
DevOps Automated
Governance Reference
Architecture

2019

Attestation of the
Integrity of Assets
in the Delivery Pipeline

25 NW 23rd Pl
Suite 6314

Portland, OR 97210

DevOps Automated Governance Reference Architecture

This work is licensed under the Creative Commons Attribution-NonCommercial
-ShareAlike 4.0 International License. To view a copy of this license, visit http://

creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

When sharing this content, please notify
IT Revolution Press, LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210

Produced in the United States of America

Cover design and interior by Devon Smith

For further information about IT Revolution, these and other publications, special
discounts for bulk book purchases, or for information on booking authors for an

event, please visit our website at ITRevolution.com.

The 2019 DevOps Enterprise Forum was sponsored by XebiaLabs.

Preface

In May of this year, the fifth annual DevOps Enterprise Forum was held in Portland,

Oregon. As always, industry leaders and experts came together to discuss the issues

at the forefront of the DevOps Enterprise community and to put together guidance to

help us overcome and move through those obstacles.

This year, the group took a deeper dive into issues we had just begun to unpack

in previous years, providing step-by-step guidance on how to implement a move

from project to product and how to make DevOps work in large-scale, cyber-physical

systems, and even a more detailed look at conducting Dojos in any organization.

We also approached cultural and process changes like breaking through old change-

management processes and debunking the myth of the full-stack engineer. And of

course, we dived into the continuing question around security in automated pipelines.

As always, this year’s topics strive to address the issues, concerns, and obstacles

that are the most relevant to modern IT organizations across all industries. Afterall,

every organization is a digital organization.

This year’s Forum papers (along with our archive of papers from years past) are an

essential asset for any organization’s library, fostering the continual learning that is

essential to the success of a DevOps transformation and winning in the marketplace.

A special thanks goes to Jeff Gallimore, our co-host and partner and co-founder at

Excella, for helping create a structure for the two days and the weeks that followed to

help everyone stay focused and productive. Additional thanks goes to this year’s Forum

sponsor, XebiaLabs. And most importantly a huge thank you to this year’s Forum par-

ticipants, who contribute their valuable time and expertise and always go above and

beyond to put together these resources for the entire community to share and learn

from.

Please read, share, and learn, and you will help guide yourself and your organiza-

tion to success!

—Gene Kim

June 2019

Portland, Oregon

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 3

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 4

Collaborators
Michael Nygard

VP Enterprise

Architecture,

Sabre GLBL

Tapabrata Pal
Senior Director and

Senior Distinguished

Engineer, CapitalOne

Stephen Magill
Principal Scientist and

Software Analysis, Galois

Sam Guckenheimer
Product Owner of

Microsoft Visual Studio

Cloud Services, Microsoft

John Willis
Founder, Botchagalupe

Technologies

John Rzeszotarski
Senior Vice President

of Technology

Infrastructure, PNC

Dwayne Holmes
Senior Director of IT

Technology, Marriott

International

Courtney Kissler
VP, Global Technology,

NIKE, Inc.

Dan Beauregard
VP, Cloud & DevOps

Evangelist, XebiaLabs

Collette Tauscher
Director of Strategy,

Digital, NIKE, Inc.

Introduction

As organizations adopt DevOps practices, they develop increased pro-

ductivity within their software development teams, faster releases

of digital products, and improved customer experiences. But as the

rate of delivery increases, it becomes more difficult for security and

compliance to keep up without getting in the way. So, how can you

ensure that all aspects of your deployment pipeline are protected as

delivery velocity dramatically increases?

The “shift-left” practice in DevOps helps organizations improve

quality and security by moving testing earlier in the release process.

As more and more DevOps practices are automated, it becomes

harder to capture the data required to ensure all security and com-

pliance concerns are met. Organizations need an automated way to

track governance throughout the entire software delivery process so

they can attest to the integrity of all assets and to the security of all

running applications.

This paper is intended to guide organizations on implement-

ing an automated process for tracking governance throughout the

deployment pipeline by providing a reference architecture to help

guide organizations on how to design and implement automated

governance throughout the delivery pipeline. A sample use case is

also provided to further enforce these best practices.

Goals

Our initial focus was to design a model flexible enough that it could

easily be extended and adopted by organizations struggling to main-

tain compliance and audit controls as their software delivery speed

increased. We wanted to create a reference architecture that enables

an organization to create trust within the process of delivering soft-

ware and services. As organizations further automate the continuous

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 5

delivery of software and services, they also need to ensure there are common valida-

tions and trust mechanisms throughout the process. Ultimately, a DevOps automated

governance process can give organizations the assurance that the delivery of their

software and services are trusted.

The paper is organized into the following sections:

• Definitions and assumptions

• Reference architecture

• Recording attestations

• Summary and next steps

Disclaimer

The specific purpose of this paper is to introduce a reference architecture for the pur-

poses of automated governance. This paper represents the combined knowledge of the

authors’ experiences in what should make a good start to create a DevOps automated

governance process. We believe that this reference architecture will be a useful start-

ing point for many organizations; however, it is probably not efficient for enterprise

scale. It’s the authors’ expectation and hope that the DevOps community will engage

in ongoing improvement through rigorous validation and continuous feedback. Fur-

thermore, this paper is not intended to cover a comprehensive discussion regarding

policy in the delivery pipeline. Though some of the control points described in this

paper reference policy, we leave the instrumentation of that policy up to the reader.

Definitions and Assumptions

The following definitions and assumptions are used as the basis for this paper and can

be modified to comply with each organization’s preferred terminology.

Governance, Risk, and Compliance

The complexity of most modern organizations makes it very difficult for one team

or even one person to understand a singular, comprehensive view of organizational

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 6

governance, risk, and compliance. As a result, most organizations typically apply gov-

ernance, risk, and compliance (GRC) in an uncoordinated and nonaligned fashion.

In Measuring and Managing Information Risk: A FAIR Approach, Jack Freund and

Jack Jones describe a more specific overview of GRC as follows:

• Governance: “Ultimately, leadership is expected to cost-effectively govern the

organization’s risk landscape. Accomplishing this requires setting and commu-

nicating expectations, overseeing and facilitating the achievement and main-

tenance of those expectations, and managing conditions that don’t align with

their expectations. GRC solutions are supposed to assist with this by providing

a way to report where these expectations are and are not being met, within a

meaningful business context.”1

• Risk: “This objective is all about making better-informed risk decisions, which

boils down to three things: (1) identifying ‘risks,’ (2) effectively rating and pri-

oritizing ‘risks,’ and (3) making decisions about how to mitigate ‘risks’ that are

significant enough to warrant mitigation.”2

• Compliance: “Of the three objectives, compliance management is the sim-

plest—at least on the surface. On the surface, compliance is simply a matter

of identifying the relevant expectations (e.g., requirements defined by Basel,

Payment Card Industry (PCI), SOX, etc.), documenting and reporting on how

the organization is (or is not) complying with those expectations, and tracking

and reporting on activities to close any gaps.”3

When thinking about a “DevOps Automated Governance” model, we need to

look specifically at risk as a probability or threat of damage, loss, or other negative

occurrence that can be caused by external or internal vulnerabilities, and that may be

avoided through preemptive action. Risk may manifest as direct or indirect losses. We

then apply governance to understand and control risk.

Governance uses controls to mitigate specific risks. Controls can be classified as:

• Detective: the control indicates when a risk has already manifested.

• Corrective: the control repairs the process to compensate for a risk.

• Preventive: the control makes the risk less likely to manifest.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 7

A governance process applies a variety of controls to diminish, mitigate, or respond

to various risks. The governance process must both collect evidence that the controls

are applied correctly and convey the results of the controls. Output from the controls

can be collected in the form of attestations, which are witnessed declarations of evi-

dence. Of course, attestations must be recorded in a tamper-resistant mechanism.

A key category of risk is the potential loss due to noncompliance with regula-

tions or laws. Internal and external auditors attempt to verify compliance or detect

noncompliance with these laws and regulations. Some examples of questions to be

answered by various kinds of audits include:

• Are the company’s financial records accurate?

• Does this piece of automotive software meet safety standards?

• Are the reported results of a drug trial what patients actually experienced?

Companies must periodically present evidence to these auditors that demonstrates

compliance. A lack of evidence will be interpreted as noncompliance. Organizations

therefore create governance mechanisms to ensure that the necessary evidence exists.

Every audit, for every purpose, requires data that is produced, managed, and

reported by software. That means every audit eventually confronts the question of

the integrity of that software.

Common Terminology

Throughout this paper, we will be using specific terms to describe certain aspects

related to the DevOps automated governance reference architecture. Since the IT

industry tends to overload a lot of this common terminology, we decided to use a

common set of definitions for the purposes of this paper, listed below:

• Delivery Pipeline: This is the set of stages that describes how software will

flow from post ideation to final production delivery. We use this phrase for all

references related to industry terms, including but not limited to ARO, contin-

uous delivery and release automation, continuous integration and continuous

delivery, orchestration pipeline, release coordination, release management,

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 8

and software development life cycle. We also decided to use a common set of

stages to describe the Delivery Pipeline as seen in Figure 1.

• Artifact: An artifact is a deployable component of an application. In this

paper, we define an artifact as either an archive file, a virtual machine image,

or a container image. It is important to note that different stages of the deliv-

ery pipeline might mutate an artifact. For example, in the build stage, an input

artifact might come from the dependency management stage. In the package

stage, the output artifact might be an immutable packaged version of all the

things needed to deploy and run the software in an environment.

Figure 1: Delivery Pipeline

Creating Better Pipelines

In May of 2018, Capital One wrote the blog post “Focusing on the DevOps Pipeline”

explaining what it means to “deliver high quality working software faster.”4 They

describe their policy as such:5

• High quality meaning no security flaws, in compliance, minimum defects, etc.

• Working meaning end to end it really works for all parties, that it’s been tested,

and all dependencies are satisfied.

• Faster meaning as soon as possible without sacrificing quality.

The blog post also describes the concepts of “gates,” or guiding design principles,

later described as “control points:”6

Dependency
Mgmt

Source
Code Repo

Non Prod
Deploy

Prod
DeployBuild Package

Artifact
Repo

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 9

At Capital One, they designed pipelines using what they call the 16 Gates. These

guiding design principles are as follows:

• Source code version control

• Optimum branching strategy

• Static analysis

• >80% code coverage

• Vulnerability scan

• Open source scan

• Artifact version control

• Auto provisioning

• Immutable servers

• Integration testing

• Performance testing

• Build deploy testing automated for every commit

• Automated rollback

• Automated change order

• Zero downtime release

• Feature toggle7

The design ensures that every time software is pushed through the pipeline these

control points will be evidenced.

Control points are a form of both metadata and evidence for actions taken during

the development, production, and promotion processes. These control points should

be defined at every phase of continuous integration and preserved in logs from the

build or logs from how an artifact was built. Ultimately, this kind of automated pipeline

metadata in the form of control points allows organizations to move to a decentralized

form of decision-making, thus moving away from centralized forms commonly used in

most enterprises.

DevOps Automated Governance

DevOps practices increase the tempo of software delivery. This creates tension with

governance programs that rely on the manual review of artifacts, documents, and

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 10

scans. If we can push a change to production every few minutes, no manual process

can keep up. So, just as we have automated testing and deployment processes, we

must also seek to automate the governance processes. (And just as automated testing

and deployment processes reduce variation and manual error, we should also expect

automated governance to enjoy the same benefits.)

Many tools have emerged to address pieces of the governance process. We can

regard these individual actions as individual controls. To be integrated into an auto-

mated governance process, the output from a control must be recorded as an attes-

tation to confirm the control was applied and describe what the control did. Some

examples of attestations collected from controls would include statements such as:

• Control: Unit tests

Attestation: “All tests executed and passed.”

• Control: Clean dependencies

Attestation: “All dependencies in this build satisfy local licensing policies.”

• Control: Clean dependencies

Attestation: “All dependencies in this build are free of known security defects.”

A single control may record more than one attestation. These attestations begin as

ordinary tool outputs but need to be collected in a way that auditors can later verify

the origin and integrity of the attestation. (An example of a mechanism to collect such

attestations is the open-source tool Grafeas, discussed in the next section.)

Reference Architecture

Our reference architecture maps a delivery pipeline to specific controls that will pro-

duce evidence for collection. This reference architecture offers a starting point for a

DevOps automated governance process. Implementers will add to this architecture

and adapt it to their particular toolset and delivery pipeline.

Evidence and Automated Traceability

In 2017, Google introduced an open-source initiative called Grafeas (the Greek word

for “scribe”) to help organizations define a uniform way to audit and govern a modern

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 11

delivery pipeline. Grafeas supplies a simple reference architecture for a set of APIs to

gather metadata (i.e., control points) in a common model. Another open-source ini-

tiative designed for a similar purpose is Capital One’s Hygieia.

Consider an example of a control that Grafeas or Hygieia could accept, such as

“clean dependencies.” It may be applied by a tool such as Sonatype Nexus. Just apply-

ing the tool to keep the dependencies clean, however, is not enough to qualify as auto-

mated governance. The missing part is evidence that the control was applied at a point

in time to a set of inputs. Figure 2 shows how an attestation may be constructed from

a set of inputs that connect the output of a control together with the inputs (including

implicit inputs, like configuration).

Figure 2: Constructing an Attestation

Hashing and message authentication codes provide tamper resistance to the attes-

tation. This attestation can be recorded immutably. A series of attestations can be

connected to reconstruct the flow of a change through the delivery pipeline in much

the same way a call tree can be reconstructed from individual spans.

The Model

The model first describes a typical software delivery pipeline. For each stage the model

identifies a set of inputs, outputs, actors, and the actions that can occur at that stage.

Hash or MAC Attestation
Recorder

Immutable
Record

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 12

Next, the model identifies a set of risks that can be attributed to the stage. Finally,

based on the identified risks, a set of controls are chosen to mitigate the risks and

attest to the input, output, actors, and actions involved. Figure 3 shows the general

process of the governance model.

Figure 3: Basic Governance Model

To avoid repetition in every stage, the model factors out a set of common actors

and controls that appear in all stages.

Common controls:

• access control

• audit trail/log

• source control

• usage policies

Common Actors:

• auditor; risk/compliance office

• the system itself

• tool administrators

Risks Controls

Stage

Actors

I/P

Actions

O/P

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 13

Delivery Pipeline

Currently, software is delivered via an automated and controlled process called a “pipe-

line.” (Figure 1, which you can find earlier in this paper, depicts a general reference for

a pipeline.) A typical pipeline is a set of pre-composed stages that integrate with many

tools and platforms to automatically send tested changes to production. The pipeline

is the heart of an end-to-end delivery life cycle.

Typical pipeline stages and related artifacts are listed below:

• Source code repository: A version control tool that hosts all assets related to an

application’s software and services. Organizations which are mature in DevOps

practices use version control for application, infrastructure (as code), tests, and

all configurations. (Note that these may not all reside in a single source tree.

Application code and production configuration are typically separated according

to access rights.) Every change in any code is version controlled. Typically, Git is

used to manage this repository.

• Build: In this stage, source code is compiled (when a compiled language is

used), unit-tested, scanned, and linted for quality and security.

• Dependency management: This stage is where external libraries and/or base

images (e.g., virtual machines or containers) are stored and from which they

are consumed internally. This is the entry point for outside code.

• Package: In this stage, the deployable artifact is composed from source code

and external dependencies. The artifact may be an archive file, a virtual machine

image, or a container image. The resulting package is uploaded to a binary arti-

fact repository.

• Artifact repository: This is a version control tool that hosts all packaged arti-

facts produced via the build and packaging stages. Artifacts in this repository

should be immutable.

• Non-prod deploy: In this stage the artifact is deployed to one or more

non-production environments where various tests are applied. There can be

one or more of these stages depending upon the testing needs.

• Prod deploy: This is the final stage of a typical pipeline where the tested and

approved artifact is finally deployed to the production environment. The actions

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 14

in this stage can use a variety of rollout and exposure strategies to make the

artifact available for use.

Stage 1: Source Code Repository

Figure 4 shows a generalized overview of what an automated governance model might

look like during the source code repository stage.

Figure 4: Governance during the Source Code Repository Stage

The primary actors behind automated tools are the code author and the review-

er(s). The actions that instigate the checks associated with this pipeline stage are:

StageI/P
Request for Change New Version

O/P

Actors

Actions

1. Code author
2. Code reviewer

Risks
1. Unapproved changes
2. Untested changes
3. Unapproved 3rd party dependency
4. Information (secrets) leakage
5. Low quality code sent to production

1. Commit
2. Change request
 (Pull request,
 merge request)
3. Review, merge

Controls
1. Peer review
2. Unit test coverage
3. Clean dependency
4. Scan for sensitive information
5. Static code analysis/linting

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 15

• Commits: Triggering pre-commit hooks, unit tests, and dependency manage-

ment.

• Pull requests/merge requests: Triggering static code analysis, unit tests,

and code review.

Input

• Request for change: A change in source code is initiated by a request for

change; a request for change can be a new feature request, a bug fix request, or

a request for refactoring or redesign.

Output

• New version: A new version of the code base. In Git terms, it is the new SHA.

Actors

• Code author: The person who is making the actual code change.

• Code reviewer: The person reviewing code changes.

• Repository admin: Also known as the owner(s) of the code repository, this

person is also responsible for merging the code change to the main code branch.

Actions

• Code commit: The actual code change pushed to a temporary place (such as a

fork or a branch).

• Code review: Peer reviewing code changes.

• Change request: A request to merge the changed code to the main branch. In

GitHub, this is called a pull request.

Risks

• Unapproved changes: Unapproved and unreviewed changes may cause

degraded and/or unwanted behavior of the service.

• Untested changes: Code changes that are not tested may cause degraded and/

or unwanted behavior of the service.

• Unapproved third-party dependency: Unapproved dependencies can intro-

duce legal and security vulnerabilities in the software.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 16

• Sensitive information leakage: Accidentally including sensitive infor-

mation (e.g., credentials, non-public customer information, system account

details, etc.) in the source code can result in legal risk, security incidents, or

data breach.

• Low quality code sent to production: Even though new code functions as

expected, low quality code may cause operational issues, technical debts in

terms of code manageability, extensibility, complexity, etc.

Controls

We consider a source control scheme that involves a single master branch and the use

of feature branches to isolate and control code contributions. In order to merge the

changes captured by a branch into master, it is typical to require that the code passes

a number of checks.

• Peer-based code review (e.g., via GitHub Pull Requests) has been shown to

have the greatest impact on code quality.

• Unit test coverage (e.g., via SonarQube) is typically tracked, as untested func-

tionality tees up significant risk when refactoring, optimizing, or altering API

usage.

• Clean dependencies (e.g., via Sonatype Nexus) refers to a check that open-

source dependencies satisfy enterprise-level licensing guidelines and are free

of known vulnerabilities.

• Information leakage analysis (e.g., via GitHub pre-commit hooks to grep

for sensitive tokens) checks that passwords, access tokens, and other types of

sensitive information are not being checked into a repository.

• Static code analysis (e.g., via MuseDev) involves statically scanning for per-

formance, reliability, and security issues as part of the merge decision for new

code.

Stage: Build

Figure 5 shows a generalized overview of what an automated governance model might

look like during the build stage.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 17

Figure 5: Governance during the Build Stage

Input

• New version of code: Software is rebuilt on demand or automatically when

the source code version is changed.

• Dependencies: In many situations, when dependency versions change, soft-

ware needs to be rebuilt.

• Build definition: Build definition, also known as build script, contains the

codified build steps.

Output

• Artifacts: The main components of the deployment package that are sent to

production

BuildI/P O/P

Actors

Actions

1. System

1. New version of code
2. Dependencies
3. Build definition

1. Artifacts
2. Build log
3. BOM

Risks
1. Inaccurate, unapproved build
 configuration
2. Build information is missing, modified,
 or inconsistent
3. Unapproved 3rd party dependency
4. Build output is untested
5. Build output is low quality
6. Build output has security vulnerability

1. Build

Controls
1. Build configuration in Source Control:
 peer reviewed
2. Immutable build and O/P
3. Upstream approved dependency store
4. Unit test
5. Linting
6. Static security analysis

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 18

Actors

• System: Usually the build stage is triggered by a change in the source code.

There is no manual intervention needed in this case.

Actions

• Build: The only action in this stage is execution of the build definition.

Risks

• Inaccurate, unapproved build configuration: An inaccurate, unapproved

build configuration may produce incorrect build artifacts.

• Missing, modified, inconsistent build information: The build artifact

might not be traceable, authentic, or reproducible.

• Unapproved third-party dependency: Inclusion of unapproved third-party

dependencies in the build stage may result in legal and security vulnerabilities.

• Build output is untested: The build output, when deployed to production,

may not function as expected.

• Build output has security vulnerability: The build output may contain a

security vulnerability.

Controls

• Build configuration in source control and peer reviewed: As a basic

DevOps practice of having “everything as code,” build configurations should be

source controlled and peer reviewed just as the application code.

• Immutable build and build output: To ensure that a build cannot be modi-

fied after the fact, every build and the output of the build should be immutable.

If any build fails for some reason or the build output is unreliable, a fresh build

should be initiated.

• Upstream approved dependency management system: To ensure that

every dependency downloaded is approved for use, the build system should be

restricted to use only on an approved dependency management system.

• Unit test: Every build should include unit test execution and should complete

successfully only if the unit test pass rate and coverage meet predefined criteria.

• Linting: Every build should scan the source code for code quality and should

complete successfully only if the analysis result meets predefined criteria.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 19

• Static security analysis: In addition to unit test execution and linting, source

code also should be scanned for potential security vulnerabilities. Due to the

limitations of available tools, it may not be possible to execute a static secu-

rity scan for every build. However, an out-of-the-band scan on a periodic basis

should be in place. Many organizations execute a full static security scan daily,

or at least before production release.

Stage: Dependency Management

Figure 6 shows a generalized overview of what an automated governance model might

look like during the dependency management stage.

Figure 6: Governance during the Dependency Management Stage

BuildI/P O/P

Actors

Actions

1. External artifact
2. Interal shared artifact
3. Enterprise usage policy

1. Artifact

Risks
1. Unknown and potentially vulnerable
 dependencies are being used
2. Dependencies may not have proper
 licensing
3. Dependencies may have security
 licensing
4. Dependencies may be low quality
5. Unapproved versions of dependencies
 being used

Controls
1. Download only from approved external
 sources
2. License check
3. Security check
4. Library quality check (age, community)
5. Approved versions

1. Legal
2. Security
3. Architects
4. Developer/engineer

1. Legal scan
2. Security scan
3. Manage usage policy

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 20

Input

• External artifacts: These are dependencies that have been downloaded from

external repositories.

• Internal shared artifacts: Many dependencies are produced internally and

shared among others internally.

• Enterprise usage policies: Many enterprises maintain specific usage poli-

cies for specific types of applications. For example, the enterprise might have a

policy that software distributed to customers may not use dependencies with

“copy-left” licenses.

Output

• Artifact: Artifact that was requested by the build system.

Actors

• Legal: Enterprise legal teams create policies based on legal requirements.

• Information security: Security teams create policies based on security

requirements.

• Architects: Architects create policies based on architectural requirements that

include the health of the dependencies (e.g., age, popularity, activity status, etc.).

• Developers/engineers: Developers and engineers are the consumers and cre-

ators of dependencies.

• System: Systems, such as build systems, download dependencies.

Actions

• Legal scan: Dependencies are scanned for legal vulnerabilities.

• Security scan: Dependencies are scanned for security vulnerabilities.

• Manage usage policies: Legal, security, and architecture teams create depen-

dency usage policies.

Risks

• Unknown and potentially vulnerable dependencies are in use: One of the

biggest risks in software development is the risk of unknowns. This includes

the risk of using unknown dependencies that can cause damage in many forms.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 21

• Dependencies may not have proper licensing: Using incorrectly licensed

dependencies can lead to legal issues.

• Dependencies may have security vulnerabilities: Using dependencies with

security vulnerabilities is a huge risk across every enterprise.

• Dependencies may have low quality: Using low-quality dependencies leads

to low-quality software.

• Unapproved versions are in use: Using unapproved versions of dependen-

cies may result in security or legal issues. This may also cause systems in pro-

duction to behave unexpectedly.

Controls

• Download only from approved external sources: Every enterprise should

create a list of trusted sources of their dependency needs.

• License check: Dependencies that are downloadable from the dependency

management system should have licenses that satisfy enterprise legal require-

ments and usage policies.

• Security check: Dependencies that are downloadable from the dependency

management system should meet enterprise security requirements and satisfy

usage policies.

• Dependency quality check: Dependencies that are downloadable from the

dependency management system should meet architecture standards and

should satisfy usage policies.

• Approved versions: Only approved versions of dependencies are made

available.

Stage: Package

Figure 7 shows a generalized overview of what an automated governance model might

look like during the package stage.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 22

Figure 7: Governance during the Package Stage

Input

• Artifacts: The build artifacts that need to be packaged.

• Dependency: Dependencies that are not packaged in build artifacts

• Configuration: Configurations that are required to run the software in an

environment

• Runtime: Any runtime that should be packaged for deployment. This may

include base images, virtual machines, etc.

PackageI/P O/P

Actors

Actions

1. Artifacts
2. Dependency
3. Configuration
4. Runtime

1. Artifact

Risks
1. Unapproved, vulnerable 3rd party
 dependencies are packaged for
 production deployment.
2. Software package contains vulnerable
 components
3. Integrity and security of software
 package
4. Software configuration contains
 vulnerability
5. Untraceable software changes
6. Unreliable package metadata

Controls
1. Package only from pipeline and/or
 trusted dependency mgmt
2. Vulnerability scan of application
3. Digital signing (trusted authority)
4. Vulnerability scan of configuration
5. Unique versioning
6. Truthful metadata

1. Engineers
2. System (automation)

1. Package
2. Scan
3. Upload to artifact repo

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 23

Output

• Artifact: At this stage, the artifact is a packaged version of all the elements

needed to deploy and run the software in an environment.

Actors

• Engineers: Developers, operations admin, and system admin who contribute

to the packaging process.

• System: The automated way in which the packaging step is executed

Actions

• Package: The automated process that creates a deployable artifact.

• Scan: The process to scan the deployable artifact to detect legal and security

vulnerabilities.

Risks

• Unapproved, potentially vulnerable third-party dependencies are pack-
aged in the deployable artifact: Third-party dependencies downloaded during

the packaging process may contain vulnerabilities that cause legal and security

issues.

• Components with vulnerabilities are packaged in the deployable arti-
fact: Internal components produced by the build’s vulnerabilities may cause

security issues.

• Software configuration contains vulnerabilities: Even though the actual

software may not have vulnerabilities, configurations can contain data that do

not meet security standards. These may cause security issues.

• Untraceable software changes: Packaged artifacts containing changes that

cannot be traced back to source code or approved dependencies may cause

unpredictable behavior in the software.

• Unreliable metadata: Unreliable or missing artifact metadata may cause con-

fusion and at times can cause incorrect software to be deployed in production.

Controls

• Packaging only from trusted dependency sources: Packaging system

should download dependencies only from trusted dependency sources.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 24

• Vulnerability scanning: Even trusted dependency management sources may

contain dependencies with vulnerabilities. New vulnerabilities are discovered

every day. The packaging system should execute a vulnerability scan just like

the build system against the latest vulnerability data to detect vulnerabilities

that were potentially undetected during the build stage.

• Digital signing: The packaging system should digitally sign the deployable

artifact to ensure authenticity.

• Artifact versioning and metadata: Every artifact produced by the packag-

ing system should be immutable and versioned with an approved versioning

scheme. The packaging system also should add metadata to the deployable arti-

fact.

Stage: Artifact Repository

Figure 8 shows a generalized overview of what an automated governance model might

look like during the artifact repository stage.

Figure 8: Governance during the Artifact Repository Stage

Artifact RepoI/P O/P

Actors

Actions

1. Artifact
2. Metadata
3. Usage policy

1. Artifact

Risks
1. Untrusted packaging source
2. Artifact modified after packaging and
 before production deploy
3. Loss of previously deployed software—
 needed for legal audit purposes

Controls
1. Only allow upload from trusted
 packaging source
2. Immutable artifact
3. Retention policy

1. Engineers
2. System (automation)

1. Upload
2. Download

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 25

Input

• Artifact: The artifact uploaded by the packaging system and downloaded

during the deployment stage.

• Metadata: The metadata to add to the artifact.

• Usage policy: Enterprise policy on the upload and download of artifacts.

Output

• Artifact: The artifact downloaded by the deployment system.

Actors

• Engineers: Developers, operations admin, and system admin who contribute

to the packaging process.

• System: The automated way in which the packaging step is executed.

Actions

• Upload: Uploading of artifacts by packaging system.

• Download: Downloading of artifacts by deployment system.

Risks

• Untrusted packaging store: An unknown or untrusted packaging store can

upload vulnerable and/or unapproved artifacts.

• Artifact modified after packaging and before deployment: If an artifact

can be modified before deployment, there will be no assurance of the integrity

of what will be deployed.

• Loss of previously deployed artifact: Most enterprises need to archive

older versions of software to meet legal and regulatory requirements

Controls

• Only allow upload from trusted packaging source: Configure the artifact

repository to accept upload requests only from known and trusted packaging

sources. Many enterprises restrict individual users from uploading to the arti-

fact repository.

• Immutable artifact: No artifact in the repository can be overwritten; only a

newer version of the same artifact can be uploaded.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 26

• Retention policy: The artifact repository should implement a retention pol-

icy for all released artifacts.

Stage: Non-Prod Deploy

Figure 9 shows a generalized overview of what an automated governance model might

look like during the non-prod deploy stage.

Figure 9: Governance during the Non-Prod Deploy Stage

Input

• Artifact: The artifact that will be deployed.

• Environment configuration: Any environment configuration that was not

or cannot be packaged.

Non Prod DeployI/P O/P

Actors

Actions

1. Artifact
2. Environment config
3. Test data
4. Test config
5. Executable tests

1. Trusted release candidate

Risks
1. Deployment of software from untrusted
 source
2. Non-production systems do not have
 approved network configuration
3. Non-production systems have real
 production data
4. Promotion to non-production systems
 did not have quality gates

Controls
1. Only from trusted source (artifact
 repo/packaging)
2. Whitelist of allowed connectivity
3. Whitelist of allowed data (e.g., no PII)
4. Evaluation of testing/promotion/
 quality gates

1. Engineers
2. Product owners
3. Business
4. Security

1. Run tests

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 27

• Test data: Any test data set needed to execute tests in the non-production

environment.

• Test configuration: Any configuration needed to execute test cases in the

non-production environment.

• Executable tests: Tests that can be executed in the non-production

environment

Output

• Trusted release candidate: A successful completion of this stage produces a

release candidate that can be trusted, provided all controls in previous stages

were in place and followed.

Actors

• Engineers: The developers, operations admin, and system admin who contrib-

ute to the packaging process.

• System: The system executes the packaging step in an automated way.

• Product owners, business partners: Product owners involved in testing

functionalities in the non-production environment.

• Information security: Information security team may run security related

tests in non-production environment

Actions

• Deployment: The process that deploys an artifact.

• Run tests: Various types of tests executed in the non-production environment

Risks

• Deployment of artifact from untrusted sources: There is the risk of test-

ing the wrong software before producing a release candidate.

• Non-production systems with unapproved network configuration:
With an unapproved network configuration, there is the risk of executing tests

with unpredictable results or untrusted results.

• Non-production systems with production data: In many enterprises,

non-production systems should never have production data due to legal and

privacy risks.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 28

• Promotion to non-production systems did not have quality gates: With-

out a set of checks, or quality gates, there is the risk of producing a release

candidate that has low quality, and can potentially produce unpredictable

results in the production environment.

Controls

• Fetch artifact only from trusted source: The non-production deployment

stage should fetch deployable artifacts only from trusted sources (such as the

enterprise’s artifact repository).

• Whitelist of allowed connectivity: The connections allowed in the non-

production deployment stage should be reviewed and kept up-to-date. Pre-

approved connections on the whitelist should not be allowed.

• Whitelist of allowed data: The non-production deployment stage should

have access to only a set of whitelisted test data. This data should not contain

any real customer data or sensitive information.

• Quality gate evaluation: Non-production deployment should be executed

only if it meets a set of predefined criteria (e.g., 100% test pass rate with 80%

coverage, no new high severity security vulnerability, etc.). The quality gate

also should consider the drift and difference between production and non-

production environments; the non-production environment should mimic the

production environment.

Stage: Prod Deploy

Figure 10 shows a generalized overview of what an automated governance model

might look like during the prod deploy stage.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 29

Figure 10: Governance during the Prod Deploy Stage

Input

• Artifact: The artifact that will be deployed.

• Environment configuration: Any environment configuration that was not

or cannot be packaged.

Non Prod DeployI/P O/P

Actors

Actions

1. Artifacts
2. Environment config
3. Rules for exposure
 and progression
 (aka deployment
 strategy)

1. Service availability

Risks
1. Deployment from untrusted sources
2. Production systems have unapproved
 system configurations
3. Production systems lack vulnerability
 detection mechanisms
4. Low quality software is promoted to
 production systems
5. Lack of ability to detect and resolve
 production system issues quickly
6. Unauthorized changes to production
 systems
7. Unauthorized access to production
 systems
8. Lack of strategy around production
 system changes causing unpredictable
 behavior

Controls
1. Only from trusted source (artifact
 repo/packaging)
2. Allowed configuration for production
 (connectivity, encryption, secrets,
 input tokenization, costs, . . .)
3. Security (intrusion detectors, identity,
 threats)
4. Evaluation of testing/promotion/
 quality gates
5. Monitoring/logging/alerting
6. Drift management/change order
7. Production access controls (and
 break glass)
8. Deployment strategy enforced

1. Engineering
2. Product owner
3. Business
4. Security
5. Customer/users

1. Service use

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 30

• Deployment strategy: A deployment strategy that is scripted and/or

documented.

Output

• Service availability: Availability of service with expected behavior.

Actors

• Engineers: The developers, operations admin, and system admin who contrib-

ute to the deployment process.

• System: The system executes the deployment stage in an automated way.

• Product owners, business partners: The product owners involved in mak-

ing decisions of production release readiness and testing out functionalities in

the production environment.

• Information security: The information security team runs security related

checks in production environment.

• Customers/users: Who uses the service.

Actions

• Production deployment: Execution of the deployment process.

Risks

• Deployment from untrusted sources.

• Production systems have unapproved configuration.

• Production systems lack vulnerability detection mechanism.

• Low quality software deployed to production.

• Lack of ability to detect and resolve production issues.

• Unauthorized changes to production systems.

• Unauthorized access to production systems.

• Lack of strategy around production system changes causing unexpected

behavior.

Controls

• Fetch artifact only from trusted source: The production deployment stage

should fetch deployable artifacts from only trusted sources (such as the artifact

repository).

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 31

• Only use approved configurations: The production system should use an

approved set of configurations, such as network connectivity, encryption,

tokenization, secrets management, etc.

• Security monitoring: The production system should have intrusion detec-

tion, threat monitors, and other approved security mechanisms. It should also

have approved monitoring, logging, and alerting mechanisms.

• Change management: The production system should have an automated

change management mechanism.

• Access control: The production system should have a strict access control

mechanism. By default, no one should have access to production systems

except by means of a break-glass mechanism.

• Deployment strategy enforced: Production deployment should enforce

deployment strategy (e.g., deploy only during a specified time window, use

blue-green deployment, use canary deployments, etc.).

Recording Attestations

Example with Universal Metadata API

In practice, each automated governance solution will be contextual to each organization

and will require different considerations and controls. For example, organizations that

require compliance with self-identifying risk control self-assessments might need exten-

sive design for functional and non-functional test acceptance. When digesting some of

the intense complications driven from compliance, audit, and risk, each organization

must do their due diligence in creating a solution that is personalized to their needs.

In this example, we assume the software delivery pipeline uses the following

practices:

• development for a microservice application with a Java component

• trunk-based development

• container-based application with Kubernetes for container orchestration and

deployment

• continuous release of application deployment with a canary release strategy

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 32

Here, we provide an example framework on how to capture universal metadata.

This example uses an API framework to capture and store the attestations. The attesta-

tion model utilized consists of two parts: notes and occurrences. A note is an abstract

view of a piece of metadata. Each note will represent a control (such as a pull request,

peer review, etc.).

Note Example:

{
“name”: “example_project/peer_review/note”,
“shortDescription”: “Approved commit record with documented

approver.”,
“attestationAuthority”: {

“hint”: {
“humanReadableName”: “github”

}
}

}

An occurrence is an instantiation of a note that describes the details for a given

note. For the static security scan as a note, for example, vulnerabilities could be iden-

tified as occurrences of evidence.

Occurrence Example:

{
“resourceUrl”: “${RESOURCE_URL}”,

“noteName”: “ example_project/peer_review/note”,
“attestation”: {

“peer_review”: {
“repo”: {“id”: XXXXXXXXX},
“pull_request”: {

“url”: “https://api.github.com/repos/.../pulls/1”,

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 33

“id”: XXXXXXXXX
}

“approved_by”: XXXXXXXX”,
“merge_commit”: {“hash”:”XXXXXXX” }
}

}
}

The automated governance reference architecture consists of common pipeline

components. This example uses Grafeas as the metadata API framework and can be

used by highly governed organizations that might require a controlled and secure

way of validating attestations, such as providing access control to roles depending

on metadata producers and consumers. Figure 11 shows different types of automatic

governance.

Figure 11: Different Types of Automatic Governance

Source Control Pipeline

Events as a Backbone

Control Points
(Checkmarx, BlackDuck, etc.)

Testing
(Performance, E2E, etc.)

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 34

 The architecture will also include an event-driven streaming architecture. In an

event stream, a key is used to create logical groupings of events as a stream. The events

that drive the event stream are the data within the pipeline defined by the reference

architecture. Identifying what key to use will depend on the use case and dependen-

cies. In our example, we utilize build identifiers as well as different event types (e.g.,

pull request identifiers, vulnerability findings, test results, etc.). A stream processor

is used to construct the flow from other streams to build an attestation model. This

architecture also offers the ability to guarantee delivery and not lose events during

other system outages. This process is shown in Figure 12.

Figure 12: Creating an Event Stream

 Now that we have an ability to capture events, store attestations, and read/

enforce/report on attestations for a given release, we need to identify the control

sources. This example provides a list of control sources that will vary between com-

pany, solutions, and providers. Your enterprise might use different control sources

from the ones identified in Table 1.

Stage Control
Example

Control Source Integration Elements

Source Code Repo Pull Request GitHub Webhook
pull_request

repository

Source Code Repo Peer Review GitHub Webhook
actor pull_request

repository

Source Code Repo Unit Test SonarQube Pipeline new_coverage

Stream
Processor

Stream
Processor

Stream
Processor

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 35

Source Code Repo Clean Dependency Artifactory Pipeline dependency source

Source Code Repo Information Leakage GitHub Webhook (custom)

Source Code Repo Static Code Analysis Muse Webhook
pull_request

repository

Build Build Definition Jenkins & GitHub Pipeline TBD

Build Immutable Build Jenkins Pipeline TBD

Build
Upstream Approved

Dependency
Artifactory Jenkins TBD

Build Unit Test SonarQube Jenkins TBD

Build Linting SonarQube Jenkins TBD

Build
Static Security

Analysis
Checkmarx Jenkins TBD

Package
Trusted Dependency

Store
Artifactory Jenkins TBD

Package License Check Artifactory Jenkins TBD

Package Vulnerability Scan Aqua Jenkins TBD

Package Trusted Authority Artifactory Jenkins TBD

Package Versioning Artifactory Jenkins TBD

Package Usage Policy Artifactory Jenkins TBD

Non-Prod Deploy Trusted Source Artifactory Jenkins TBD

Non-Prod Deploy
Whitelist

Connectivity
Istio Jenkins TBD

Non-Prod Deploy Whitelist Data DBMaestro Jenkins TBD

Non-Prod Deploy Quality Gates
JMeter, Karate,

WebDriver
Jenkins TBD

Production Deploy Trusted Sources Artifactory Jenkins TBD

Production Deploy
Trusted

Configurations
GitHub Jenkins TBD

Production Deploy Intrusion Detection TBD Jenkins TBD

Production Deploy
Monitoring &

Alerting
Elastic, PagerDuty Jenkins TBD

Production Deploy
Change

Management
ServiceNow Jenkins TBD

Production Deploy Secrets Management Vault Jenkins TBD

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 36

Production Deploy
Unauthorized

Change Detection
Jenkins Jenkins TBD

Production Deploy
Production Access

Control
Vault Jenkins TBD

Production Deploy Deployment Strategy Jenkins, Helm Jenkins TBD

Table 1: Selected Control Sources
As this table is a work in progress, the TBDs show areas where

more research is still needed.

Grafeas can be used to query and report back governance status. The source for

metadata storage should be able to query attestations and allow developers, product

owners, and organizational leadership to shift left in identifying development gaps

for governance. Most importantly, this data can provide traceability for risk, audit,

and compliance partners.

Enforcement will utilize Kubernetes with a webhook that calls the Grafeas API to

retrieve the required occurrences of attestations after the production deploy. Although

the example suggests an ability for continuous release, the same model can also assert

a scheduled change approval through a digital signature in a change control system to

include manual releases as well.

Extending Enforcement to Audit

As the number of software deployments continues to grow and pipeline complex-

ity exponentially increases, our design patterns must change to support these new

norms. DevOps teams need to support real-time validation of compliance in a method

similar to the application monitoring practice during production. The DevOps team

should empower auditors via systems and tools instead of manually walking auditors

through the pipeline. A set of standards will be agreed upon and externally moni-

tored to verify compliance. External monitoring will ensure the separation of duties is

maintained and verified throughout the software life cycle.

An auditing system should have the following four qualities:

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 37

1. The system is usable by non-technical and technical auditors alike.

2. Each control, actor, and action should be uniquely verifiable.

3. Software should be traceable through all stages without DevOps intervention.

4. The audit log should be immutable.

To satisfy conditions 1 and 3, we will use a red or green light in a web UI. To sat-

isfy condition 2, we will use private keys to sign each step. To satisfy condition 4, we

will use a hashing algorithm that maintains separation of duties by copying data to a

database that the auditors control.

Architecture

To store information, we will use three separate servers. The first is a system of record

that contains transaction data. This includes controls, actors, actions, and output. The

second is a system of record that contains private and public keys, steps, and a final

hash. Finally, the third is a monitoring system that displays a red or green light by the

build ID. This system is illustrated below in Figure 12.

Figure 13: Storing Data in an Automated Governance Reference Architecture

• Logs
• Sign Private Key

• Final hash
• Data

Sign Private Key

Compare with
Public Key

JSON CI/CD &
HASH Log Store

CI/CD Gate(s)

RDBMS
Audit Database

Monitoring

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 38

A JSON database will be used to store detailed information about build steps. This

database could have multiple roles within the company. For example, it could be used

to produce metrics, debug pipeline issues, or produce Slack alerts.

The JSON below is a sample of how you could incorporate the parent hash into

your JSON store.

{
 “buildID”:”number”,
 “buildDesc”:”string”,
 “transactionID”:”string”,
 “transaction”:[
 {
 “type”:”control, actor, output”,
 “description”:”string”,
 “parentHash”:”string”,
 “currentHash”:”string”,
 “timestamp”:”string”,
 “pass”:”boolean”
 },
 {
 “type”:”control, actor, output”,
 “description”:”string”,
 “parentHash”:”string”,
 “currentHash”:”string”,
 “timestamp”:”string”,
 “pass”:”boolean”
 }
]
}

Auditors would own the auditing database. This database would be used to verify

DevOps pipeline compliance with agreed upon standards. Two sample databases are

shown in Figure 13.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 39

Build Hashes Keys

Hash Primary Key ID Primary Key

BuildID String Type String

Timestamp DateTime Timestamp DateTime

Step String PrivateKey String

PassOrFail Boolean PublicKey String

Final Boolean

Figure 14: Sample Auditing Database Tables

The final piece in this proposed architecture is the monitoring system. The moni-

toring system uses two colors to signify authenticity of audit logs. A green circle means

the keys align and auditors can trust the output of the CI/CD pipeline JSON database.

A red circle means auditors cannot trust the output of one or more build steps. The

auditor can verify each step, if required. On the other hand, this verification system

gives auditors a quick mechanism to scan for compliance. This monitoring system

would indicate:

• The overall trustworthiness of all pipelines (green would mean all keys align).

• The overall trustworthiness of a full build (green would mean build keys align).

• The trustworthiness of a stage or step (green would mean a stage or step build

keys align).

Hashing and Keys

A hashing algorithm is used in our example architecture to verify and maintain the

audit log state. A SHA256 digital key is associated with each control point to main-

tain security. The hashing algorithm takes multiple inputs and signs them with a

digital key to create a random hash of the output, which can be quickly verified via

a public key on the monitoring server. The generated hash is inserted as data in the

next hashing step. This is repeated for each stage in the software lifecycle. Once com-

plete, the final hash is inserted into the auditing database. This process is illustrated

in Figure 14.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 40

Head Record 1 Record 2 Record n-1 Record n Audit DB

• Current
 timestamp
• Pass Boolean
• Transaction
• Description
• BuildID

New Hash

• Current
 timestamp
• Pass Boolean
• Transaction
• Description
• BuildID

• Current
 timestamp
• Pass Boolean
• Transaction
• Description
• BuildID

• Current
 timestamp
• Pass Boolean
• Transaction
• Description
• BuildID

New Hash

Hash of
Previous

Block

Hash of
Previous

Block

Hash of
Previous

Block

Hash of
Previous

Block

Null Audit DB
Entry

New Hash New Hash Final Hash

Figure 15: Hashing Algorithm

The final hash can quickly determine if audit logs have been tampered with by

working backward and/or verifying the final hash.

A sample of entries, such as those below, could be used to create a hash:

• the current timestamp

• hash of the previous block

• pass Boolean

• transaction

• transaction ID

• description

• build ID

• timestamp

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 41

Summary

Creating Trust in the Deployment Pipeline

With the advent of DevOps practices, more and more of the delivery pipeline is being

automated and decentralized. However, with these new automated and decentral-

ized models, organizations need to ensure common validation and trust mechanisms

throughout the continuous update process. In other words, an optimized process cre-

ates a signed output to authenticate the software development. Approved signatures

would be part of the automated pipeline process. This would give an organization

assurances that the automated continuous updates are certified by a known authority.

The process aims to create trust in an organization’s delivery pipeline.

Extending Automated Governance throughout the Software
Supply Chain

This paper addresses the delivery pipeline. While this is a critical step in the overall

software supply chain, there is much room left to extend automated governance. We

regard this paper as the minimum viable product of automated governance. We look

forward to your feedback and to future work extending these techniques across orga-

nizational boundaries.

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 42

References

Fruend, Jack and Jack Jones. Measuring and Managing Information Risk: A FAIR

Approach. Oxford: Butterworth-Heinemann, 2015.

Gemmail, Rafiq. “Trunk Based Development as a Cornerstone for Continuous Delivery.”

InfoQ.com. April 22, 2018.

https://www.infoq.com/news/2018/04/trunk-based-development/

“Hygieia.” GitHub.com. Accessed August 1, 2019.

https://github.com/Hygieia/Hygieia

Pal, Tapabrata. “Focusing on the DevOps Pipeline.” Medium.com. May 16, 2018.

https://medium.com/capital-one-tech/focusing-on-the-devops-pipeline-topo-

pal-833d15edf0bd.

Simon, Fred, Yoav Landman, Baruch Sadogursky. Liquid Software: How to Achieve

Trusted Continuous Updates in the DevOps World. Sunnyvale: JFrog Ltd., 2018.

Sonatype. “2019 State of the Software Supply Chain.” Fulton, MD: Sonatype, 2019.

https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_

jun16-DRAFT.pdf

DEVOPS AUTOMATED GOVERNANCE REFERENCE ARCHITECTURE | 43

Notes

1. Freund and Jones, Measuring and Managing Information Risk, 351.

2. Freund and Jones, Measuring and Managing Information Risk, 351.

3. Freund and Jones, Measuring and Managing Information Risk, 351.

4. Pal, “Focusing on the DevOps Pipeline.”

5. Pal, “Focusing on the DevOps Pipeline.”

6. Pal, “Focusing on the DevOps Pipeline.”

7. Pal, “Focusing on the DevOps Pipeline.”

A Special Thank You to Our Sponsor

Our mission for the Forum is to bring together technology leaders

across many industries and facilitate a dialogue that solves problems

and overcomes obstacles in the DevOps movement. For three days at

this private event, we gather 50 of the best thinkers and doers in the

DevOps space to tackle the community’s toughest challenges. We ask

these thought leaders to collaborate and generate a piece of guidance

with their best solutions to the challenges.

We would like to thank all of our attendees and our friends at XebiaLabs

for helping to make this year’s Forum a huge success.

