
Secrets Management
Maturity Model

As organizations are looking to develop secure digital services

faster, the DevSecOps movement has seen its popularity soar,

with the promise of breaking the silo between development,

operations, and security. Although many tools and practices have

emerged to support the development of “secure by default”

applications for the cloud, the matter is still far from resolved.

Secrets management, in particular, remains a thorny issue

even for the most mature organizations. With hyperconnected

systems, secrets have become omnipresent along the software

development cycle, making the legacy security perimeter

obsolete.

With this document, we wish to contribute to the consolidation of

knowledge around DevSecOps practices by introducing a secrets

management maturity model.

Information security leaders who would like to start by doing a

quick assessment of their security posture can take the following

five-minute questionnaire (it’s completely anonymous):

Secrets Management Maturity Questionnaire

The result chart at the end will provide an overview of their

current level of secrets management maturity, complete with

weaknesses and strengths, and invite them to jump directly to the

most relevant part of this white paper.

A maturity model is a tool that helps people

assess the current effectiveness of a person

or group and supports figuring out what

capabil ities they need to acquire next in order

to improve their performance.

- Martin Fowler

A DevSecOps Challenge

No Silver bullet

A quick look at the Secrets
Management Panorama

Key considerations for secrets
management

The Model

Developer environment

Source code management (source code & Infrastructure-as-

Code)

CI/CD pipelines & artifacts

Runtime environment

Bonus: Kubernetes

Other considerations

Access controls

Secrets quality

Logging and auditing

Summary

About GitGuardian

4

6

8

12

15

16

17

17

17

22

23

24

24

24

26

28

A DevSecOps
Challenge

01

Whitepaper | Secrets Management Maturity Model 5

A DevSecOps Challenge

A modern application uses many external resources (databases,

third-party SaaS applications, other microservices) that require

credentials. Not only that, but the development cycle itself

sometimes requires the interaction of many entities and services

which can be running on the same machine or on the other side

of the world (eg. a local development instance of a microservice

using a remote database, a testing CI pipeline querying a third

party API). All these interactions rely on secrets to work as

intended, and only as intended.

A cornerstone of security in general, secrets are essential in

keeping information and compute resources secure and out of

threat actors’ reach. Well-kept secrets, such as passwords and

other authentication credentials, ideally allow the right identities

(human or machine) to access the right thing at the right time.

The consequence of leaked credentials can be devastating.

Exposed secrets are the low-hanging fruits hackers always look

for to gain initial access or privilege escalation, as recently again

demonstrated by major attacks against Uber (2022) or Co decov

(2021).

For organizations, the adoption of DevOps and agile practices

completely reshuffled the cards when it comes to the notion

of a “security perimeter”. Today’s hyperconnected systems

bring an immense challenge to security in general and secrets

management in particular since the number of credentials in use

has grown exponentially.

Developers, operations, and application security engineers are all

faced with this increasing complexity and try their best to balance

the risks and rewards of this process across the development

cycle. Managing secrets is easier said than done, and there is

no one-size-fits-all due to the diversity of use cases. Hence the

importance of a maturity model.

No Silver bullet

02

Whitepaper | Secrets Management Maturity Model 7

No silver bullet

Between development secrets used by developers, machine

authentication at the build and testing phase, application secrets,

infrastructure secrets, etc., secrets can vary widely in origin,

nature, and function. Their sheer number in software companies

means that there simply cannot be a one-size-fits-all solution for

managing them.

Even for the most mature DevSecOps organizations or teams,

secrets management is very difficult to do well, because it is

a matter of striking a subtle balance between security and

flexibility. This second point is very important for one simple

reason: in modern development teams, secrets are used by all

people & assets.

On the ground, it is easy to see that there is a gap between theory

and practice when it comes to handling and sharing credentials

in a team, a department, or an organization. For example, the

organization may pay for a cloud-based secrets manager, a vault,

or maybe even for a dedicated team to administer these tools,

which makes it falsely think it has solved this problem. But under

further scrutiny, it would realize that the long-lived credentials

are also stored on the devs’ local machines for convenience.

Making it hard to use secrets will

inevitably lead to the bypassing of the

protective layers in place.

Whitepaper | Secrets Management Maturity Model 8

No silver bullet

Example: Uber (2022)
In this attack scenario, the attacker found a Thycotic

admin username and password hard-coded in a

Powershell script on a network drive. Thycotic is a

Privilege Access Management solution that stores

secrets for accounts with high privileges for a

multitude of assets: in that case, AWS, GCP, GSuite,

Slack, SentinelOne, HackerOne, and more. A single

hardcoded credential was enough to obtain valid

accounts for all these systems.

This is why having a holistic approach to secrets is essential to

account for their double-edged nature: secrets are at the same

time a major risk that needs to be closely monitored, but also

an indispensable commodity to spin the famous DevOps infinity

symbol (∞) without friction.

A Quick Look
at the Secrets
Management
Panorama

03

Whitepaper | Secrets Management Maturity Model 10

A Quick Look at the Secrets Management Panorama

In the secrets management model, we refer to the various ways

secrets can be made available from the most rudimental to the

most advanced:

• Hardcoded in source code and templates

• Grouped in common, unencrypted files, such as .env, outside of

the git repository

• Encrypted in a GitOps or sealed secrets approach, with

decryption key stored in a vault

• Stored in a vault and distributed through a secrets

management service

• Generated just-in-time and ephemeral, through a complex

secrets infrastructure

All the major VCS platforms (GitHub, GitLab, BitBucket), CI/CD

vendors (CircleCI, Jenkins, TravisCI, etc.), and cloud providers

(AWS, GCP, and Azure) come with their own secrets management

facility. More precisely, they offer a mechanism for storing

sensitive values (vault service), and a mechanism to inject and

serve these credentials when required (secrets management

service), although their exact features can vary.

Popular options to store, manage and synchronize secrets across

environments include HashiCorp Vault, Akeyless, and Doppler.

They offer the advantage of being an external single source of

truth for all the aforementioned services while implementing

state-of-the-art encryption and access controls.

Side-note
In this paper, we have chosen to distinguish between

three functions of secret management tools, which

are often overlapping in commercial offerings:

• A vault service offers a secure, centralized key store

with tight access controls.

• A secrets management service allows to create,

serve and rotate credentials (notably, dynamic or

ephemeral secrets).

• A key management system (KMS) service allows

the management of cryptographic keys.

Whitepaper | Secrets Management Maturity Model 11

A Quick Look at the Secrets Management Panorama

But again, the variety of use cases for secrets makes it very

difficult to make all the DevOps cycle phases dependent on one

single service. The state of secrets management in modern

software development shops is always a mixture of ad-hoc

solutions, depending on which link of the chain is considered

and the level of maturity.

One common flaw of secrets management, in general, is that it

fails to account for human error. A developer hard-coding an API

key to test a program on their local machine and then accidentally

committing this change to a code repository would have a very

difficult time figuring out:

Multiple back-and-forths with CloudOps or SRE and AppSec

engineers would be needed.

No matter the maturity of processes, seniority of engineers, the

rigidity of policies, or the sophistication of tools, secrets will be

hardcoded somewhere at some point.

In other words, failure modes should be an integral part of secrets

management thinking. Let’s look at the details of what this

means.

1. he leaked a secret

2. how to revoke that secret

3. how rotation might impact

downstream services dependent on

that credential.

Key
considerations
for secrets
management

04

Whitepaper | Secrets Management Maturity Model 13

Key considerations for secrets management

First, we need to define what we consider to be part of secrets

management and what we consider to be out of scope, even if

related to the domain.

In a holistic approach to secrets, we consider essential to have

visibility over an organization’s perimeter. Therefore, being able

to monitor secrets not only where they are supposed to be, but

(more importantly) where they really are is a must-have.

You just can’t protect what you don’t see. In the previous example,

it is easy to understand that despite having a solution to manage

secrets across the organization, the lack of secrets detection is

defeating the very purpose of this solution in the first place. While

the two tools have distinct usage, they share the same objective:

keeping secrets secret.

From the same perspective, we should remember that managing

secrets is a security feature. Since security can’t be achieved

without incident response capabilities,

Failing to acknowledge errors and misbehaviors is a recipe for

failure in any security context. Secrets are no different and taking

into account the human factor is essential: the most recognized

industry reports1,2, as well as our own data, consistently point at

human errors as the number one source of breaches and leaks.

Preparing for when (not if) leaks happen must be part of the

secrets management process.

In other words, if secrets management is about

protecting your secrets, it cannot go without

secrets detection.

remediation is also a core aspect of sane

credentials management.

1 Cost of a data breach 2022, IBM
2 2022 Data Breach Investigations Report, Verizon

Whitepaper | Secrets Management Maturity Model 14

Key considerations for secrets management

To sum up,
our model considers that secrets detection and remediation are

unvoidable aspects of secrets management. It should help teams

make their goals more explicit when it comes to:

Secrets
scope

What kind of action is
allowed by a certain

secret?

Remediation procedures

What happens after a secret is leaked?

Secret lifecycle

Creation, lifetime (for how long is it valid?),
regular rotation.

How do we make sure
we know when a leak

happens?

Secrets
detection

The Model

05

Whitepaper | Secrets Management Maturity Model 16

The Model

We propose a 5 level maturity model for secrets management,

detection, and remediation in 4 main areas of the software

development cycle:

Developer environment

Source code management

CI/CD pipeline & artifacts

Runtime environments

Splitting the DevOps cycle into distinct phases is necessarily

an arbitrary decision, and even more so when talking about

something as transversal as secrets. Therefore, we decided

to separate it according to the following logic:

This section corresponds to the daily activities of the developer

and how they manage to get access to and share the secrets they

need to test their programs and scripts. As awareness about

the problem of secrets sprawl rises, some developers encrypt

secrets before sharing them, and potentially shield their working

environment from leaks with pre-commit hooks. But that’s

not all: developers are also on the front line when it comes to

secrets remediation. Progressively involving developers in the

remediation process is a significant step toward a mature secrets

management program.

This is also where we chose to talk about the evolution of

secrets’ rotation policies and process, eventually leading to full

automation.

Developer environment

Whitepaper | Secrets Management Maturity Model 17

The Model

This section is about how source code and templates (Terraform,

Dockerfile, etc.), at a global level, can be shielded from secrets

sprawl. We consider that secrets found in IaC templates are

probably giving access to cloud resources like storage, IAM

systems, etc.. and should be removed first. Central repositories’

administrators are in charge of setting up the right controls to

continuously scan for secrets before they can be considered

compromised.

This is also where we chose to talk about the evolution of the

remediation process.

This section is about the build process and the resulting artifacts.

It is not uncommon to find secrets leaked in Docker images or

even binaries. These should be removed in the first place, and the

build process itself should eventually include a scanning step to

make sure that no secrets can find their way into the artifacts or

the build logs themselves. Also, the credentials used in the build

process should be rotated and fine-tuned to a very restricted

scope to prevent potential lateral movements.

Finally, at runtime applications also need secrets. The classic

examples would be a database connection string for a web app

or third-party API keys. Provisioning these secrets at runtime

requires the same thoughtful design decisions about secrets’

lifetime, scopes, rotation, and, maybe more importantly, how

to deal with a leak without causing downtime. We observed in the

past that a leak could force engineers to temporally shut down

part of the production, with direct consequences for the business.

Preventing such an outcome definitely has its place in a secrets

management mindmap.

Source code
management (source
code & Infrastructure-
as-Code)

CI/CD pipelines & artifacts

Runtime environment

Whitepaper | Secrets Management Maturity Model 18

The Model

Level 4
Experts

Level 3
Advanced

Level 2
Intermediate

Level 1
Beginners

Level 0
Uninitiated

Level 0

No processes or tools for managing secrets — secrets sprawl

in the SDLC. No detection (and remediation) in place.

Level 1

Secrets are unencrypted at rest but grouped in configuration

files shared across multiple teams. Scanning for secrets is

triggered manually at times, but developers are rarely involved in

remediation.

Level 2

Secrets are checked encrypted into repositories with decryption

keys stored in a secure vault. Secrets scanning and rotation are

performed periodically.

Level 3

Secrets are scoped, stored in a vault and shared using

a secrets manager. Automated detection on shared repositories

and final artifacts is continuous.

Level 4

Secrets are scoped, stored in a vault and shared with a

secrets manager. Detection is preventive and integrated into

development workflows (local workstations, CI pipelines, etc.).

Developers remediate their incidents.

Whitepaper | Secrets Management Maturity Model 19

The Model

LEVEL 0 — UNINITIATED

LEVEL 1 — BEGINNERS

Secrets management Secrets detection

Secrets are shared in clear text
through private channels and
stored unencrypted in local config
files.

Secrets can be found anywhere
in files. They are checked
unencrypted into private
repositories.

Secrets are embedded in final
artifacts such as container images.
VCS and 3rd party (e.g. code quality
tools) access tokens are harcoded
in build scripts.

Secrets are embedded in
deployment scripts.
Sensitive variables are printed in
server logs.

No detection in place.
Developer
environments

CI/CD pipelines
& software
artifacts

Runtime
environments

Source Control
(Source code & Infra-
as-Code)

No detection in place.

 No detection in place.

Low or no observability on
production secrets. No rotation
planning or strategy.

Secrets management Secrets detection

Secrets are unencrypted in config
files but can be encrypted before
sharing with other developers.

Secrets are grouped in config files and
accessed using environment variables.
IaC secrets are stored externally — by
the cloud services provider (e.g. AWS,
GCP).

Source code and IaC templates are
manually and periodically scanned for
secrets.
High-severity incidents are
remediated with limited help from
developers.

Final artifacts do not contain any
secrets.
Pipeline secrets are stored in the build
system.
Sensitive variables are redacted from
build logs.

Secrets are grouped in a common
config file.
Sensitive variables are redacted from
logs.
Secrets are not scoped by
environment.

No detection in place.
Developer
environments

CI/CD pipelines
& software
artifacts

Runtime
environments

Source Control
(Source code & Infra-
as-Code)

Build outputs (e.g., Docker images)
are scanned for secrets manually
before a release.

Production secrets are monitored
through a single pane of glass, but
there is no rotation strategy.

High exposure risk

High exposure risk

Whitepaper | Secrets Management Maturity Model 20

The Model

LEVEL 2 — INTERMEDIATE

LEVEL 3 — ADVANCED

Secrets management

Secrets management

Secrets detection

Secrets detection

Secrets are stored in a vault
and shared through a secrets
manager.
Developer environment secrets are
correctly scoped.

Secrets are stored in a vault and
shared exclusively through a
secrets manager.
Secrets rotation policy is well
defined.

Secrets are no longer embedded in
the current source code revision.
Secrets rotation policy is well
defined.

Pipeline secrets are stored in vault
and loaded using a secrets manager.
Secrets are scoped; permissions
follow the principle of least
privilege.

Secrets are stored in a vault and
dynamically loaded from a secrets
manager.
Secrets are scoped and access is
monitored/logged.

Informative scanning is enforced for
all branches (feature, hotfix, etc.) in
CI pipelines.

Production secrets are scheduled for
regular rotation.

All repositories are continuously
scanned for hardcoded credentials.
Collaboration on incident remediation
is mandatory for all developers.
Historical incidents are being triaged.

Secrets are encrypted and checked
into repositories (master key is
stored externally).

Secrets are stored in the build
process.
Secrets are scoped; permissions
abide by the principle of least
privilege.

Secrets (or master decryption
key) are stored in a vault and
dynamically loaded with a
secrets manager with minimal
access controls.

Scanning is triggered manually
at times by developers on their
local workstations.

Scanning before pushing code (pre-
commit/ pre-push) is adopted by
security champions.
Developers are systematically
involved in the remediation process.

Critical repositories are continuously
scanned at the pull/merge requests
stage.
Developers contribute to remediation
but it is still not a well established and
documented process.

Build outputs (e.g. Docker
images) are continuously
scanned for secrets.

Production secrets are
monitored, and there is a
remediation process in case of
exposure or compromise.

Developer
environments

Developer
environments

CI/CD pipelines
& software
artifacts

CI/CD pipelines
& software
artifacts

Runtime
environments

Runtime
environments

Source Control
(Source code & Infra-
as-Code)

Source Control
(Source code & Infra-
as-Code)

Moderate exposure risk

Low exposure risk

Whitepaper | Secrets Management Maturity Model 21

The Model

LEVEL 4 — EXPERTS

Secrets management Secrets detection

Secrets are stored in a vault with
access controls and logging.
Dynamic secrets with limited
scope are used for development
when possible.

Pipeline secrets are short-lived,
scoped, and stored in an external
vault.
If possible, build secrets are replaced
by OpenID Connect (OIDC) tokens
for auth.

Secrets are stored in a vault and
loaded dynamically from a secrets
manager.
Restrictive access controls and
logging are enforced.

Blocking scanning is enforced for all
branches (features, hotfix, etc.) in CI
pipelines.

Production secrets rotation is
scheduled & automated.

No presence of valid hardcoded
secrets in past or current
revisions of source code.

All repositories are continuously
monitored and blocking scans (pre-
receive) are setup.
Remediation workflows are
automated and fixing is handled by
developers.

Scanning before pushing code (pre-
commit/pre-push) is adopted by all
developers.
Developers are systematically
involved in the remediation process.

Developer
environments

CI/CD pipelines
& software
artifacts

Runtime
environments

Source Control
(Source code & Infra-
as-Code)

Limited exposure risk

Whitepaper | Secrets Management Maturity Model 22

The Model

Bonus: Kubernetes

As more and more organizations are making the shift to cloud-

native technologies, Kubernetes has become the de facto choice

to orchestrate container-based applications. That’s why we

decided to give it its own place as a bonus in the Matrix, allowing

us to be more specific about this unique technology.

Out of the box, Kubernetes supports ‘Secrets’ objects to store

sensitive information like passwords, tokens, SSH keys, etc.

securely. This construct eliminates the need for hard-coding

sensitive data in the application code but needs to be handled

with extreme caution.

Level 0

Secrets are
hardcoded in
manifest.

Level 1

Secrets are
stored in a
Kubernetes
Secrets Object.

Level 2

Secrets are
loaded from
external vault.

Level 3

Secrets are loaded
directly into
the pods. Pods
share the same
credentials.

Level 4

Secrets are
ephemeral and
each pod has
its own set of
secrets.

Other
considerations

06

Whitepaper | Secrets Management Maturity Model 24

Other considerations

Like any security topic, secrets management does not exist in

isolation. To conduct a thorough security posture analysis, it is

important to consider related domains. The ones we have listed

here have been deliberately excluded from the matrix since we

consider that they go beyond the strict framework of secrets

management.

However, this does not mean that they are optional: on the

contrary, they require an equally important consideration.

In other words, if you want to put effort into improving secrets

management policies, you cannot overlook the following:

Access controls are used to answer the question: who has access

to what and when? It is obvious that nothing can be secret if it can

be read or updated by anyone. Engineers should not have access

to all secrets in the secrets management system, so the least

privilege principle should serve as a guide to progress in maturity.

Our matrix does talk about the scope of the secrets at different

levels: the secret management system needs to provide the ability

to configure fine granular access controls on each object and

component to accomplish the least privilege-required principle.

Yet well-implemented access controls are a much bigger

cybersecurity topic (including Identity and Access Management)

that we do not have the vocation to cover in all its subtleties.

The security of a secret depends, among other things, on its basic

qualities: if the secret can be any character string chosen by a

human, chances are that it will be easily cracked by brute force

or a dictionary-like attack. On the other side of the spectrum,

the most secure secrets are generated by high entropy hardware

random number generators included in specialized HSMs.

They would probably be too costly to implement & operate for

most use cases. Furthermore, having high entropy secrets is great,

but useless if they’re stored in cleartext in a database. Choosing

high entropy secrets, the right hashing & encryption algorithms

for your secrets at rest & in transit is another important part of

any secrets management policy.

Access controls

Cryptographic & encryption
quality

Whitepaper | Secrets Management Maturity Model 25

Other considerations

Logging is an integral part of maintaining an organization’s

security posture, and this is also true for monitoring secrets.

You should be able to know who requested a secret and for what

system and role, when it was used and by which source, when it

expired etc. Authentication and authorization errors are also a

valuable source of security information. Having auditing tools and

processes is definitely something to expect from a mature secrets

management system.

Logging and auditing

Summary

07

Whitepaper | Secrets Management Maturity Model 27

Summary

Secrets management has a considerable impact on the security

posture of organizations. With the advent of DevOps, the amount

of sensitive information in use in software factories has exploded,

creating a gap between theory and practice: in theory, all the

“crown jewels” are closely guarded within a vault and scrupulously

respect the principle of least privilege. In practice, teams continue

to generate large quantities of secrets as they scale services and

infrastructures, bypassing outdated controls. Secrets are easily

exposed, sometimes without anyone noticing. This is a difficult

problem to solve, even with all the flexibility automation brings

us. That’s why some organizations do not invest sufficient time

& effort into it despite the percentage of security breaches

originating from exposed secrets.

Reducing this attack surface requires the right controls to be

placed along the DevOps cycle, and to encourage collaboration

between developers, security engineers, and operations. Not

taking into account the human factor in the management of

secrets would be a serious mistake.

No matter the technology, leaks will happen. The response lies at

the intersection of people, tools, and processes. Having a plan to

be notified as early as possible when a leak happens and to face

incidents with peace of mind is a must.

We hope that our maturity model will be useful to allow you to

take stock of the actual state of secrets management in your

organization, and more importantly, what are the steps to

improve it.

About GitGuardian

08

Whitepaper | Secrets Management Maturity Model 29

About GitGuardian

GitGuardian, founded in 2017 by Jérémy Thomas and Eric Fourrier,

has rapidly emerged as the leader in automated secrets detection

and is now focused on providing a comprehensive code security

platform. The company has raised a $56M total investment

to date from Eurazeo, Sapphire, Balderton, and notable tech

entrepreneurs like Scott Chacon, co-founder of GitHub, and

Solomon Hykes, co-founder of Docker.

GitGuardian helps software-driven organizations strengthen their

overall security posture and comply with application security

frameworks and standards by reducing the risks of secrets

exposure across the SDLC. With GitGuardian’s policy engine,

security teams can monitor and enforce rules across all their VCS,

DevOps tools, and infrastructure-as-code configurations.

With more than 210k installs, GitGuardian is by far the n°1 security

application on the GitHub Marketplace. Its enterprise-grade

features enable AppSec and Development teams to deliver secret-

free code in a truly collaborative manner. By pulling developers

closer to the remediation process, organizations can achieve

shorter fix times.

Its detection engine is trained against more than a billion public

GitHub commits every year, and it covers 350+ types of secrets

such as API keys, database connection strings, private keys,

certificates, and more.

Learn more about GitGuardian:

GitGuardian - Website

GitGuardian - Internal Monitoring - GitHub Marketplace

State of Secrets Sprawl

GitGuardian monitors every step of the pipeline

www.gitguardian.com

© 2022 GitGuardian. All Rights Reserved.

