>	
cisco life!	ip address 10.0.23.2 255.255.255.0	

Cisco and/or its affiliates. All rights reserved. Cisco Public

IKEv2 Multi-SA Static VTI

- By default, the traffic selector for an SVTI is set to 'any any'.
- From Cisco IOS XE 16.12.1 we can define and associate an ACL with an SVTI.
- IPSec SAs are created for each non-any-any traffic selector, and thus, multiple SAs are attached to an SVTI.

cisco /

IKEv2 Multi-SA SVTI - Co Tu1: 192.168.1.1/32 Tu1: 192.168.1.1/32 Fouter1 Gi2: 10.0.12.1/24	Configuration Reference Tu1: 192.168.1.2/32 172.30.3.0/24 Image: Configuration Image: Configuration Image: Configuration Ima
Router1 crypto ikev2 profile default match identity remote 10.0.23.2 authentication remote pre-share key cisco authentication local pre-share key cisco aaa authorization group psk list flex default local ! crypto ipsec profile default reverse-route	Router2 crypto ikev2 profile default match identity remote 10.0.12.1 authentication remote pre-share key cisco authentication local pre-share key cisco aaa authorization group psk list flex default local ! crypto ipsec profile default reverse-route
<pre>ip access-list extended SVTI_ACL permit ip 172.16.1.0 0.0.0.255 172.30.3.0 0.0.0.255 permit ip 172.16.2.0 0.0.0.255 172.30.4.0 0.0.0.255 interface Tunnel1 ip address 192.168.1.1 255.255.255.252 tunnel source GigabitEthernet2 tunnel mode ipsec ipv4 tunnel destination 10.0.23.2 tunnel protection ipsec policy ipv4 SVTI_ACL tunnel protection ipsec profile default</pre>	<pre>ip access-list extended SVTI_ACL permit ip 172.30.3.0 0.0.0.255 172.16.1.0 0.0.0.255 permit ip 172.30.4.0 0.0.0.255 172.16.2.0 0.0.0.255 interface Tunnel1 ip address 192.168.1.2 255.255.255.252 tunnel source GigabitEthernet2 tunnel mode ipsec ipv4 tunnel destination 10.0.12.1 tunnel protection ipsec policy ipv4 SVTI_ACL tunnel protection ipsec profile default</pre>

IKEv2 Multi-SA Dynamic VTI

- IKEv2 DVTI supports multiple IPsec SAs proposed by the initiator Multi-SA DVTI
- Multi-SA DVTI is interoperable with third-party devices that implement only crypto maps.
- DVTI allow per peer features to be applied on a dedicated interface.

cisco /

Multi-SA DVTI - security-policy limit

Hub# show crypto session detail

IKEv2 Multi-SA DVTI - Configuration

Hub - IKEv2 Multi-SA DVTI	Spoke - IKEv2 Crypto Map
	crypto ikev2 profile default
	match identity remote any
	authentication remote pre-share key cisco
	authentication local pre-share key cisco
	aaa authorization group psk list default default
	!
	access-list 100 permit ip 10.0.12.0/24 10.0.0.0/16
	access-list 100 permit ip 10.0.13.0/24 10.0.0/16
	access-list 100 permit ip 10.0.14.0/24 10.0.0.0/16
	!
	crypto map CMAP 10 ipsec-isakmp
	set peer 10.0.0.1
	set ikev2-profile default
	match address 100
	!
	interface GigabitEthernet2
	ip address 172.16.1.1 255.255.255.0
	crypto map CMAP

cisco live!

FlexVPN and DMVPN comparison

- DMVPN uses mGRE interface while FlexVPN is using p2p tunnels SVTI or DVTI.
- In DMVPN crypto is optional, FlexVPN is tied to crypto configuration and requires IKEv2.
- If direct spoke-to-spoke is not needed, GRE encapsulation can be omitted for FlexVPN.

FlexVPN and DMVPN comparison

Compatibility with any IKEv2-based third-party VPN vendors

IKEv2 routing - very light solution fit for IoT

Point-to-point tunnel interfaces instead of mGRE

Granular per tunnel configuration of QoS, ZBF, VRF, etc. (AAA server)

Simplified use of NHRP - no NHS registration

One way of configuring NHRP compared to 3 phases in DMVPN

cisco / ile

Demo - FlexVPN

cisco live!

IPSec VPN Solutions Overview IPSec VPN High Availability and Scalability Selecting a VPN Design FTD Deployment and Interface Modes FTD Resiliency and Scalability Scalable VPN with FTD Integration Deployment Example **IPSec VPN Best Practices** Conclusion

cisco ile

Designing Fault-Tolerant IPSec VPNs

- The design depends on what faults the VPN needs to be able to withstand.
- From the fault-tolerance perspective, the design can be broken down into:
 - Transport Network connectivity between IPSec Gateways
 - Access Link link/device that connects the IPSec gateway to the Transport Network
 - IPSec Gateway

Branch Location Design

• Single-Router, Single-Link

• Single-Router, Dual-Link

• Dual-Router, Dual-Link

cisco live

FlexVPN Hub Redundancy - active-active

tunnel destination <hub2-nbma-ip>

Routing Based Resiliency
Dynamic Routing
(BGP, EIGRP, OSPF, RIP...)
IKEv2 Routing
FlexVPN
Only

In case of link/hub failure, dynamic routing protocol timers or IKEv2 DPD timers determine the convergence time

Tunnel Origin/Destination Dynamic Modification

BRKSEC-3629 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 43

Scaling beyond the limits of one hub router Static assignment active/standby cluster

- Multiple clusters for scale
- 1+1 redundancy

cisco/

Scaling beyond the limits of one hub router Static assignment active/standby cluster

- Multiple clusters for scale
- 1+1 redundancy

cisco / ili

Scaling beyond the limits of one hub router IKEv2 Load Balancer

- IKEv2 Load Balancer Components:
 - Cluster Load Balancing (CLB)
 - Hot Standby Router Protocol (HSRP)
 - IKEv2 Redirect
- N+1 redundancy (N<5)
- Easy to configure and cost-effective

cisco / il

Scaling beyond the limits of one hub router Server Load Balancing

- SLB (Server Load Balancing)
- N+1 redundancy with N >> 5
- SLB options:
 - Nexus (Intelligent Traffic Director)
 - F5 SLB
 - A10 Thunder SLB
- Today, we have designs in 100K+ (250K known), tested with 1M.

Bringing it all together - Geo LB + SLB

cisco live

IPSec VPN Solutions Overview
IPSec VPN High Availability and Scalability
Selecting a VPN Design
FTD Deployment and Interface Modes
FTD Resiliency and Scalability
IPSec VPN Best Practices
Scalable VPN with FTD Integration Deployment Example

cisco ive

Selecting a VPN Design

- · Large or small number of branch offices?
 - Small Scale -> Static Tunnels
 - Large Scale -> Dynamic Tunnels on Hub + Clustering, DNS Balancing, IKEv2 Load Balancer, SLB
- · What level of high availability is required?
- Is direct spoke-to-spoke required?
- · What protocols will be transported?
 - Non-IP -> GRE required
 - Dual stack -> GRE required
- 3rd party support?
 - Crypto Map -> FlexVPN (Multi-SA SVTI/DVTI)
- DMVPN or FlexVPN?

IPSec VPN Solutions Overview IPSec VPN High Availability and Scalability Selecting a VPN Design FTD Deployment and Interface Modes FTD Resiliency and Scalability Scalable VPN with FTD Integration Deployment Example **IPSec VPN Best Practices** Conclusion

cisco ile

Firewall - Asymmetric Traffic Challenge

• Symmetric flow example:

Asymmetric flow examples:

same-security-traffic is not applicable on FTD. Traffic is allowed for both inter- and intra-interface

With IPS-Only asymmetry is not a problem. We just need to reassemble the packet.

FTD Deployment and Interface Modes

	FTD Interface Mode	FTD Deployment Mode (inherited from ASA)	Description	Real traffic can be dropped?		n be
FirePower	Routed	Routed	Full ASA and Snort checks		Yes	
	Switched	Routed or Transparent	Full ASA and Snort checks		Yes	
	Inline Set	Routed or Transparent	Partial ASA and full S checks	Snort	Yes	
	Inline Set with Tap	Routed or Transparent	Partial ASA and full S checks	Snort	No	
	Passive	Routed or Transparent	Partial ASA and full S checks	Snort	No	
	Passive (ERSPAN)	Routed	Partial ASA and full S checks	Snort	No	

cisco live

Symmetric VPN flow - Spoke to DC

Asymmetric VPN traffic flow example?

FTD on a stick

Protecting direct spoke-spoke traffic

Option 1 - spoke being an FTD/ASA

Option 2 - spoke being an IOS router:

- IOS Firewall
 - ZBF
 - Application Aware ZBF (XE16.9.1)
- Snort IPS*
- URL Filtering*
- Cisco Umbrella
- ETA (Encrypted Traffic Analytics)

cisco Live!

* Available only on selected platforms

IPSec VPN Solutions Overview IPSec VPN High Availability and Scalability IPSec VPN Best Practices Selecting a VPN Design FTD Deployment and Interface Modes FTD Resiliency and Scalability Scalable VPN with FTD Integration Deployment Example Conclusion

cisco / ile

High Availability for Firepower Threat Defense

- FTD High Availability (failover), requires:
 - two identical FTD devices
 - · dedicated failover link and, optionally, a state link
- FTD supports Active/Standby stateful failover
- Supports all NGFW/NGIPS interface modes
- Provides redundancy but not scalability

Clustering for the Firepower Threat Defense

- Grouping of multiple FTD units together as a single logical device.
- Supported only on the Firepower 9300 and the Firepower 4100 series.
- Provides increased throughput and redundancy of multiple devices.
- All packets for a flow are redirected to connection Owner.

Firepower NGFW Clustering Deep Dive - BRKSEC-3032 Friday, January 31 | 11:30 AM - 01:30 PM

IPSec VPN Solutions Overview IPSec VPN High Availability and Scalability Selecting a VPN Design FTD Deployment and Interface Modes FTD Resiliency and Scalability Scalable VPN with FTD Integration Deployment Example **IPSec VPN Best Practices** Conclusion

cisco ile

Example Design Requirements and Assumptions

- Large Scale Deployment 40000 locations
- Hub-and-spoke topology
- Provide security using cryptographically protected tunnels.
- Headend redundancy with 15 seconds convergence
- Mix of ASA and IOS routers on branch locations
- IPS inspection for the spoke-to-spoke traffic using FTD

Proposed Solution

- FlexVPN Hub-and-Spoke topology
- · HA and scalability using active/standby clusters with BGP
- PBR to redirect spoke-spoke traffic to FTD on a stick

High Level Design - Topology

Hub-and-spoke + Large Scale

BGP routing considerations

Headend redundancy with 15 seconds convergence

- Two tunnels primary and secondary.
- Decrease BGP timers for fast convergence.
- For the BGP neighborship we need IKEv2 routing to exchange the addresses that will be used for peering.
- BGP listen range on Hub.
- · Route reflector between Hubs.
- · Summary advertised to spokes.

S 172.16.1.1 is directly connected, Virtual-Access1 B 192.168.102.0/24 [200/0] -> 172.16.1.7

FTD Routed mode on a stick

IPS inspection for the spoke-to-spoke traffic using FTD

cisco / ile

BRKSEC-3629 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 65

Spoke router configuration - IOS Example

Spoke router configuration - ASA Example

Hub's IKEv2 profile selection

* VTI for FTD on 6.7 roadmap

Hub router configuration - with PBR

aaa new-model aaa authorization network FlexVPN local access-list 123 permit ip 192.168.0.0 0.0.255.255 any route-map FW permit 10 match ip address 123 set ip next-hop 172.16.254.254 PBR crypto ikev2 profile router match identity remote fqdn domain router authentication remote pre-share key cisco authentication local pre-share key cisco aaa authorization group psk list FlexVPN name-mangler extract-domain virtual-template 1 mode auto crypto ikev2 profile firewall match identity remote fqdn domain firewall authentication remote pre-share key cisco authentication local pre-share key cisco aaa authorization group psk list FlexVPN name-mangler extract-domain virtual-template 1 mode auto no config-exchange request

```
interface Virtual-Template1 type tunnel
ip unnumbered Loopback1
ip policy route-map FW
```

tunnel protection ipsec profile default

```
router bgp 65000
bgp listen range 172.16.1.0/24 peer-group Flex
bgp listen limit 10000
timers bgp 5 15
neighbor Flex peer-group
neighbor Flex remote-as 65000
```

```
address-family ipv4
redistribute connected
neighbor Flex activate
neighbor Flex route-reflector-client
neighbor Flex next-hop-self all
exit-address-family
```

Separate IKEv2 profiles for routers and firewalls

iBGP with listen range

Interface and routing verification

IPSec VPN Solutions Overview IPSec VPN High Availability and Scalability Selecting a VPN Design FTD Deployment Modes Overview FTD Resiliency and Scalability Scalable VPN with FTD Integration Deployment Example **IPSec VPN Best Practices** Conclusion

cisco ile

IPSec Security Association Lifetime

- The IPSec SA rekey can be triggered from two angles:
 - From a time-based perspective (lifetime in seconds of the SAs). Default value 3600s.
 - From a traffic volume perspective (lifetime in kilobytes of data processed by the SAs). Default value ~ 4GB.
- Block Ciphers become unsafe with more than $2^{n/2}$ blocks of message encrypted.
- 3DES is broken
- With AES encryption algorithms, the volume-based re-key is justified only if more than 2⁶⁴ blocks of 16 bytes are encrypted = 256 exabytes of data.

IPSec Anti-Replay Window Size Tuning

ESP traffic received	
166 99 161	165
* * *	→ →
	ESP Sequence number
	101 161 162 163 164
	IPSec Replay Sliding Window
	Left edge Bight edge

- When QoS is used, packets from different traffic classes can be queued and delivered out of order by a large number, bigger than anti-replay window size.
- There are a couple of possibilities to address this issue:
 - Increase the IPsec anti-replay window size (default is 64 packets).

crypto ipsec security-association replay window-size 1024

• Disable the anti-replay protection mechanism.

crypto ipsec security-association replay ${\bf disable}$

IPSec Anti-Replay Checking with Multiple Sequence Number Spaces

IPSec Anti-Replay Checking with Multiple Sequence Number Spaces

• IPSec Anti-Replay multi-SNS is enabled with:

crypto ipsec security-association **multi-sn**

- The feature must be configured on both ends.
- The tunnel interface needs to be flapped.
- First 4 bits from SPI number are used to map DSCP to SNS

CSR 16.6.1 ISR4k 16.7.1 ASR1k 16.8.1

Call Admission Control for IKE

• For IKEv1 the default number of in-negotiation IKE connections is unlimited.

Router(config) # crypto call admission limit ike in-negotiation-sa 40

• For IKEv2 the default setting is 40.

Router(config) # crypto ikev2 limit max-in-negotiation-sa 40

• For large scale consider starting at 100 at reduce/increase based on results.

cisco / ili

IPsec & Fragmentation

- The goal is to avoid post-encrypt fragmentation by controlling pre-encrypt fragmentation
- Incorrect MTU/MSS settings lead to problems with performance and packet drop.
- Proper MTU/MSS tuning helps achieve best performance and to avoid fragmentation.
- IPSec Overhead Calculator Tool https://cway.cisco.com/tools/ipsec-overhead-calc/

IPSec Overhead Calculator Tool

ORIGINAL PACKET INFORMATION

Original IP Packet size (bytes)	100
TUNNEL SETTINGS	
GRE over IPSec	
IPSEC TRANSPORT SETTINGS	
IP Version 📀 IPv4 🔿 IPv6	
NAT-Traversal (IPSec over UDP port 4500)	
IPSEC TRANSFORM SETTINGS	
Tunnel Mode 🔿 Tunnel 🧿 Transport	
ESP Encryption ESP-AES-128/192/256 TeSP Integrity ESP-SHA-256-HMAC	*
AH Integrity none	Ŧ
PACKET FORMAT	

PACKET DETAILS

Field	Bytes
Original IPv4 Header	20
UDP Header (NAT-T)	8
SPI (ESP Header)	4
Sequence (ESP Header)	4
ESP-AES (IV)	16
Original Data Payload	80
ESP Pad (ESP-AES)	14
Pad length (ESP Trailer)	1
Next Header (ESP Trailer)	1
ESP-SHA-256-HMAC ICV (ESP Trailer)	16
Total IPSec Packet Size	164

- Original Data
 ESP Trailer
- ESP Trailer

cisco ive!

IPsec & Fragmentation - Crypto Map

Fragmentation with Crypto maps (Crypto pre-fragmentation)

cisco / ille

IPsec & Fragmentation - Tunnel Protection Reference

Fragmentation with Tunnel protection

QoS Considerations - VPN Hub

- Implementing quality of service (QoS) on the FlexVPN Hub is often necessary, because Spoke's inbound physical bandwidth can become congested.
- The Hub has a much faster connection that does not become congested as fast as the Spoke connection (that is, the Hub can overrun the Spoke).

Step 1 - configure shaping policy on physical interface

Step 2 - configure per-spoke QoS policies which will get applied to virtual-access interfaces

QoS Considerations - VPN Spoke

- QoS on FlexVPN Spoke is setup to shape/police outbound traffic to ensure that the spoke doesn't overrun its own outbound bandwidth.
- This is an aggregate (across all tunnels) policy that is applied to the outbound physical interface on the spoke.

Step 1 - configure physical interface QoS policy on FlexVPN Spoke

IPSec VPN Solutions Overview IPSec VPN High Availability and Scalability Selecting a VPN Design FTD Deployment Modes Overview FTD Resiliency and Scalability Scalable VPN with FTD Integration Deployment Example **IPSec VPN Best Practices**

Conclusion

cisco ile

Conclusion

- Many VPN Solutions; asses the design requirements before selecting the best option.
- Evaluate failure scenarios and acceptable convergence time.
- Understand the packet flow to properly insert a security appliance (Firewall, IPS).
- Keep it simple.
- Follow the IPSec VPN best practices to achieve best performance and avoid problems.

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at <u>ciscolive.com</u>.

Continue your education

cisco / ile

Thank you

cisco live!

You make possible