

| HAVE MOVED ON FROM YOU AND LEFT YOU WITH OTHERS,
| DEPARTED FROM YOUR ALLEY, YET STILL LOOKING BACK.
WE HAVE MOVED ON, AND SO HAS WHAT YOU DID WITH US,
YOU STAY WITH OTHERS, OH THE FATE OF OTHERS.
SHAHRIYAR

TABLE OF CONTENT

Thread execution hijacking
Breaking BaDDEr

DNS AP Injection
CLIPBRDWNDCLASS
WordWarping

Ctrl+Inject

Injection Using Shims

IAT Hooking

DLL Proxying

Dirty Vanity

Listplanting

Treepoline

Process Camouilage, Masquerading
APC Injection

IN THIS COMPREHENSIVE GUIDE, WE DELVE INTO THE WORLD OF ANDROID SECURITY FROM
AN OFFENSIVE PERSPECTIVE, SHEDDING LIGHT ON THE VARIOUS TECHNIQUES AND
METHODOLOGIES USED BY ATTACKERS TO COMPROMISE ANDROID DEVICES AND INFILTRATE
THEIR SENSITIVE DATA. FROM EXPLOITING COMMON CODING FLAWS TO LEVERAGING
SOPHISTICATED SOCIAL ENGINEERING TACTICS, WE EXPLORE THE FULL SPECTRUM OF ATTACK
SURFACES PRESENT IN ANDROID ENVIRONMENTS.

THREAD EXECUTION HIJACKING IS A SOPHISTICATED TECHNIQUE UTILIZED BY MALWARE TO
ELUDE DETECTION BY SECURITY SOFTWARE. BY TARGETING AN EXISTING THREAD WITHIN A
PROCESS, MALWARE CAN EXECUTE ITS CODE DISCREETLY, BYPASSING THE CREATION OF NEW
PROCESSES OR THREADS THAT MIGHT ATTRACT ATTENTION. THIS METHOD, WHILE COMPLEX,
OFFERS A STEALTHY MEANS FOR MALWARE TO OPERATE UNDETECTED.

DURING ANALYSIS, ANALYSTS OFTEN ENCOUNTER SPECIFIC WINDOWS APl CALLS THAT ARE
INDICATIVE OF THREAD EXECUTION HIJACKING. THESE INCLUDE FUNCTIONS LIKE
CreateToolhelp32Snapshot, Thread32First, AND OpenThread, THESE FUNCTIONS
ARE LEVERAGED BY THE MALWARE TO IDENTIFY AND SELECT THE TARGET THREAD WITHIN THE
SYSTEM.

HERE'S A BREAKDOWN OF THE KEY COMPONENTS INVOLVED:

= U1223
+ £1055.003

+ THREAD EXECUTION HIJACKING
MALWARE EVASION

EXISTING THREAD PROCESS

AVOIDING NOISY PROCESS/THREAD CREATIONS
« ANALYSIS

* CREATETOOLHELP32SNAPSHOT

+ THREAD32FIRST

*

*

*

THE FOLLOWING WiNDOWS APl FUNCTIONS ARE COMMONLY UTILIZED BY MALWARE AUTHORS
FOR IMPLEMENTING THREAD EXECUTION HIJACKING:

+» OPENTHREAD

* CREATETOOLHELP32SNAPSHOT
+ THREAD32FIRST

* THREAD32NEXT

* CLOSEHANDLE

HADESS.I0

MALDEYV - PROCESS DIARIES

BELOW 1S A SAMPLE C++ CODE SNIPPET DEMONSTRATING HOW MALWARE MIGHT EMPLOY
THREAD EXECUTION HIJACKING:

IN THIS CODE SNIPPET:

« A SNAPSHOT OF ALL RUNNING THREADS IS CREATED USING
CreateToolhelp32Snapshot.
« EACH THREAD IS ENUMERATED USING Thread32First AND Thread32Next.

+ THREADS BELONGING TO THE TARGET PROCESS ARE IDENTIFIED, AND THEIR HANDLES
ARE OPENED USING OpenThread.

« MALICIOUS CODE CAN THEN BE INJECTED INTO THE TARGET THREAD'S CONTEXT.
« FINALLY, THREAD HANDLES ARE CLOSED USING CloseHandle,

HADESS.I0

#X

DyYNAMIC DATA EXCHANGE {DDE} IS A LEGACY PROTOCOL USED FOR INTER-PROCESS
COMMUNICATION, PARTICULARLY PREVALENT IN OLDER VERSIONS OF MICROSOFT OFFICE.
DESPITE BEING DISABLED BY DEFAULT IN MODERN OFFICE VERSIONS DUE TO SECURITY
CONCERNS, IT REMAINS A POTENTIAL VECTOR FOR EXPLOITATION. BREAKING BADDER 15 A
MALWARE TECHNIQUE LEVERAGING DDE INJECTION WITHIN THE explorer.exe PROCESS,
WHICH MANAGES THE WINDOWS GUI. THIS METHOD ALLOWS MALICIOUS ACTORS TO INJECT
AND EXECUTE ARBITRARY CODE DISCREETLY.

= U1201

« DATA SHARING PROTOCOL
+ DATA SHARING LIBRARY

+« DDE PrROTOCOL

~ CODE EXECUTION

BELOW ARE THE WINDOWS APl FUNCTIONS FREQUENTLY UTILIZED FOR DDE INJECTION BY
MALWARE AUTHORS:

« VIRTUALALLOCEX

+ WRITEPROCESSMEMORY
+ VIRTUALALLOC

« OPENPROCESS

+ READPROCESSMEMORY
« CLOSEHANDLE

« GETWINDOWTHREADPROCESSID
« GETWINDOW

= VIRTUALFREE

« GETLASTERROR

« GETCOMMANDLINEW

« LineTo

HADESS.I0

THE FOLLOWING C++ CODE DEMONSTRATES THE IMPLEMENTATION OF DDE INJECTION:

#X

HADESS.I0

IN THIS CODE:

« dde_inject FUNCTION INJECTS A PAYLOAD INTO explorer.exe PROCESS USING DDE
INJECTION.

« dde_list FUNCTION LISTS DDE CONNECTIONS.

« THE main FUNCTION PARSES COMMAND-LINE ARGUMENTS, READS THE PAYLOAD, AND
INVOKES dde_inject.

#X

HADESS.I0

DNS APl INJECTION IS A SOPHISTICATED TECHNIQUE EMPLOYED BY MALWARE TO MODIFY
AND INTERCEPT DNS {DOMMN NAME SYSTEM}I REQUESTS MADE BY A HOST SYSTEM. By
INJECTING MALICIOUS CODE INTO THE DNS API (APPLICATION PROGRAMMING INTERFACE) OF
THE HOST SYSTEM, MALWARE CAN MANIPULATE DNS REQUESTS AND RESPONSES. THIS
TECHNIQUE ALLOWS MALWARE TO POTENTIALLY REDIRECT TRAFFIC TO MALICIOUS DOMAINS
OR CONCEAL ITS OWN DNS REQUESTS, THEREBY EVADING DETECTION.

« U1202

+ OVERWRITING DNS MEMORY FUNCTIONS
+ LoGGING DNS QUERIES

+ INTERCEPTING DNS REQUESTS

« HIDING DNS REQUESTS

« DNSAPI.DLL

+ DNSAPIHEAPRESET

BELOW ARE THE WINDOWS APl FUNCTIONS COMMONLY UTILIZED FOR DNS APl INJECTION:

« VIRTUALALLOCEX

+ WrITEPROCESSMEMORY
« VIRTUALALLOC

+ OPENPROCESS

+ READPROCESSMEMORY
+ GETTICKCOUNT

« CREATETHREAD

+ CLOSEHANDLE

« SHELLEXECUTEW

+ GETWINDOWTHREADPROCESSID
« GETWINDOW

+ SYSFREESTRING

+ TERMINATETHREAD

+ VIRTUALFREE

« GETCOMMANDLINEW

+ COCREATEINSTANCE

« COINITIALIZE

« LINETO

HADESS.I0

THE FOLLOWING C++ CODE DEMONSTRATES THE IMPLEMENTATION OF DNS API INJECTION:

THIS CODE ILLUSTRATES THE PROCESS OF DNS APl INJECTION:

+ OBTAINING THE ADDRESS OF DNSAPI.DLL IN MEMORY.

- CREATING A THREAD TO SUPPRESS NETWORK ERRORS.

+ INJECTING PAYLOAD INTO THE DNS APl TO MANIPULATE DNS REQUESTS.
+ RESTORING THE ORIGINAL DNS FUNCTION AND CLEANING UP RESOURCES.

HADESS.I0

CLIPBRDWNDCLASS 1S A WINDOW CLASS MANAGED BY THE OBJECT LINKING & EMBEDDING
(OLE) LIBRARY (OLE32.DLL) IN WINDOWS. IT HANDLES CLIPBOARD DATA OPERATIONS. THIS
TECHNIQUE LEVERAGES A SPECIFIC INTERFACE, CLIPBOARDDATAOBJECTINTERFACE,
ASSOCIATED WITH CLIPBRDWNDCLASS FOR CODE INJECTION. BY MANIPULATING THE
CLIPBOARD DATA AND TRIGGERING CERTAIN MESSAGES, MALWARE CAN INVOKE METHODS OF
AN [UNKNOWN INTERFACE ASSOCIATED WITH THE CLIPBOARDDATAOBJECTINTERFACE,
POTENTIALLY LEADING TO CODE EXECUTION.

= U1203

+ OBJECT LINKING & EMBEDDING (OLE) LIBRARY
+ PRIVATE CLIPBOARD

+ CLIPBRDWNDCLASS WINDOW CLASS

+ CLIPBOARD DATA

+ CLIPBOARDDATAOBJECTINTERFACE

THE FOLLOWING WINDOWS APl FUNCTIONS ARE COMMONLY UTILIZED FOR IMPLEMENTING
THIS TECHNIQUE:

+ VIRTUALALLOCEX

+ WRITEPROCESSMEMORY

* VIRTUALALLOC

+ OPENPROCESS

+ CLOSEHANDLE

+ GETWINDOWTHREADPROCESSID
* GETWINDOW

» VIRTUALFREE

HADESS.I0

THE FOLLOWING C++ CODE DEMONSTRATES THE IMPLEMENTATION OF CLIPBOARD-BASED
CODE INJECTION:

cPP

(]

IN THIS CODE:

* A PRIVATE CLIPBOARD WINDOW OF THE CLIPBRDWNDCLASS CLASS IS LOCATED.
»* MEMORY IS ALLOCATED WITHIN THE PROCESS ASSOCIATED WITH THE CLIPBOARD

WINDOW.
« AN IUNKNOWN INTERFACE STRUCTURE IS INITIALIZED AND WRITTEN TO THE ALLOCATED

MEMORY.
+ THE INTERFACE PROPERTY OF THE CLIPBOARD WINDOW IS SET TO THE ADDRESS OF THE

IUNKNOWN INTERFACE.
+ A MESSAGE IS SENT TO THE CLIPBOARD WINDOW TO TRIGGER CODE EXECUTION.
» MEMORY ALLOCATED FOR CODE AND DATA 1S RELEASED AFTER EXECUTION.

HADESS.I0

WORDWARPING IS A TECHNIQUE THAT EXPLOITS EDIT CONTROLS, PARTICULARLY RICH EDIT
CONTROLS, COMMONLY USED IN WINDOWS APPLICATIONS FOR ENTERING AND EDITING TEXT.
BY MODIFYING THE EDITWORDBREAKPROC CALLBACK FUNCTION, WHICH HANDLES WORD
WRAPPING IN MULTILINE EDIT CONTROLS, MALWARE CAN INJECT AND EXECUTE ARBITRARY
CODE WITHIN THE CONTEXT OF AN APPLICATION THAT USES SUCH CONTROLS.

« U1204

« RICH EDIT CONTROLS

« WINDOWS CONTROLS

« MULTILINE MODE

+ EDITWORDBREAKPROC CALLBACK FUNCTION
+ WORD WRAPPING

THE FOLLOWING WINDOWS APl FUNCTIONS ARE UTILIZED FOR IMPLEMENTING WORDWARPING:

+ VIRTUALALLOCEX

« WRITEPROCESSMEMORY

+ VIRTUALALLOC

« OPENPROCESS

+ CLOSEHANDLE

+ SETFOREGROUNDWINDOW

+ GETWINDOWTHREADPROCESSID
« GETWINDOW

« VIRTUALFREE

HADESS.I0

#X

THE FOLLOWING C++ CODE DEMONSTRATES THE IMPLEMENTATION OF WORDWARPING:

CPP

#X

HADESS.I0

IN THIS CODE:

+ THE MAIN WINDOW FOR WORDPAD IS LOCATED.

+ THE RICH EDIT CONTROL WITHIN WORDPAD 1S IDENTIFIED.

+ THE CURRENT ADDRESS OF THE WORDWRAP FUNCTION IS RETRIEVED.

« THE PROCESS ASSOCIATED WITH WORDPAD IS OPENED.

+ MEMORY 1S ALLOCATED WITHIN THE PROCESS TO STORE THE PAYLOAD.

+ THE PAYLOAD IS WRITTEN INTO THE ALLOCATED MEMORY.

» THE EDITWORDBREAKPROC CALLBACK FUNCTION OF THE RICH EDIT CONTROL IS
UPDATED TO POINT TO THE PAYLOAD.

+ SIMULATED KEYBOARD INPUT IS SENT TO TRIGGER THE PAYLOAD EXECUTION.

+ THE ORIGINAL WORDWRAP FUNCTION ADDRESS IS RESTORED AFTER EXECUTION.

+ MEMORY ALLOCATED FOR THE PAYLOAD IS FREED, AND THE PROCESS HANDLE IS CLOSED.

HADESS.I0

THE CTRL+INJECT TECHNIQUE INVOLVES INJECTING MALICIOUS CODE INTO A PROCESS BY
EXPLOITING THE CALLBACK FUNCTION USED FOR CONTROL SIGNAL HANDLERS. WHEN A
CONTROL SIGNAL, SUCH AS CTRL+C, 1S RECEIVED BY A PROCESS, THE SYSTEM CREATES A
NEW THREAD TO EXECUTE A FUNCTION TO HANDLE THE SIGNAL. THIS THREAD IS TYPICALLY
CREATED BY THE LEGITIMATE PROCESS "CSRSS.EXE", MAKING IT MORE CHALLENGING TO
DETECT THE INJECTED CODE.

« U1213

» CALLBACK FUNCTION

+ CONTROL SIGNAL

+ PROCESS MANIPULATION
+ SYSTEM THREAD

« CSRSS.EXE

+ INJECTION CODE

= POINTER ENCODING

+ CONTROL FLOW GUARD
+ MEMORY CORRUPTION

+ BUFFER OVERFLOW

= GETCURRENTPROCESS

+ SETPROCESSVALIDCALLTARGETS
+ SETCONSOLECTRLHANDLER

« GENERATECONSOLECTRLEVENT
+ ENCODEPOINTER

+ DECODEPOINTER

HADESS.I0

#X

THE FOLLOWING C++ CODE DEMONSTRATES THE IMPLEMENTATION OF THE CTRL+INJECT
TECHNIQUE:

1. THE CODE DEFINES A CALLBACK FUNCTION CALLED ControlSignalHandler THAT
WILL BE USED TO INJECT MALICIOUS CODE.

2. POINTER ENCODING AND CONTROL FLOW GUARD BYPASS MECHANISMS ARE APFLIED TO
ENSURE THAT THE FUNCTION CAN BE CALLED WITHOUT TRIGGERING SECURITY
MECHANISMS.

3. THE SetConsoleCtrlHandler FUNCTION IS USED TO SET THE CALLBACK FUNCTION
FOR CONTROL SIGMAL HANDLERS.

L. THE GenerateConsoleCtrlEvent FUNCTION IS CALLED TO TRIGGER A CONTROL
SIGNAL, SUCH AS CTRL+C, WHICH WILL EXECUTE THE INJECTED CODE.

HADESS.I0

#X

INJECTION USING SHIMS 1S A TECHNIQUE THAT EXPLOITS MICROSOFT SHIMS, WHICH ARE
PROVIDED MAINLY FOR BACKWARD COMPATIBILITY. SHIMS ALLOW DEVELOPERS TO APPLY
FIXES TO THEIR PROGRAMS WITHOUT REWRITING THE CODE. BY LEVERAGING SHIMS,
DEVELOPERS CAN INSTRUCT THE OPERATING SYSTEM ON HOW TO HANDLE THEIR
APPLICATION, ESSENTIALLY HOOKING INTO APIS AND TARGETING SPECIFIC EXECUTABLES.
MALWARE CAN EXPLOIT SHIMS FOR BOTH PERSISTENCE AND INJECTION PURPOSES. WHEN
WINDOWS LOADS A BINARY, IT RUNS THE SHIM ENGINE TO CHECK FOR SHIMMING DATABASES
AND APPLIES THE APPROPRIATE FIXES.

= U1218, E1055.m03

* SHIMS

+ GETPROCADDRESS
« LOADLIBRARYA
+ GETLASTERROR

+ THIS CODE DEFINES FUNCTIONS TO INTERACT WITH THE SHIM ENGINE AND CREATE
A SHIMMING DATABASE.

« IT UTILIZES VARIOUS WINDOWS APl FUNCTIONS TO MANIPULATE SHIMMING DATA.

* THE DoStuff FUNCTION CREATES A SHIMMING DATABASE WITH SPECIFIED
ATTRIBUTES, INCLUDING THE TARGET EXECUTABLE NAME AND THE INJECTED DLL
NAME.

+ THE MAIN FUNCTION LOADS THE APPHELP API, CREATES THE SHIMMING DATABASE,
AND CLOSES IT.

+ THIS CODE DEFINES A DLL THAT WILL BE INJECTED INTO THE TARGET PROCESS
USING SHIMS.

« IT EXPORTS FUNCTIONS GetHookAPIs AND NotifyShims, WHICH ARE INVOKED
BY THE SHIM ENGINE.

+ THE D11Main FUNCTION IS CALLED WHEN THE DLL IS LOADED AND UNLOADED.

HADESS.I0

IAT HOOKING IS A TECHNIQUE USED TO EXECUTE MALICIOUS CODE BY TAMPERING WITH THE
IMPORT ADDRESS TABLE (IAT) OF A SPECIFIC EXECUTABLE. THIS INVOLVES REPLACING A
LEGITIMATE FUNCTION IMPORTED FROM A DLL WITH A MALICIOUS ONE, THEREBY
REDIRECTING THE FLOW OF EXECUTION TO THE ATTACKER'S CODE.

*

ui217
F0015.003

*

* |AT

BELOW ARE SOME COMMONLY USED WINDOWS API'S EMPLOYED
BY MALWARE AUTHORS FOR EVASIVE TECHNIQUES:

* LoadLibraryA
* MessageBoxW

|AT HOOKING 1S UTILIZED TO REDIRECT PROGRAM EXECUTION BY TAMPERING WITH THE
IMPORT ADDRESS TABLE (IAT) OF AN EXECUTABLE. IN THIS CODE SNIPPET, THE ORIGINAL
MessageBoxA FUNCTION IS REPLACED WITH A HOOKED FUNCTION hookedMessageBox
WHICH EXECUTES MALICIOUS CODE BEFORE CALLING THE ORIGINAL MessageBoxA
FUNCTION. THIS EFFECTIVELY INTERCEPTS AND ALTERS THE BEHAVIOR OF THE Mes sageBoxA
FUNCTION.

HADESS.I0

#X

MALDEYV - PROCESS DIARIES

DLL PROXYING 15 A TECHNIQUE EMPLOYED BY MALWARE TO EVADE DETECTION
AND ESTABLISH PERSISTENCE ON A SYSTEM. IT INVOLVES SUBSTITUTING A LEGITIMATE

DYNAMIC LINK LIBRARY (DLL) WITH A MALICIOUS ONE THAT SHARES SIMILAR EXPORTED
FUNCTIONS AND A COMPARABLE NAME TO THE ORIGINAL DLL.

WHEN A PROGRAM ATTEMPTS TO LOAD THE LEGITIMATE DLL, IT INADVERTENTLY LOADS THE
MALICIOUS DLL INSTEAD. THIS MALICIOUS DLL SERVES AS A PROXY FOR THE GENUINE ONE,
INTERCEPTING FUNCTION CALLS AND REDIRECTING THEM TO THE LEGITIMATE DLL.
CONSEQUENTLY, THE MALWARE EXECUTES ITS OWN CODE WHILE MASQUERADING AS THE
LEGITIMATE DLL, ENABLING IT TO PERFORM MALICIOUS ACTIVITIES WITHOUT ARCUSING
SUSPICION FROM THE EXECUTING PROGRAM.

By EMPLOYING DLL PROXYING, MALWARE CAN OPERATE STEALTHILY AND EVADE DETECTION
BY SECURITY SOFTWARE. SINCE THE MALICIOUS DLL CLOSELY RESEMBLES THE LEGITIMATE
OMNE, SECURITY TOOLS FIND IT CHALLENGING TO DISTINGUISH BETWEEN THE TWO, ALLOWING
THE MALWARE TO PERSISTENTLY EXECUTE UNDETECTED.

U1240

« DLL PROXYING

« CODE OBFUSCATION
+ PERSISTENCE

+ DLL REDIRECTION

+ STEALTH OPERATION

o)

THE PROVIDED PYTHON SCRIPT EXTRACTS ALL EXPORTED FUNCTIONS FROM A TARGETED DLL,
IN THIS CASE, DNSAPI.d11l USED BY nslookup.exe. IT GENERATES PRAGMA DIRECTIVES
THAT REDIRECT THE EXPORTED FUNCTIONS TO A PROXY MODULE. THIS TECHNIQUE ALLOWS
THE MALWARE TO REDIRECT CALLS TO THE LEGITIMATE DLL FUNCTIONS TO ITS OWN
MALICIOUS FUNCTIONS, THUS ENABLING STEALTHY EXECUTION OF MALICIOUS CODE.

HADESS.I0

#X

DiRTY VANITY IS A PROCESS INJECTION TECHNIQUE THAT LEVERAGES WINDOWS
FORKING, WHICH INCLUDES PROCESS REFLECTION AND SNAPSHOTTING, TO INJECT CODE
INTO A NEW PROCESS. BY UTILIZING PRIMITIVES LIKE RtlCreateProcessReflection OR
NtCreateProcess [Ex] , ALONG WITH SPECIFIC FLAGS SUCH AS PROCESS_VM_OPERATION,
PROCESS_CREATE_THREAD , AND PROCESS_DUP_HAMNDLE , THIS TECHNIQUE REFLECTS AND
EXECUTES CODE IN A NEW PROCESS.

THE PROCESS INJECTION PROCESS INVOLVES SEVERAL STEPS. FIRST, IT UTILIZES METHODS
LIKE NtCreateSection AND NtMapViewOfSection, VirtualAllocEx, AND
WriteProcessMemory TO WRITE THE INJECTED CODE INTO THE NEW PROCESS. THEN, IT
EMPLOYS NtSetContextThread, ALSO KNOWN AS GHOST WRITING, TO FINALIZE THE
INJECTION PROCESS.

THIS TECHNIQUE 15 SPECIFICALLY DESIGNED TO EVADE DETECTION BY ENDPOINT SECURITY
SOLUTIONS. SINCE THE INJECTED CODE APPEARS TO BE WRITTEN TO THE NEW PROCESS
RATHER THAN BEING INJECTED FROM AN EXTERNAL SOURCE, IT CAN BYPASS TRADITIONAL
SECURITY MEASURES.

U1242

+ PROCESS INJECTION

+» WINDOWS FORKING

+ PROCESS REFLECTION

» SNAPSHOTTING

+ RTLCREATEPROCESSREFLECTION
» NTCREATEPROCESS

+ NTCREATEPROCESSEX

» FORK EXECUTE

+ PROCESS_VM_OPERATION
+ PROCESS_CREATE_THREAD
+ PROCESS_DUP_HANDLE

+ NTCREATESECTION

+ NTMAPVIEWOFSECTION

» VIRTUALALLOCEX

+ WRITEPROCESSMEMORY

+ NTSETCONTEXTTHREAD

+ GHOST WRITING

+ VIRTUALALLOCEX

+ WRITEPROCESSMEMORY
+ VIRTUALALLOC

+ OPENPROCESS

+ GETPROCADDRESS

+ LOADLIBRARYA

+ GETLASTERROR

HADESS.I0

LISTPLANTING 1S A TECHNIQUE THAT LEVERAGES EDIT CONTROLS, SPECIFICALLY
RICH EDIT CONTROLS IN MULTILINE MODE, AND LISTVIEW CONTROLS IN WINDOWS
APPLICATIONS TO EXECUTE MALICIOUS PAYLOADS. EDIT CONTROLS CAN BE CUSTOMIZED TO
USE THE EditWordBreakProc CALLBACK FUNCTION FOR WORD WRAPPING. SIMILARLY,
LISTVIEW CONTROLS CAN BE MANIPULATED USING MESSAGES LIKE LVM_SORTGROUPS ,
LVM_INSERTGROUPSORTED, AND LVM_SORTITEMS TO CUSTOMIZE SORTING BEHAVIOR.

THIS TECHNIQUE INVOLVES TRIGGERING THE EXECUTION OF MALICIOUS PAYLOADS BY
EXPLOITING THE CALLBACK FUNCTIONS ASSOCIATED WITH THESE CONTROLS. FOR EXAMPLE,
BY UTILIZING THE LVM_SORTITEMS MESSAGE IN COMBINATION WITH A CUSTOM CALLBACK
FUNCTION, IT IS POSSIBLE TO EXECUTE MALICIOUS CODE WHEN THE LISTVIEW CONTROL IS
MANIPULATED, SUCH AS WHEN SORTING ITEMS.

ui12o7

« RICH EDIT CONTROLS

+ WINDOWS CONTROLS

+ MULTILINE MODE

+ EDITWORDBREAKPROC CALLBACK
+ WORD WRAPPING

+ LISTVIEW CONTROL

« GUI ELEMENT

+ DISPLAY LISTS OF ITEMS

+ LVM_SORTGROUPS MESSAGE

+ CALLBACK FUNCTION

* VIRTUALALLOCEX

+ WRITEPROCESSMEMORY

« VIRTUALALLOC

+» OPENPROCESS

+ CLOSEHANDLE

+ GETWINDOWTHREADPROCESSID
« GETWINDOW

+ VIRTUALFREE

HADESS.I0

MALDEYV - PROCESS DIARIES

HADESS.I0

TREEPOLINE 1S A TECHNIQUE THAT EXPLOITS TREE-VIEW CONTROLS,
COMMORNLY USED IN WINDOWS APPLICATIONS TO DISPLAY HIERARCHICAL DATA, TO EXECUTE
ARBITRARY CODE. TREE-VIEW CONTROLS RELY ON SORTING ROUTINES TO ORGANIZE THE

DISPLAYED ELEMENTS. THIS SORTING BEHAVIOR 1S CONTROLLED BY A TVSORTCB STRUCTURE,

WHICH INCLUDES A CALLBACK FUNCTION (lpfnCompare) THAT DETERMINES THE SORTING
ORDER.

By SENDING A TVM_SORTCHILDRENCB MESSAGE TO A TREE-VIEW CONTROL, AN ATTACKER
CAN SPECIFY A MALICIOUS CALLBACK FUNCTION THAT WILL BE EXECUTED WHEN SORTING
ELEMENTS. THIS CALLBACK FUNCTION CAN CONTAIN ARBITRARY CODE, ALLOWING THE
ATTACKER TO EXECUTE UNAUTHORIZED ACTIONS ON THE SYSTEM. HOWEVER, IT'S CRUCIAL TO
NOTE THAT SUCH MANIPULATIONS ARE LIKELY TO BE DETECTED BY SECURITY SYSTEMS.

u1208

+ TREE-VIEW CONTROLS

« USER INTERFACE ELEMENT

+ HIERARCHICAL DATA

« GRAPHICAL USER INTERFACE (GUI)
+ WINDOWS APPLICATIONS

+ DATA STRUCTURES

+ ITEM SORTING

« TYSORTCB STRUCTURE

+ LPFNCOMPARE FIELD

« VIRTUALALLOCEX

« WRITEPROCESSMEMORY

+ VIRTUALALLOC

+ OPENPROCESS

+ CLOSEHANDLE

« GETWINDOWTHREADPROCESSID
+ GETWINDOW

* VIRTUALFREE

HADESS.I0

#X

PROCESS CAMOUFLAGE, ALSO KNOWN AS MASQUERADING, IS A TECHNIQUE
EMPLOYED BY MALWARE TO CONCEAL ITS PRESENCE BY DISGUISING ITSELF AS A LEGITIMATE
FILE. THIS TACTIC AIMS TO EVADE DETECTION BY SECURITY MEASURES AND BLEND IN WITH
TRUSTED SYSTEM PROCESSES. TYPICALLY, THE MALWARE ACHIEVES THIS BY RENAMING ITS
EXECUTABLE FILE TO MATCH THE NAME OF A COMMON AND TRUSTED SYSTEM PROCESS,
SUCH AS SVCHOST.EXE, AND PLACING IT IN A DIRECTORY WHERE LEGITIMATE SYSTEM FILES
RESIDE.

MASQUERADING INVOLVES MANIPULATING OR ABUSING THE NAME OR LOCATION OF AN
EXECUTABLE, WHETHER MALICIOUS OR LEGITIMATE, TO CIRCUMVENT SECURITY DEFENSES
AND OBSERVATION. THIS TECHNIQUE HAS NUMEROUS VARIATIONS AND CAN BE OBSERVED IN
VARIOUS FORMS.

THE PROCESS OF MASQUERADING IS OFTEN EXECUTED THROUGH SOCIAL ENGINEERING
TRICKS, UTILIZING SCRIPTING LANGUAGES LIKE VBS OR POWERSHELL TO COPY AND RENAME
FILES, EMPLOYING BUILT-IN WINDOWS COMMANDS SUCH AS COPY AND RENAME, OR
UTILIZING LEGITIMATE TOOLS LIKE XCOPY OR ROBOCOPY TO COPY FILES WHILE MAINTAINING
THEIR ORIGINAL TIMESTAMPS.

DETECTION OF THIS TECHNIQUE RELIES ON ANALYZING FILE PROPERTIES SUCH AS NAME,
LOCATION, TIMESTAMPS, AND DIGITAL SIGNATURES, AS WELL AS OBSERVING THE BEHAVIOR
OF THE PROCESS AFTER EXECUTION.,

HADESS.I0

APC (ASYNCHRONOUS PROCEDURE CALL) INJECTION IS A TECHNIQUE
EMFLOYED BY MALWARE TO EXECUTE CUSTOM CODE WITHIN THE CONTEXT OF ANOTHER
PROCESS BY ATTACHING IT TO THE APC QUEUE OF A TARGET THREAD. EACH THREAD IN A
PROCESS HAS A QUEUE OF APCS WAITING FOR EXECUTION UPON THE THREAD ENTERING AN
ALTERABLE STATE.

WHEN A THREAD ENTERS AN ALTERABLE STATE BY CALLING CERTAIN WiNDOWS API
FUNCTIONS LIKE SLEEPEX, SIGNALOBJECTANDWAIT, MsGWAITFORMULTIPLEOBIECTSEX, OR
WaITFORSINGLEOBJECTEX, THE APCS IN ITS QUEUE ARE EXECUTED. MALWARE TYPICALLY
SEARCHES FOR THREADS IN ALTERABLE STATES, THEN CALLS OPENTHREAD AND
QuEUEUSERAPC TO QUEUE AN APC TO THE TARGET THREAD.

THIS TECHNIQUE ALLOWS MALWARE TO RUN ITS CODE WITHIN THE ADDRESS SPACE OF A
LEGITIMATE PROCESS, MAKING IT HARDER TO DETECT AND TRACE BACK TO ITS SOURCE. APC
INJECTION CAN BE USED FOR VARIOUS MALICIOUS PURPOSES, INCLUDING CODE EXECUTION,
PRIVILEGE ESCALATION, AND EVASION OF SECURITY MEASURES.

N/A

« ASYNCHRONOUS PROCEDURE CaLLS (APC)
+ THREAD EXECUTION

« ALTERABLE STATE

« CODE INJECTION

« MALWARE

+ SECURITY EVASION

HADESS.I0

DLL INJECTION THROUGH REGISTRY MODIFICATION OF NLS (NATIONAL LANGUAGE SLIPPORT)
CODE PAGE ID IS A TECHNIQUE USED BY MALWARE TO INJECT A MALICIOUS DLL INTO A
PROCESS BY MODIFYING THE NLS copE PAGE ID IN THE WINDOWS REGISTRY. THIS
TECHNIQUE ALLOWS THE MALWARE TO EXECUTE ARBITRARY CODE WITHIN THE CONTEXT OF
ANOTHER PROCESS, POTENTIALLY BYPASSING SECURITY MEASURES.

THERE ARE TWO MAIN METHODS TO ACCOMPLISH THIS TECHNIQUE:

1. :IN THIS APPROACH, THE
MALWARE CALLS THE SETTHREADLOCALE FUNCTION TO SET UP AN EXPORT FUNCTION
NAMED NLSDLLCODEPAGETRANSLATION, WHERE THE MAIN PAYLOAD IS LOCATED. BY
MODIFYING THE NLS CODE PAGE ID ASSOCIATED WITH THE PROCESS, THE MALWARE
CAN ENSURE THAT ITS MALICIOUS CODE GETS EXECUTED.

: ALTERNATIVELY, THE MALWARE CAN
USE THE SETCONSOLECP OR SETCONSOLEQUTPUTCP FUNCTIONS TO MODIFY THE CODE
PAGE ID. IF THE TARGET PROCESS IS NOT CONSOLE-BASED, THE MALWARE CAN
ALLOCATE A CONSOLE USING THE ALLOCCONSOLE FUNCTION TO ENABLE THE USE OF
THESE FUNCTIONS.

(%]

HADESS.I0

U1237

» DLL INJECTION

+ REGISTRY MODIFICATION

» NLS (NATIONAL LANGUAGE SUPPORT)
+ SETTHREADLOCALE

+ SETCONSOLECP

+ SETCONSOLEQUTPUTCP

+ ALLOCCONSOLE

+ MALWARE

+ PROOF OF CONCEPT

» POSITION-INDEPENDENT SHELLCODE
» REMOTE PROCESS STAGER

+ LOADING OF DLL

+ CREATEREMOTETHREAD
* VIRTUALALLOCEX

+* WRITEPROCESSMEMORY
* VIRTUALALLOC

+ CREATEPROCESSW

» REGSETVALUEEXW
REGOPENKEYEXW

+ REGQUERYINFOKEYW
REGENUMVALUEW
SIZEOFRESOQURCE

» LOCKRESOURCE

» LOADRESOURCE

+ CLOSEHANDLE

» GETLASTERROR

+ CREATEFILEW

* WRITEFILE

)

*

#+

#X

HADESS.I0

MALDEYV - PROCESS DIARIES

« MALDEV ACADEMY
« NOORANET

* UNPROTECT PROJECT

HADESS.I0

A HADESS

cat ~/.hadess

"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity

services.
Website: Email
WWW.HADESS.I0 MARKETING@HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

