

With Early Release ebooks, you get books in their earliest
form—the author’s raw and unedited content as they write—
so you can take advantage of these technologies long before

the official release of these titles.

Adrian Gonzalez Sanchez and Jorge Valenzuela Jiménez

Kubernetes and Cloud Native
Associate (KCNA) Study Guide

In Depth Exam Prep and Practice

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-13888-2

Kubernetes and Cloud Native Associate (KCNA) Study Guide
by Adrian Gonzalez Sanchez and Jorge Valenzuela Jiménez

Copyright © 2024 13329054 Canada Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Sara Hunter
Production Editor: Gregory Hyman

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

April 2024: First Edition

Revision History for the Early Release
2023-10-23: First Release
2024-01-23: Second Release
2024-03-25: Third Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098138943 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes and Cloud Native Associate
(KCNA) Study Guide, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Table of Contents

1. Introduction. 9
The Book Structure 12

Intended Book Audience 14
What To Expect From This Study Guide 17
Why Cloud Native and Why Now 17
Inspirational Success Stories 20

Self-questionnaire for New Cloud Native Practitioners 22
Test 1 - The CNCF Ecosystem 23
Test 2 - General Cloud Native Concepts 24
Test 3 - Kubernetes Topics 26
Test 4 - Kubernetes Commands 27
Test 5 - Linux Fundamentals 29
Test 6 - Other Related Projects 30

PLACEHOLDER Expert Insights 1 - Walid Shaari 32
PLACEHOLDER EXPERT INSIGHTS 33
PLACEHOLDER CONCLUSION - Chapter 1 40

2. The KCNA Exam as the Starting Point. 43
The KCNA Certification by Linux Foundation and CNCF 44
Why the KCNA matters and Why to Get Certified 46
Exam Description and Curriculum 48

Part 1 - Kubernetes Fundamentals 50
Part 2 - Container Orchestration 50
Part 3 - Cloud Native Architecture 51
Part 4 - Cloud Native Observability 51
Part 5 - Cloud Native Application Delivery 52

Additional Areas of Knowledge (outside of the official curriculum) 53
Part 6 - Kubernetes 101 Hands-on 53

iii

Part 7 - Linux Fundamentals 54
Part 8 - API-enabled Development 54
Part 9 - Telematics 55
Part 10 - Web Development 55
Part 11 - Applied Usage 55

Exam Study Plan 56
Step 1 - Determine your Current Level of Knowledge 57
Step 2 - Prepare and Adopt an Study Schedule 57
Step 3 - Focus on the Right Material 57

Exam Logistics and What to Expect 58
Step 1 - Schedule Your Exam 58
Step 2 - Exam Day Preparation 61
Step 3 - Post-Exam Logistics 63

Potential Certification Paths 63
PLACEHOLDER CONCLUSION - Chapter 2 67

3. CNCF and the New Era of Cloud Native . 69
The CNCF Origins 69

Timeline of The Cloud Native Industry 70
Community dynamics and governance 73
Key CNCF resources 76
CNCF projects and Maturity Levels 82
Related initiatives and work groups 91

4. Essential Concepts for Cloud Native Practitioners. 93
General Cloud Computing 94
Commercialization of Cloud Computing 96

IaaS, Infrastructure-as-a-Service 97
PaaS, Platform-as-a-Service 98
SaaS, Software-as-a-Service 98
CaaS, Container-as-a-Service 98
FaaS, Function-as-a-Service 99

Cloud Computing Infrastructure 99
Public Cloud 99
Private Cloud 100
Hybrid Cloud 100
Multi Cloud 100

The Virtualization, Containerization, and Orchestration Trifecta 101
Virtualization 101
Containerization 102
Orchestration 104

Relationship between Cloud Computing and Cloud Native 105

iv | Table of Contents

Building Cloud Native Applications 106
Other Relevant Cloud Native Topics 108

DevOps and CI/CD 108
GitOps and Infra as Code (IaC) 110
Declarative vs Imperative 110
Stateful vs Stateless 111
Egress and Ingress 111
Serverless 112

5. The Key Role of Kubernetes . 113
An introduction to containers and orchestration technologies 114

Containers 115
Container orchestration 121

Containers ecosystem and standards 122
Linux Container 122
Then, What do the Container standards provide? 124
Container Solutions 125

What is Kubernetes? 126
And Why is Kubernetes so important and why should you learn it? 128

Current Industry trends 129
Artificial Intelligence 130
Vector Databases 131
Edge Computing 132
Platform Engineering 132

Alternatives for Kubernetes in the Orchestration 134
Apache Mesos and Marathon 134
Openshift 135

Benefits of Containerization for Businesses 135
Business Agility 136
Innovation Acceleration 136
Collaboration 136
Resiliency and Business Continuity 136
Talent Attraction and retention 136
Customer Satisfaction 137

Summary 137

6. Technical Kubernetes Topics. 139
Kubernetes Basic Concepts: from Containers to Clusters 141

Kubernetes Cluster 141
Components of the Control Plane 147
Components of the Data Plane 151

Inside Kubernetes Architecture 153

Table of Contents | v

Kubernetes Single Container Pod and Multi Container Pod 154
Container Runtimes in Kubernetes 160
Container Network Interface 163
Container storage Interface 163

Navigating Kubernetes states 163
Stateless Applications 164
Stateful Applications 164
Deployments: Orchestrating Stateless Scalability 164
StatefulSets: The custodian of stateful applications 165
ReplicaSets: Safeguarding Replication and Reliability 165
DaemonSet Controller 165
Job and CronJob Controllers 165

Workload Auto-scaling, Kubernetes Events and Pod lifecycle 166
Horizontal Pod Autoscaler (HPA): 166
Vertical Pod Autoscaler (VPA): 167
Cluster Proportional Autoscaler (CPA): 168
Autoscaling based on Events 168
Cluster Autoscaler 169
Pending Phase 172
Scheduled Phase 172
Running Phase 172
Succeeded or Failed Phase 172
Termination 172

Kubernetes Observability and Performance 173
Logs: 175
Metrics: 176
Traces: 177
Resource Metrics Pipeline 178
Full Metrics Pipeline 179

Kubernetes storage 182
Persistent Volumes (PVs) and Persistent Volume Claims (PVC) 182
Storage Classes 182
Volumes and Volume Types 183
StatefulSets 183
Container Storage Interface (CSI) 183
Dynamic provisioning 184

Networking and service mesh 184
Cluster Networking 184
Ingress Controllers 185
Network Plugin 186
Service Discovery 187
Service Mesh 188

vi | Table of Contents

Kubernetes security 191
Container Image security strategies 191
Kubernetes cluster protection strategies 192

Other Kubernetes related components 194
Helm: 194
Dapr 195
ConfigMap 196
MiniKube 196

Main commands 196
Summary 201

7. Final recommendations. 203
Additional information for exam preparation 204
Kubernetes community experts to follow 204
KCNA-related communities 211
Useful Github repositories 213
Potential career options for KCNA certified 217
Other Kubernetes certifications 219

Certified Kubernetes Administrator (CKA) 219
Certified Kubernetes Application Developer (CKAD) 219
Certified Kubernetes Security Specialist (CKS) 220

Relevant books 220
Summary 229

Table of Contents | vii

CHAPTER 1

Introduction

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 1st chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at shunter@oreilly.com.

KCNA. Interesting choice for a new technology certification acronym. Why? Well,
when you search for this term for the first time via Google or Bing, most of the
results will refer to a national news agency in Asia. But no, nothing to do with that.
The Linux Foundation released the Kubernetes and Cloud Native Associate exam
in 2021, and even if the acronym can be initially a bit confusing, the name is not
at all random. The exam and certification name is a very clear and direct reference
to the two main topics of study, and the starting point for millions of learners and
adopters. This is, the increasingly rich cloud native ecosystem, and the central role of
Kubernetes as key technology enabler.

It makes sense. Containerization is quickly becoming the new normal for big and
small technology companies and developers around the world, and technologies such
as Docker and Kubernetes are “nonofficial” standards for most of the adopters out
there. A powerful movement that is not new. The Cloud Native Computing Founda‐
tion was created in 2015, but companies like Google have leveraged cloud native

9

technologies since the early aughts. That said, it is a complex area of highly technical
knowledge that requires a lot of practice, effort and upskilling. But it also requires
the creation of new learning and training resources, easy-to-read documentation, and
more simple ways for professionals to learn and then adopt cloud native tools. This
exam is part of the equation for that to happen.

But hey, this is not really a hurdle. I still remember the first time I heard about cloud
native. It was during a job interview, and I naively thought that my interviewer meant
something like general cloud computing. We will discuss the difference (and relation)
between these two terms later, but it is clear that I was missing something big. At that
time, I was well versed on cloud technologies because of my data and AI projects,
and I was of course aware of the existence of something called Kubernetes. But this
old school telematics engineer had missed the first years of the container revolution
and his main reference of virtualization techniques were the traditional VMWare-ish
virtual machines. And new communities such as CNCF (Cloud Native Computing
Foundation) were still unknown to me. A lot to catch up with…

However, the promise of something similar to virtual machines (VMs) but even
“better”, lighter, and super scalable was very tempting. In addition to that, my curious
nature and willingness to learn helped me connect the cloud native dots with the
building blocks of the data and AI ecosystem. “Do you mean that I can deploy
resources as new iterations or different versions of AI models, whenever I need it,
in a relatively automated way? Are you telling me that this is how big companies
are doing it today?”. I still remember the words from some friend in the videogames
industry, who was leveraging containers to deploy AI models, several times a day, to
release new features or to just test alternative model versions. Too new, too exciting, I
couldn’t let it go.

Fun was about to start, but I quickly realized that Kubernetes wasn’t a simple topic.
Technical knowledge of its architecture, networking, security, managed options from
hyperscalers, different pieces from the same puzzle… This was the next step for my
engineering degree in Spain, except that no professor explained this to us because it
was just too early. Also, I had lost part of my command line ability, and abandoned
my arduous exploration of Linux-related topics. Years before, I used to stay awake
during the night to try to find a way to replicate in Linux Ubuntu some cool function‐
alities from Windows, participate in forums, try new open-source software, debug
new tools… but most of these things were gone. Instead, I was just a cloud-enabled
adopter looking forward to making sense of Kubernetes, Docker, and other topics.

I had to find a way to start my cloud-native journey (in parallel with a few other cer‐
tification topics I have been “devouring” during the last years), so I took a pragmatic
and kind of lazy approach to avoid the most technical parts, and to focus first on the
cloud-native ecosystem and community. That decision led me to learn more about
CNCF and its actors, the open source governance model, cool projects beyond the

10 | Chapter 1: Introduction

omnipresent Kubernetes, and the levels of maturity and incubation. Such a discovery.
A community full of talent, willingness to teach and collaborate, existing resources,
etc.

Besides that, my research helped me find amazing technical evangelists and industry
experts, a great source of knowledge and an amazing way to learn from the best. I
also tried to understand the history of things. Who created Kubernetes? How did
this tool become so relevant and necessary everywhere? And why? (note: the official
Kubernetes Documentary and its part 2 are a must, and a great option to get some
initial answers). Then, I organically started to explore all technical topics and connect
more dots. It was challenging, but feasible to learn with a good study plan and
learning material. The initial version of the one you will see in this book.

Coming back to the KCNA exam, I remember being very excited when I first saw the
scope and topics that the CNCF folks chose. But why was this exam necessary? Why
would someone want to take it? Well, basically the KCNA is the best to demonstrate
an initial knowledge of Kubernetes and cloud native topics, and a great opportunity
for the community to create content for those who are willing to learn and evolve.
Finally, a fundamentals, associate-level certification that would allow more people to
join the movement, regardless of their previous background.

Up to then, the only available options for learning and certification required very
advanced Kubernetes knowledge. Concretely, the Certified Kubernetes Administrator
(CKA), Certified Kubernetes Security (CKS), Certified Kubernetes Application Devel‐
opment (CKAD). Quite a bit too long walk for people who are still trying to crawl.
But the CNCF and Linux Foundation Certification teams nailed it, and they released
a great exam that, even if it is not the easiest one, helps a lot to bring new folks and
generate great career opportunities for fresh and experienced professionals.

Perfect timing, great opportunity. Some time after the beta exam release, we started
to see more and more cool learning resources from cloud native professionals. Even
myself, I prepared some 101-level KCNA exam prep sessions with O’Reilly Media,
and the Open Source Summit LATAM. I consider myself a pretty good lecturer, but
that was a fairly hard topic, and a difficult one to simplify. My main goal wasn’t to
deliver the perfect session, but to find a teaching approach that would get people
closer to cloud native and Kubernetes, regardless of their professional background
and technical ability. To be honest, I’m a bit biased because I have been teaching big
data and AI for business-oriented professionals for a while. If I could explain those
topics, I had to make it happen for this one!

Some months later, serendipity brought me to THE O’Reilly team working with
Kubernetes-related authors. Concretely, the team that had managed previous book
publications for other Kubernetes Certification topics, including the wonderful study
guides that so many professionals had used before to prepare their CKA / CKAD /
CKS certifications. And I was really willing to put some thought and time into

Introduction | 11

designing something that may help KCNA candidates to 1) learn about Kubernetes
and the cloud native ecosystem and landscape 2) pass the exam and leverage it to
get amazing career opportunities. I wanted to prove that even the most challenging
topics can be explained in a way that will help all sorts of professionals up and
reskilling.

The rest is history. The wonderful O’Reilly team gave me the opportunity to sit and
write the book. A relatively light guide for candidates to understand what to learn,
in a pragmatic and simple way, but also as the starting point for their new cloud
native journey. A pretty difficult task if we keep in mind that I do several things
in my professional life (i.e. working at Microsoft, teaching, international speaking
engagements, etc.). But all this was totally worth it. I like the topic a lot, and I love
teaching and writing content. Being a book author is one of my main personal goals,
and the KCNA is a highly relevant and scalable area of study and work. Let’s see if this
passion can be translated into a great and useful resource for young and experienced
professionals out there. If this book helps just a few of them, I will feel very satisfied.
Same as when I teach to a small group of students. Contributing to create a new
generation of cloud-enabled professionals is very cool. Please enjoy it.

Adrian Gonzalez Sanchez

The Book Structure
This book has seven chapters that contains the end-to-end knowledge you are
expected to have when you decide to take your KCNA exam. Concretely, very applied
and descriptive chapters that will cover relevant exam topics, in addition to contex‐
tual information that will help you understand the full picture of the cloud native and
kubernetes topics:

Chapter 1, Introduction to the KCNA Certification and Study Guide
This first chapter is your way to begin your journey into the world of Kubernetes
and cloud-native technologies with an in-depth introduction to the Kubernetes
and Cloud Native Associate (KCNA) certification. Our main goal is that you
understand its global relevance, the opportunities it opens up for professionals,
and how this Study Guide is uniquely designed to cover every nuance of the
syllabus, supported by real-world examples and expert insights.

Chapter 2, The KCNA Exam as the Starting Point
The second chapter goes deeper into what the KCNA exam entails. This chapter
not only touches upon the format and structure but also elaborates on the
weightage of each domain, types of questions to expect, and the significance of
this certification in one’s professional journey. It serves as your personal roadmap
to navigate the complexities of the exam.

12 | Chapter 1: Introduction

Chapter 3, CNCF and the New Era of Cloud Native
The third chapter includes a detailed overview of the Cloud Native Computing
Foundation (CNCF), its mission, vision, and contributions to the cloud-native
universe. You will learn how CNCF’s initiatives and projects are redefining com‐
puting, and understand the nuances of cloud-native’s transformative impact on
businesses, from startups to big companies. We will also explore some relevant
technologies beyond Kubernetes.

Chapter 4, Essential Concepts for Cloud Native Practitioners
This fourth chapter is a descriptive exploration of cloud computing and cloud
native foundational concepts. We will dive deep into topics like as-a-Service
models, containerization, microservices, declarative APIs, etc. The idea is to
equip you with additional information for your KCNA exam, but also that you
make sense of the implications of these concepts on software development,
deployment, and operations, and understand their interplay in building robust,
scalable, and resilient systems.

Chapter 5, The Key Role of Kubernetes
Kubernetes (also known as K8s) is more than just a buzzword; it’s an ecosystem
of very relevant technologies. You will understand its origins, its meteoric rise in
the tech world, and why it stands out as the premier container orchestration tool.
The chapter dissects its architecture, the philosophy behind its design principles,
and its pivotal role in the successful implementation of cloud-native strategies.

Chapter 6, Technical Kubernetes Topics
The sixth chapter is where (technical) things get serious. We will deep dive into
the technical details of Kubernetes, from understanding the intricacies of pods,
deployments, and services to unraveling more complex topics like ingress con‐
trollers, network policies, persistent storage, and stateful applications. Through
detailed explanations and visuals, you gain a profound understanding of how
Kubernetes works.

Chapter 7, Final Recommendations
Before taking your KCNA exam, this chapter will equip you with the final set
of tools and some pieces of advice. Benefit from a curated list of resources,
and real-life tips from professionals who have successfully treated this path.
Understand the common pitfalls, how to manage your time during the exam, and
strategies to tackle challenging questions.

Summarizing, this book will cover the step-by-step learning blocks of your KCNA
journey. Let’s now see the typical audience for both the KCNA exam and the Study
Guide.

The Book Structure | 13

Intended Book Audience
If you are reading this book, you likely have some preliminary knowledge or interest
on cloud computing and cloud native topics. For example, before starting the prepa‐
ration of the KCNA exam, you could benefit from some general knowledge of cloud
computing offerings from the main hyperscalers, Linux fundamentals, command line
experience, telematics and networking, etc. The perfect scenario would even include
between six and twelve months of hands-on Kubernetes experience.

But we know that this is not always the case. It is understandable that if you are
starting your cloud native journey with the KCNA certification, you can be missing
some or all these knowledge blocks. Regardless of your profile, here are some hints
for preliminary knowledge you should have before starting the certification journey:

Basic understanding of cloud computing
This study guide will cover the fundamentals, but it would be good for you
to know the public and private cloud fundamentals. For that, you can rely on
existing O’Reilly resources such as books and video lessons. You could even
pre-explore some cloud entry-level certification from the main hypescalers such
as AWS Certified Cloud Practitioner, Microsoft Azure AZ-900, or Google Cloud
Digital Leader. All of them include agnostic terms that will help you understand
the cloud computing type of resources and capabilities, which you can easily
apply by leveraging the amazing O’Reilly Cloud Labs resources.

Developer mindset
This does not mean that you need to be a developer yourself, but you will proba‐
bly need to understand the fundamentals of software development, the notion
of microservices (which we will cover during the next chapters), and some basic
software lifecycle terms. Same as before, you can definitively leverage other
O’Reilly learning resources to explore the fundamentals of software development.

Industry knowledge
Another piece we will cover here, but it will be good for you to have a clear
overview of the different technology companies related to the cloud computing
and cloud native industry. Names such as Google, Red Hat, Microsoft, AWS, etc.
should already sound familiar to you, but if you know their solution offering, this
process should be a bit easier for you. We will see managed Kubernetes services
from different big companies in Chapter 6, so you don’t need to worry too much
about this.

Containers and Kubernetes
This would be the best case scenario. If you have already used Kubernetes,
Docker, and other related technologies, this will be a plus for you during the
exam preparation. That said, we will cover the fundamentals required to pass
the exam, some additional resources for you to continue learning, and some

14 | Chapter 1: Introduction

technical aspects such as commands and architecture elements that may help you
with some specific exam questions. Also, you can leverage interactive learning
elements from O’Reilly, such as Kubernetes and Docker sandboxes to practice
any kind of deployment and configuration, including the kubectl commands we
will explore in Chapter 6.

In terms of roles, you may be just starting off in tech, or an experienced professional
from another technical area, a technical manager or even a leader willing to better
understand these topics. Or maybe you are just looking for new career opportunities.
You can see in Figure 1-1 the typical exam candidate profiles for the KCNA certifica‐
tion.

Figure 1-1. Typical Roles for KCNA Exam Candidates

Regardless of your previous background, motivation is key to reach the actual goal
of this study guide: learning the fundamentals of cloud native, including Kubernetes,
and of course passing the KCNA exam, which is not a proof of knowledge or
experience by itself, but for sure a great first step for anyone willing to join the cloud
native industry, and a powerful portfolio asset for new career opportunities. By the
end of the book we will recommend additional community and learning resources
that will complement your upskilling journey.

Regardless of your current activities, here are some examples of cloud native roles
that can inspire you to continue your cloud native learning path, based on the
potential career options:

Software developers
Responsible for designing, coding and testing the microservices that make up the
cloud native applications. They use tools and languages suitable for the cloud
environment and follow the best practices of DevOps and continuous delivery.

The Book Structure | 15

Operations engineers
In charge of deploying, monitoring and managing the cloud native applications
on the chosen platform. They use container technologies such as Docker or
Kubernetes to orchestrate the microservices and ensure their availability and
performance.

Solution architects
They define the vision, scope and architecture of the cloud native applications.
They make sure that the microservices are well defined, integrated and doc‐
umented. They also assess the business needs and technical requirements to
choose the best platform and cloud services.

Business analysts
Folks who identify the opportunities, problems and needs of the customer or
end user. They collaborate with developers, engineers and architects to define the
functionalities, use cases and acceptance criteria of the cloud native applications.

Project managers
To plan, coordinate and oversee the entire lifecycle of developing and implement‐
ing the cloud native applications. They manage the budget, schedule, scope and
risks of the project. They also facilitate communication among all stakeholders
involved in the project.

Cloud native engineer
Responsible for designing, developing and deploying applications based on
microservices, containers and cloud platforms.

Security engineer
Dedicated to protecting cloud native applications from external and internal
threats, applying security best practices from design to operation.

FinOps engineer
Specialized in optimizing the use of cloud resources to reduce operational costs
and improve energy efficiency.

QA engineer
Focused on ensuring the quality and reliability of cloud native applications
through automated testing, continuous monitoring and troubleshooting.

Business and sales professionals
Non-technical folks working for cloud-enabled companies, and/or selling
Software-as-a-service (SaaS) kinds of solutions.

Any other role related to cloud native and cloud computing companies and
activities.

16 | Chapter 1: Introduction

We are just starting, but take some time to reflect on your personal goals, besides the
KCNA exam and certification. What do you want to achieve, what is your envisioned
role, what kind of skills you will require to make it happen, and which percentage of
those is already covered in the Kubernetes and Cloud Native Associate certification.

Next let’s analyze what this Study Guide will realistically bring to your learning and
certification journey, keeping in mind that no book or resource will be a single source
of learning for your upskilling activities.

What To Expect From This Study Guide
Before getting started, you should know that this KCNA Study Guide is not a regular
book. Yes, you have text-based content, but we want it to be your living support for
your cloud native upskilling journey, and obviously to help you prepare and pass the
KCNA exam. Compared to other Kubernetes books and study guides, we are focusing
not only on the exam content, but also on the contextual and additional aspects
that may complete your learning experience. Also, we will refer to existing O’Reilly
Learning resources, so you can make the most of them.

For that purpose, we are including exclusive expert insights and interviews from
some of the key Kubernetes and KCNA actors, regular knowledge checks, links to
rich and highly evolving community repositories, reference to relevant communities,
and of course, a lot of applied knowledge. For this last point, we will be sharing
examples on how companies are adopting cloud native technologies and generating
value for their products and clients.

The next section includes contextual information about cloud native, and inspira‐
tional success stories from different adopter companies, and we will include other
emblematic success stories in next chapters, that will illustrate the continuous techni‐
cal and business value of Kubernetes and other cloud native projects.

Why Cloud Native and Why Now
This section will help you contextualize the information about the cloud native
ecosystem, some intro level about the CNCF (that we will explore later in Chapter 3),
and the intended audience for this KCNA Exam Guide.

The momentum of the cloud native movement is unstoppable. Not only because
of the Kubernetes project (don’t worry, if you don’t know about it, this book will
equip you with all relevant information), but also thanks to the exponential growth
of the landscape and communities, and their level of contribution during the last
years. Community-led ecosystems exist today for organizations, professionals, and
even investors, and the Cloud Native Computing Foundation (CNCF) is playing
the primary role as a catalyst. If you check the CNCF Landscape, there are more
than 1200 tiles that represent the small and big companies involved in cloud native

The Book Structure | 17

activities, about 820 company members, and a rich list of projects with an amazing
level of community engagement.

But before starting… What’s exactly “cloud native” and what does it mean for an
adopter company? We will see the difference between general cloud computing and
the cloud native term later, but even if the “cloud native” term has no one single
definition, we can take CNCF’s one as the main one:

“Cloud native technologies empower organizations to build and run scalable applica‐
tions in modern, dynamic environments such as public, private, and hybrid clouds.
Containers, service meshes, microservices, immutable infrastructure, and declarative
APIs exemplify this approach. These techniques enable loosely coupled systems that are
resilient, manageable, and observable. Combined with robust automation, they allow
engineers to make high-impact changes frequently and predictably with minimal toil.” -
CNCF Cloud Native Definition v1.0

This means having access to technical benefits typically related to cloud-enabled
systems, regardless of the work environment. Let’s see other definitions from big
technology companies, which are obviously related but bring different perspectives,
depending on the organization and their experience:

Google
Cloud native is an approach to building and running scalable applications to take
full advantage of cloud-based services and delivery models.

https://cloud.google.com/learn/what-is-cloud-native

Red Hat
Cloud native applications are a collection of small, independent, and loosely
coupled services. They are designed to deliver well-recognized business value,
like the ability to rapidly incorporate user feedback for continuous improvement.

https://www.redhat.com/en/topics/cloud-native-apps

Microsoft
Cloud native architecture and technologies are an approach to designing, con‐
structing, and operating workloads that are built in the cloud and take full
advantage of the cloud computing model.

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/definition

IBM
A cloud native application consists of discrete, reusable components known as
microservices that are designed to integrate into any cloud environment.

https://www.ibm.com/topics/cloud-native

18 | Chapter 1: Introduction

Oracle
The term cloud native refers to the concept of building and running applications
to take advantage of the distributed computing offered by the cloud delivery
model. Cloud native apps are designed and built to exploit the scale, elasticity,
resiliency, and flexibility the cloud provides.

https://www.oracle.com/cloud/cloud-native/what-is-cloud-native

AWS
Cloud native applications are software programs that consist of multiple small,
interdependent services called microservices. Traditionally, developers built
monolithic applications with a single block structure containing all the required
functionalities. By using the cloud-native approach, software developers break
the functionalities into smaller microservices. This makes cloud-native applica‐
tions more agile as these microservices work independently and take minimal
computing resources to run.

https://aws.amazon.com/what-is/cloud-native

Summarizing, besides the fact that cloud native is a fundamental building block
for all these companies’ businesses, and regardless of the specific definitions, the
important point of cloud native development is the ability to leverage capabilities
from cloud computing, and to develop applications in a sustainable and scalable way
by applying microservices, containerization, and other technologies and approaches.

But this level of adoption took some time. During the last two decades, we have
seen the beginning of what I define as the new era of cloud native. New era because
of the apparition of the CNCF, which has been growing since its 2015 creation, at
both community and technology level (we will explore more details in Chapter 3).
This generated not only a wide level adoption of cloud native technologies such as
Kubernetes, but also the creation of a solid community of experts and adopters. Last
but not least, the Foundation found its way, and the effervescence of events, training,
resources, and new projects has been constant during the last years.

In parallel, the initial resistance of some public and private organizations to any cloud
related topic, due in part to data residency and privacy concerns, is progressively dis‐
appearing. The cloud paradigm is becoming clearer for everyone, as well as its advan‐
tages for adopters. People are adopting and developing in ways that enable them
to leverage the numerous cloud benefits. Bottom-up tool adoption from technical
teams is guiding company-level overall maturity and making the decision process a
bit easier, and the relevance of cloud economics and FinOps (i.e., financial operations
oriented to optimize cloud investments) practices are helping companies to trust and
control their cloud-related investments. Perfect combination, great timing.

The Book Structure | 19

But the best way to understand its success and advantages is by sharing tangible
examples. Let’s explore a few public success stories from all sorts of companies
making the most of cloud-enabled technologies.

Inspirational Success Stories
Companies have progressively adopted cloud computing, and cloud native technol‐
ogies during the last two decades. Initially, these powerful technologies were only
available to a reduced group of technology-enabled companies such as Google, Ama‐
zon Web Services, etc., but other organizations have leveraged them and shown the
way to adopt and transform their businesses. Here are a few examples from the public
CNCF and Kubernetes.io case studies:

Boxed - https://boxed.com (acquired by MSG Distributors in 2023)
Boxed was an online wholesale retailer that offered direct delivery of bulk-sized
packages. As their customer base grew, they began seeking more agile and
scalable infrastructure solutions to handle their e-commerce operations. As the
company began to experience increased traffic, it was clear that their existing
infrastructure wouldn’t suffice for the surges in demand, especially during sales
or holiday seasons. Boxed faced the typical challenges of shifting to Kubernetes,
including training their team, managing stateful services, and monitoring in
a distributed environment. Boxed’s journey with Kubernetes and cloud native
emphasizes that even if a company was not a global giant, the principles of
scalability, resilience, and agility provided by Kubernetes are a great proof of
the democratizing power of open-source technologies, allowing companies of all
sizes to harness top-tier tech solutions.

Airbnb - https://airbnb.com
Airbnb is a leading platform in the peer-to-peer service for people to list, dis‐
cover, and book accommodations globally. As their platform rapidly grew, they
found themselves dealing with infrastructure that couldn’t easily scale with their
needs.

As the platform grew and traffic increased, deployment with their existing
monolithic architecture became riskier, slower, and more error-prone. To break
away from the limitations of a monolithic structure, Airbnb looked towards
a microservices architecture, where each function of their platform could oper‐
ate as a distinct service. Airbnb began by containerizing individual services,
progressively transitioning them onto Kubernetes. By starting with less critical
services, they could ensure that any potential issues didn’t critically impact their
platform, allowing them to learn and adjust their approach. Airbnb’s adoption of
Kubernetes highlights how even platforms with millions of users and listings can
leverage cloud-native technologies to achieve high levels of scalability, efficiency,

20 | Chapter 1: Introduction

and agility. Their journey serves as an inspiration to companies worldwide,
emphasizing the importance of adaptable infrastructure in today’s digital age.

Zalando - https://www.zalando.com
Zalando is one of Europe’s leading online fashion platforms. With millions of
customers, a vast inventory, and numerous daily transactions, they needed a
robust and scalable technical infrastructure to support their operations. Zalando
has actively embraced a mix of cloud-native technologies to bolster its technical
infrastructure, including tools like Kubernetes, Helm, Argo, and Prometheus.
For example, Zalando transitioned to Kubernetes for orchestrating their contain‐
erized applications, but they needed a way to manage Kubernetes applications
effortlessly. Helm, a package manager for Kubernetes, was adopted to streamline
deployments. Argo, a set of Kubernetes-native tools, was integrated to facilitate
continuous delivery in their Kubernetes environment. Zalando could maintain
and manage Kubernetes resources using declarative configurations, streamlining
their deployment process. They also used Prometheus to monitor their services,
set up alerts, and gain insights into their system’s health in real-time. Zalando’s
journey illustrates how a blend of cloud-native technologies can supercharge a
company’s infrastructure.

The New York Times (NYT) - https://www.nytimes.com
The New York Times, one of the world’s most renown newspapers, has been
transitioning into the digital age, with a vast portion of its readership now
accessing content online. With the rise in digital users and the delivery of news
in real-time, there was a need to ensure their infrastructure could support the
demand. They initially relied heavily on monolithic applications, which were
becoming increasingly difficult to scale and maintain, especially with a growing
global readership and the demand for faster content delivery. To better serve its
readership, NYT wanted to break its monolithic application into microservices.
Kubernetes was chosen as the orchestration platform due to its technical features
and the community support and the growing ecosystem. The New York Times
began its Kubernetes journey by containerizing its applications and then moving
them to Kubernetes. The team decided to start with non-critical applications to
understand Kubernetes better and to mitigate potential risks. Over time, as they
gained confidence and expertise, more critical parts of their infrastructure were
migrated. Thanks to this, the NYT handled reader traffic spikes more efficiently,
and started to run their infrastructure in a more cost-effectively manner.

A.P. Moller - Maersk - https://www.maersk.com
Maersk is one of the world’s largest shipping companies. As the global trade
dynamics and customer expectations evolved, Maersk recognized the need to
modernize its IT infrastructure to improve efficiency, reduce costs, and offer bet‐
ter digital solutions to its customers. Their legacy systems were disparate, slow,
and often siloed, and they wanted to consolidate their IT operations and intro‐

The Book Structure | 21

duce more agility and scalability into their system. There was also an urgent need
for real-time tracking, digital booking systems, and predictive analytics. Maersk
decided to partner with Microsoft Azure to leverage its robust cloud infrastruc‐
ture and services. Azure Kubernetes Service (AKS, Microsoft’s managed Kuber‐
netes service), became a core part of this transformation as the way to deploy,
manage, and scale containerized applications using Kubernetes, without the
complexity of managing Kubernetes clusters. Leveraging Azure’s analytics and
AI tools in tandem with their Kubernetes-deployed applications, Maersk could
derive actionable insights from their data, leading to better decision-making.
Maersk’s story exemplifies how even century-old companies, traditionally not
seen as tech innovators, can leverage modern cloud-native solutions like Azure
and Kubernetes to revolutionize their operations and enhance customer experi‐
ences.

These examples are just a few cases illustrating the importance of cloud native tech‐
nologies, and how companies are making the most of them. Keep in mind that the
increasing technology demand has also a positive consequence: huge talent demand,
which means a lot of professional opportunities for learners like you.

The next section (the last one of Chapter 1) starts with a brief self-assessment to allow
you to analyze in an honest way those topics that will require more effort. This study
guide was built for an audience with varying degrees of experience and knowledge;
some readers will certainly know about some topics, and less about the rest. Once
you determine your level of expertise, you can continue your exploration through this
book, devoting more time to the topics you struggled with.

Self-questionnaire for New Cloud Native Practitioners
As a cloud native learner, you have a double mission here: to broaden your mind to
the interesting and vast Kubernetes landscape and cloud native ecosystem, and (of
course) to help you pass the KCNA exam. For that to happen, there are several areas
of knowledge you will need to cover before even trying to take it.

This self-questionnaire will help you identify your current gaps and direct you to the
areas you should focus on. Don’t try to find the right answers; this is about evaluating
your actual level of knowledge. If you are totally new to cloud native and/or Kuber‐
netes and know very little, these questions will function as a preliminary structure for
your study guide.

Concretely, we will have a series of 45 multiple-choice questions for the following
topics, relatively simple and with only one valid answer:

• 7 questions related to the CNCF Ecosystem, mostly focused on high level details•
of the Foundation and its mission and mechanisms

22 | Chapter 1: Introduction

• 8 questions for cloud native concepts, as an initial validation of your understand‐•
ing of cloud computing and cloud native

• 8 questions for Kubernetes and orchestration topics, for to see start seeing the•
level of knowledge required for the KCNA certification

• 5 questions for Kubernetes commands, which are the kubectl instructions•
required to manage technical Kubernetes aspects. If you have never worked with
Kubernetes at technical level, don’t worry, we will explore these commands in
Chapter 6.

• 8 questions related to Linux fundamentals, which are technically NOT part of•
the official exam curriculum we will explain in Chapter 2, but that will help
you not only understand some Kubernetes-related areas of knowledge, but also
perform better at work.

• Last but not least, 9 questions for other cloud native projects, to explore the•
ecosystem of tools and projects (besides Kubernetes). We will describe them in
Chapter 3, but it is good for you to know if you have some initial or high level
knowledge of those tools.

Again, don’t try to guess or find the good answers just to “pass” this test. Focus on
choosing one based on your current level of knowledge, and take notes while you
review the correct answers, especially for those areas you know less.

Test 1 - The CNCF Ecosystem
1. What’s the primary role of the CNCF?1.

a. To deploy new cloud native applications, as a service for anyone to use thema.
b. To make cloud native universal and sustainable, by evangelizing and sup‐b.

porting projects
c. To fund Kubernetes-related projects that could benefit the rest of the commu‐c.

nity
d. To convert existing closed projects into open source so everyone can adoptd.

them and reuse their code
2. What does the second “C” of CNCF stand for?2.

a. Containersa.
b. Cloudb.
c. Computingc.
d. Containerizationd.

3. What does the term “cloud-native” primarily refer to?3.
a. Applications hosted exclusively on public cloudsa.

Self-questionnaire for New Cloud Native Practitioners | 23

b. Traditional monolithic applications migrated to cloud platformsb.
c. Designing and building applications to run on cloud-based infrastructurec.
d. Applications that use native APIs specific to a cloud providerd.

4. How does CNCF typically support its projects?4.
a. By providing a monetary incentive to project maintainersa.
b. By offering governance, marketing, and technical resourcesb.
c. By mandating the direction and feature set of projectsc.
d. By taking ownership and commercializing open-source projectsd.

5. What is the CNCF’s stance regarding vendor neutrality?5.
a. CNCF promotes only one vendor for each cloud-native technologya.
b. CNCF endorses whichever vendor provides the most fundingb.
c. CNCF maintains a strict vendor-neutral position to ensure a level playingc.

field
d. CNCF is primarily tied to a single cloud providerd.

6. How are projects typically categorized within CNCF’s ecosystem?6.
a. By their popularity and number of usersa.
b. By their age and the duration they’ve been in the marketb.
c. By stages, such as Sandbox, Incubating, and Graduatedc.
d. By the programming languages they are written ind.

7. Why does CNCF emphasize end-user involvement and feedback in its commu‐7.
nity?
a. To prioritize the commercialization of projectsa.
b. To understand real-world challenges and drive relevant innovation in itsb.

projects
c. Solely for marketing and promotional activitiesc.
d. To increase the sale of CNCF-branded merchandised.

Ok, you may have missed some questions, but that’s easy to solve as you will soon
know the role and details of the CNCF (Cloud Native Computing Foundation).
Explore Chapter 3 to learn more about this and other related topics.

Test 2 - General Cloud Native Concepts
1. What is the difference between monolithic and microservices architectures?1.

a. I have no idea what you are talking abouta.

24 | Chapter 1: Introduction

b. They are both different software design and architecture approaches, based onb.
one vs. several development “blocks”

c. The connection between data services from different pieces of the softwarec.
solution

d. They are similar, only front-end / UI differencesd.
2. What are the main advantages of containers when compared to traditional virtual2.

machines?
a. Containers run the whole Operating System (OS)a.
b. Containers are lighter and portable, and more efficient in terms of resourcesb.

required
c. Virtual machines are more agile and portablec.
d. Virtual machines are cheaper and more scalabled.

3. Find the term that is not directly related to cloud native3.
a. Infrastructure-as-Code (IaC)a.
b. DevOpsb.
c. Distributed Ledger Technology (DLT)c.
d. Elasticity (ability to scale units of workload up or down)d.

4. Which of these is an actual cloud as-a-Service model?4.
a. Platform as a Service (PaaS)a.
b. Back-end as a Service (BaaS)b.
c. Deployment as a Service (DaaS)c.
d. Front-end as a Service (FaaS)d.

5. Which of the following is a key advantage of a microservices architecture?5.
a. It requires a single technology stack for all servicesa.
b. It allows each service to be developed, deployed, and scaled independentlyb.
c. It ensures that a failure in one service will cause the entire application to failc.
d. It simplifies the application as a single, indivisible unitd.

6. In a cloud-native environment, what is the main purpose of “containerization”?6.
a. Increase the size of applications for better performancea.
b. Package applications with their dependencies and configurations for consis‐b.

tent deployment
c. Replace virtual machines entirelyc.
d. Store large volumes of data more efficientlyd.

Self-questionnaire for New Cloud Native Practitioners | 25

7. What is a primary advantage of continuous integration and continuous deploy‐7.
ment (CI/CD) in cloud-native development?
a. It requires manual testing after every change to ensure qualitya.
b. It allows for faster and more frequent release cyclesb.
c. It restricts developers from using new tools and technologiesc.
d. It eliminates the need for version control systemsd.

8. In the context of cloud-native architectures, what does “observability” primarily8.
refer to?
a. The ability to observe team meetings and discussionsa.
b. Monitoring tools that provide visibility only when systems failb.
c. The ability to understand the internal state of a system from its externalc.

outputs
d. Tools that only offer static metrics and logsd.

These questions are easy to answer if you are familiar with cloud native content, but
a bit challenging if you are just starting. Pay attention to Chapter 4, which discusses
these and others cloud computing and cloud native terms.

Test 3 - Kubernetes Topics
1. Choose the correct compute concept hierarchy, from small to large1.

a. Container, pod, node, clustera.
b. Cluster, container, node, podb.
c. Cluster, pod, container, nodec.
d. Orchestration, cluster, pod, container, noded.

2. Find the non-existent type of node in Kubernetes2.
a. Mastera.
b. Workerb.
c. Control-planec.
d. Taskd.

3. Which of these topics is NOT related to Kubernetes?3.
a. Observabilitya.
b. Networkingb.
c. Data flowsc.
d. Policiesd.

26 | Chapter 1: Introduction

4. Which object is responsible for scaling and managing a set of replica Pods?4.
a. ReplicaSeta.
b. Deploymentb.
c. StatefulSetc.
d. Podd.

5. Which of the following is a Kubernetes service that is used to externally expose5.
your Pod?
a. ClusterIPa.
b. NodePortb.
c. PodPortc.
d. ExposePodd.

6. In a Kubernetes cluster, what is the main role of the “etcd” component?6.
a. Scheduling pods on nodesa.
b. Load balancing the traffic to servicesb.
c. Storing configuration data in a key-value formatc.
d. Container runtime for executing the podsd.

7. What type of Kubernetes controller is best suited for managing stateful applica‐7.
tions?
a. ReplicaSeta.
b. DaemonSetb.
c. StatefulSetc.
d. Deploymentd.

8. What is the primary purpose of a “ConfigMap”?8.
a. To store secret data and passwordsa.
b. To define the desired state of a podb.
c. To store configuration data and parameters for pods to usec.
d. To allocate CPU and memory resources for a podd.

These Kubernetes topics are one of the core reasons and building blocks of the KCNA
exam. Don’t worry, if you don’t have the answers for some of them, you will certainly
get the required knowledge in Chapters 5 and 6.

Test 4 - Kubernetes Commands
1. Which kubectl command is used to view the detailed state of a specific resource?1.

Self-questionnaire for New Cloud Native Practitioners | 27

a. kubectl looka.
b. kubectl showb.
c. kubectl describec.
d. kubectl watchd.

2. If you want to view the logs of a particular pod, which kubectl command would2.
you use?
a. kubectl logs <POD_NAME>a.
b. kubectl get logs <POD_NAME>b.
c. kubectl describe logs <POD_NAME>c.
d. kubectl show <POD_NAME>d.

3. Which of the following kubectl commands would you use to deploy a container3.
using a YAML configuration file named deployment.yaml?
a. kubectl create deployment.yamla.
b. kubectl apply -f deployment.yamlb.
c. kubectl push deployment.yamlc.
d. kubectl start -f deployment.yamld.

4. If you want to get a list of all nodes in a Kubernetes cluster, which kubectl4.
command would be appropriate?
a. kubectl get nodesa.
b. kubectl describe nodesb.
c. kubectl list nodesc.
d. kubectl show nodesd.

5. Which kubectl command allows you to enter the shell of a specific container?5.
a. kubectl into <POD_NAME> -c <CONTAINER_NAME>a.
b. kubectl exec -it <POD_NAME> -- /bin/shb.
c. kubectl shell <POD_NAME> -c <CONTAINER_NAME>c.
d. kubectl run <POD_NAME> -c <CONTAINER_NAME>d.

The Kubernetes kubectl commands are one of the main areas of knowledge, not only
for the exam but for your professional activities. We will include relevant information
and additional resources for you to make sense of these technical instructions in
Chapter 6.

28 | Chapter 1: Introduction

Test 5 - Linux Fundamentals
1. Which command is used in Linux to view the contents of a directory?1.

a. viewa.
b. watchb.
c. dirc.
d. lsd.

2. In Linux, what is the primary purpose of the chmod command?2.
a. Change the ownership of a filea.
b. Change the file’s modification timeb.
c. Change the permissions of a filec.
d. Change the location of a filed.

3. Which of the following directories typically contains system configuration files?3.
a. /bina.
b. /etcb.
c. /usrc.
d. /tmpd.

4. Which command in Linux is used to display your current working directory?4.
a. cwda.
b. dirb.
c. pwdc.
d. located.

5. What is the primary role of the Linux kernel?5.
a. Providing a graphical user interface for usersa.
b. Running shell commands and scriptsb.
c. Managing the system’s hardware and resourcesc.
d. Offering network services like DNS and SSHd.

6. Which command in Linux is used to kill a running process?6.
a. terminatea.
b. stopb.
c. exitc.
d. killd.

7. Which file contains the system-wide environment variables?7.

Self-questionnaire for New Cloud Native Practitioners | 29

a. /etc/passwda.
b. /etc/shadowb.
c. /etc/profilec.
d. /etc/networkd.

8. Which command do we use to view the end of a file as it grows in real-time?8.
a. cata.
b. moreb.
c. tail -fc.
d. headd.

Depending on your existing background and experience, you may have passed or
failed most of these questions. In Chapter 3, we will point to a variety of Linux-related
topics, as well as some existing O’Reilly and external resources that will help to catch
up and gain some base knowledge, before taking the KCNA exam.

Test 6 - Other Related Projects
1. Identify the project that is NOT a CNCF one1.

a. Prometheusa.
b. Zeusb.
c. Litmusc.
d. Helmd.

2. Which CNCF project focuses on cloud-native monitoring and alerting?2.
a. Jaegera.
b. Helmb.
c. Prometheusc.
d. Envoyd.

3. If you’re looking for a CNCF project that serves as a package manager for3.
Kubernetes, which would you choose?
a. Helma.
b. TUF (The Update Framework)b.
c. gRPCc.
d. NATSd.

4. Which of the following projects is a service proxy designed to make network4.
interactions for microservices more resilient and observable?

30 | Chapter 1: Introduction

a. Rooka.
b. Linkerdb.
c. Vitessc.
d. etcdd.

5. If you need a distributed logging project, which one would you likely opt for?5.
a. OpenTracinga.
b. CoreDNSb.
c. CNI (Container Network Interface)c.
d. Fluentdd.

6. Find the CNCF project from all these open source initiatives6.
a. Apache Atlasa.
b. CRI-Ob.
c. Feathrc.
d. Eclipse Data Connectord.

7. Which CNCF project provides a high-performance, lightweight service mesh that7.
provides runtime debugging, observability, and security?
a. Istioa.
b. Jaegerb.
c. Argoc.
d. Linkerdd.

8. If you’re interested in a CNCF project that offers distributed tracing to help8.
troubleshoot latency problems in microservice architectures, which one would
you refer to?
a. CRI-Oa.
b. Vitessb.
c. Jaegerc.
d. TIKVd.

9. Which CNCF project aims to provide a consistent and platform-agnostic way for9.
plugins to handle network configuration of containers?
a. Helma.
b. Linkerdb.
c. CNI (Container Network Interface)c.

Self-questionnaire for New Cloud Native Practitioners | 31

d. etcdd.

This part is relatively complex for new learners, and even if the goal is not to memo‐
rize all CNCF project names, you will need to be aware of the most important ones
(especially graduated projects with relevant traction from developers and companies).
The KCNA certainly includes questions related to them, and this Study Guide will
help you develop this knowledge. As we can see in Figure 1-2, you will need to pay
special attention to some parts of the books and other resources we will mention in
this KCNA Study Guide, depending on your weakest areas of knowledge from the
self-questionnaire, and your preliminary level of experience and knowledge:

Figure 1-2. Action Plan from the Self-Questionnaire Results

Summarizing, these are relatively basic questions that cover only part of the KCNA
exam scope. However, if you have found them difficult, and hesitated while answer‐
ing some of them, you will need to carefully explore Chapters 2 to 7. Also, the
KCNA exam won’t go into highly practical Kubernetes details (compared to other
Kubernetes exams, the KCNA does not include hands-on labs for live exercises), but
you need to know the “ABC” of it. The key is to gain at the very least, basic knowledge
for all these relevant areas.

PLACEHOLDER Expert Insights 1 - Walid Shaari
Note that the interview below was summarized. To access the video and hear the
interview verbatim, please go to...

32 | Chapter 1: Introduction

PLACEHOLDER EXPERT INSIGHTS
Interview with Walid Shaari

Adrian: Hi. Welcome to this episode of this series of expert insights for the KCNA
exam. Today we have the pleasure to welcome Walid Shari who is an expert of the
Cloud Native community.

Walid: Thank you for having me here.

Adrian: Many of our learners here are getting started on their Cloud Native journey
so let’s start with an introduction. Who is Walid and what’s your relation with the
Cloud Native ecosystem?

Walid: I’m currently working for Amazon Web Services for the public sector as a
journalist and as a part of the containers community team, advocating for container
services. Before this, I was leading the Ansible and the Docker community in Saudi
Arabia where the adoption of containers and cloud native technology is still in its
early stages. So when Docker took the world by surprise, I started the meetup and
it was quite an eye opener. There was a lot of interest in containers, especially from
developers. And it opened a lot of doors for me. In fact, my current career is a
result of this community. So for the question of who’s Walid, I see myself as a bridge
between different cloud communities. I’m passionate about open source. And one
thing about CNCF and about a cloud native community, you can see that it’s the best
community in terms of inclusiveness and knowledge sharing. This sort of culture is
exhibited during KubeCon sessions and other events.

Adrian: Because everyone demystifies the fact that we cannot learn everything, the
ecosystem is huge. It’s not only about Docker and Kubernetes now, it’s about all the
projects around the community, all the certifications, all the training. So we are part
of an ecosystem.

Walid: Exactly. When the CNCF, the Cloud Native Foundation, was established with
the first project, Kubernetes, donated by Google at that time and helped by everybody
else. They saw the gap between the enterprises, the organizations and the people. One
of them being the skill gaps which they solved by providing curriculum, trainings
and measures for the companies to check. Are these people qualified enough to be
on my team or how can I upskill my team to be good enough? How can I have some
kind of measures to qualify people within my team or even incentivize them to learn?
Because of this, I’m very grateful to the CNCF in terms of finding these gaps and
addressing them and bridging between us, the individuals and the enterprises that
need us.

Adrian: You have been leading activities of CNCF on different journeys and events,
even some local events. I think it was exactly related to this exam as well, right?

PLACEHOLDER EXPERT INSIGHTS | 33

Walid: Right, I was a beta tester for the KCNA exam. It was really tough at that time
because basically you don’t have any content or anything that you can rely on except
whatever is publicly available and slack channels. I was also a beta tester for the
Prometheus observability exam. It’s good to do the beta testing because basically you
don’t have content to learn from. You end up learning a lot because you don’t have
resources and you try to work with the community and create resources or find your
way out.

Adrian: Right now, there is a lot of content out there. We are not missing content
and documentation. In the book, we mentioned the glossary from the CNCF that
is growing and improving. The official documentation from Kubernetes is amazing
now. But that’s the challenge when a new certification is coming out, right? We may
not know the topics or maybe we know the topics because of a curriculum but it’s not
clear what kind of questions we will get. I remember you were leading some events to
help prepare for this exam at some point. And there were some good video sessions
that were very helpful, even for me, to get some additional knowledge.

Walid: Yes. So I worked with Sayem Batak who is a CNCF ambassador and a very
well-known advocate when it comes to cloud native. His company Cebu Cloud also
has the Kubernetes Academy, which are helping, which is one good resource for
many certifications and many of the cloud native ecosystem. I participated with
Sayem and Sysdig in doing events with the local communities. The challenge here
is that you have to keep it fresh and to keep up to date. Exams like the CKA
(Certified Kubernetes Administrator), CKD (Certified Kubernetes Developer) and
CKS (Certified Kubernetes Security Specialist) change quite often. They get updated
every six months or so with the release of Kubernetes. For the KCNA, however, I’m
not aware of changes because it’s the, it’s supposed to be the high level. It’s supposed
to be the 10,000 feet level, but it’s not really because it was written by engineers. So
they have to, you’ll still find command lines, you’ll still find technical details. And
these are the ones that actually might confuse you. When I did the exam for the first
time, there were questions that stumped me. The answer choices look quite similar.
For example, scheduling. If you want to protect the workload from running in a
certain node, what do you use? Do you use labels or do you use affinity? Do you use
annotations? The answers are very close to each other. The other challenge with this
kind of exam is that because this exam is a multiple choice exam, it’s not a hands-on
exam. If it was hands-on and they know the answer, then absolutely it cannot be
vague. The questions could be vague, but if the deliverables are clear, it’s not an issue.
And usually the exam questions are a paragraph. So there are enough details there
to understand what is being asked. In the case of the KCNA, however, the questions
were very, very concise. Most of them are a single line. I don’t remember if I have seen
a question that was a paragraph or a couple of lines long at that time.

Adrian: I agree, I have seen a good variety of the different questions of the exam.
And they are focusing on specific details within a system. And this kind of example

34 | Chapter 1: Introduction

you provide was perfect, because this is the kind of detail that you can expect. That
is normally unexpected when we talk about an associate level kind of certification.
That’s the reason why we need to go deeper in our preparation, even if it’s an intro
level certification. Because that’s the kind of question we will get. And the other part
is, all the command lines. You mentioned the command lines. If I ask you about the
trickiest kind of questions that people can expect in a KCNA, what do you think will
be the trickiest one?

Walid: The trickiest one for newcomers is they need to remember the command lines.
If you are on the terminal, it will be very easy to get help but if you are a newcomer
and you don’t have enough hands-on experience, you might find it tricky to find the
right answer. Let’s say, for example, they are asking you about the CPU utilization
across nodes for the pods, or the pods utilization or something like this. You need
to be familiar with the Linux command line. In Linux command line, you usually
use ps (process show) and aox, or wef. This concept is not in the Kubernetes world.
In the Kubernetes world, there’s kubectl top. You may be familiar with kubectl top,
or kubectl top, or kubectl ps in Kubernetes. But I can try to confuse you with some
Linux commands that look genuine, but they are not. It could be a Linux command
mixed with kubectl commands.

Adrian: And if we add the prefixes, affixes and stuff, it gets tricky.

Walid: Yes. The other thing confusing is when you go into details. So I would say 60%
of the exam is actually Kubernetes focused. The other 40% is the ecosystem. It’s the
CNCF organization and the ecosystem of data observability and application delivery,
GitOps and things like that. So in this 60%, some of it really goes into details, like the
scheduling. I remember they do really go into details. I remember I got one question
wrong. I don’t remember it exactly now, but I got it wrong because I didn’t think
about it at that time, and I didn’t really prepare. So basically, for newcomers, who this
exam is actually targeted for, they need to know their theory, and they need to have
some hands-on knowledge. Andrew Brown has a free course, 14 hours, less than 20
hour course, with some hands-on follow-up. Basically, he walks you through some
exercises. A Cloud Guru, they have also a course with hands-on training. I’m sure you
also provide enough hands-on exercises and labs that people can go through. It’s a
pity that we lost some of the online available hands-on materials on Katacoda. Some
vendors like Red Hat have some available training but it’s very focused on their own
distribution, OpenShift. So they have some tutorials that people can follow in GitOps.
The other 40% of the test is more what I call level 100. For example, what is service
mesh? And what are the prominent solutions out there? What about solutions that
have been promoted or the ones that are not in the sandbox? What is the sandbox?
What does it mean for a project to be graduated? The life cycle of a project in CNCF.

Adrian: You mentioned the ecosystem including activities and projects. We know that
besides Kubernetes, there are other projects that are relevant for monitoring or for

PLACEHOLDER EXPERT INSIGHTS | 35

application delivery, et cetera. What are the projects that a new learner should be
aware of, right? So taht they can get a very high level knowledge of these projecst, and
can feel confident to answer these questions if they come up in the exam.

Walid: So the objective of the KCNA is to target newcomers and non-tech people that
are in the Kubernetes world. Iif you think about Kubernetes as a platform to host
other platforms, especially applications, the first thing one needs to do is to make sure
that he can deploy an application. This is the first thing I ask myself. So deploying the
applications from manifest, from YAML manifest, and then how to do it in the auto‐
mated way. For example, packaging using Helm charts, templating using customize,
automating the delivery using the GitOps. So basically, there is the Flux project, there
is the Argo CD project. There are so many demos, there are so many solutions out
there from cloud providers and from people that are supporting Argo CD that allow
you to practice. There are also certifications as well. Say I have a cluster, Kubernetes,
and this cluster could be managed in the cloud. What is the next thing I need to be
aware of? Monitoring. Observability. In the past, we would consider logs, but now it’s
more than logs. It’s the traces, because we are dealing with microservices. So which
services talk to each other? Where is my bottlenecks? How’s the latency? How’s the
performance? How can I troubleshoot real time? So observability is a must. Tools
like Prometheus, Grafana, and Loki and their integration with each other to provide
me with situational context. Maybe I have an error, and I can see the metrics. How
can they relate to each other? For any newcomer, they shouldn’t really focus on the
technology. They should focus problem solving. So why did Kubernetes come into
place? Why containers took the technology world and the business world by storm?
The portability, the resiliency, the business value. And this is one thing, when we’re
discussing some chapters in the exam earlier on, I remember that we were discussing
it in the comments. The value. Now, the FinOps is part of the exam, but it’s not very
obvious. The total cost of ownership, and the cloud adoption value. I’m not sure,
maybe because I did the exam earlier, so I’m not sure, but maybe now, I believe,
like after COVID, the last two years, I believe that this is an area where I see every
customer is focused on the FinOps, on the cost, on how to optimize cost, and how to
get better at chargeback and monitoring cost. Optimizing not just for cost, but also
for sustainability. Because the more you optimize for cost, you optimize usually for
sustainability at the same time. So it’s a win-win situation. So this is one area, I’m not
aware if the exam actually has been addressing it lately or not. It used to be a very
weak area, but it’s one of the areas that needs to be there. Back then, there was only
one project, KubeCost. I think KubeCost was the primary open source project for
monitoring FinOps.

Adrian: This is a good example given that this topic related to FinOps is a piece
of knowledge that are not officially or in a very specific way a part of the official
curriculum of the KCNA. However, it helps learners, because preliminary knowledge
like this will help people perform better on the exam and even better understand the

36 | Chapter 1: Introduction

concepts that are related. For example, I’m a telematics engineer, so working with
Kubernetes is more natural to me. Not saying that it’s easy, it’s very difficult, but it’s
more natural for me to understand because I have that background. With the variety
of learners profiles that we get on this exam, we can assume that people will have
stronger background in some specific areas and then weaker in others, so we are
encouraging them to analyze where they need to improve based on their existing
knowledge. What’s the best way to practice today’s exam topics? You have mentioned
a couple of them.

Walid: Nowadays, I mean, if you want to practice, if someone wants to practice on
his own laptop and learn about Kubernetes, there is Kind, K-I-N-D, Kubernetes and
Docker. First, they need to cover the basics, especially with Docker, where there are
good free courses out there. There is Kind, Minikube, and other services where you
can have a managed cluster. There are lots of YouTube contents. There are books, this
book, for example. There are meetups. I feel the meetups are good because they are
interactive. And there are the conferences like KubeCon and Kubernetes Community
Days. So CNCF saw that they cannot scale when it came to conference and that these
conferences is getting really huge and really starting to be expensive. So one way to
scale them up, doing Kubernetes Community Day around the world, and we see lots
of them nowadays. Usually, there are workshops around them also. Around the big
events, usually there are other events for specific technologies like GitOps, service
mesh, networking, special distributions, and the operator framework from Rancher.
They were doing this like every KubeCon, how to create an operator. The operator in
Kubernetes is how to combine human knowledge, operator knowledge, and technol‐
ogy, especially for stateful applications, into a packaging. And this packaging becomes
easy to install a software stack like Postgres cluster and how to update it, how to
monitor it. So it takes you from day zero to day two and beyond, hopefully. There
are many resources. The CNCF Slack is one resource. The CNCF events in terms
of meetups, in terms of chapters, in terms of conferences. Books from O’reilly and
from all other publishers. And the local events. There are some GitHub resources
also where they aggregate and curate some content. And the best thing is actually to
participate in projects. If someone wants to learn more about something and he has
a business problem or university challenge or project, it’s better to participate in this
project and explore and ask the community. Just ping somebody from the community
to ask, especially in Slack.

Adrian: In the book, we explain the notion of a contributor and maintainer, two
different types of roles. Have you been a contributor to any project or a maintainer?

Walid: Unfortunately, not for a software project. I have been maintaining resources
for the CKA and CKS resources. For projects, when I see a bug, when I see an
issue, I usually raise an issue at the very least, if I cannot create a pull request. I’m
trying to get involved with the documentation. The easiest thing, especially in the
CNCF-related project, there are tags with the first-time contributors. Basically, these

PLACEHOLDER EXPERT INSIGHTS | 37

tags help you find the easiest issues and challenges where you can start. There are
mentor programs. You can be part of the release team. They always publish that
on Twitter or Slack. Every new release of Kubernetes, regardless of your experience,
regardless of your past contributions, they always welcome new, fresh people, because
of the diversity and inclusion, to shadow and to learn from them. That’s how the
project has been going. I mean, I haven’t seen this in other projects.

Adrian: That’s gold, because it offers beginners like many of our exam takers here
with an opportunity to join projects. It doesn’t mean that we need to develop a core
functionality of Kubernetes but we can help with some documentation or checking
bugs. It can be joining just the meetings to learn. And that’s part of cloud-native
upskilling. There are different ways to do it, but I totally agree.

Walid: So giving feedback and helping with documentation, helping with localization,
these are the easiest way in.

Adrian: Perfect.I think we have covered more or less all the important topics for
this exam preparation for exam takers, but are there any other recommendations or
topics that you would like to highlight that you think will help people preparing their
associate-level exam?

Walid: For the associate-level exam, I would focus on the KubeCon business tracks.
They haven’t been that many, but they have been recent. You can learn about the
ecosystem well if you look at the keynotes from KubeCon and the business cases,
especially for observability, for premieres, especially for the application delivery,
GitOps and stuff like this. Other than that, Twitter is good. Follow James Barron,
RawCode, David Flemingen. He has RawCode Academy. And every couple of weeks,
he has a new topic, a new subject. He’s discovering a new technology, discovering a
new software stack or playing with it. We used to have TGIK. Unfortunately, we don’t
have it anymore. Thank God It’s Kubernetes (TGIK) run by Heptio earlier and then
later VMware. You can follow people in the community through social networks and
LinkedIn. For me, I get my feeds from X (Twitter) and LinkedIn. I follow specific
people in LinkedIn and I get the updates and news from them of what the new
projects are. For me also, I found out that OpenShift TV or OpenShift Red Hat
streaming, especially GitOps Guide to the Galaxy is very nice. They are more focused
on OpenShift, in general. Containers from the Couch is another one. Brendan Burns
from Microsoft, he has small short videos. VMware has the same short videos. I like
these small nuggets, actually. Maximum 15 minutes.

Adrian: Yes, like a mini Netflix show. You mentioned Brendan Burns from Microsoft,
Joe Baguley’s videos from VMware. There are lots of material. We even recommend
the documentary. You mentioned it once when we were reviewing the book, the
documentary that is very illustrative.

38 | Chapter 1: Introduction

Adrian: This is wonderful. If we had to summarize, I think that one of the words
for people to prepare their excellent journey is awareness. Just being aware of the
existence of things, the kind of projects that are there, the ways to contribute or to
participate, the kind of questions that you can get. That’s what we’re trying to cover
in this book as a study guide. We always mention, no book or study guide will be a
single resource to prepare for Kubernetes or Cloud Native topics. You need to go and
check all the resources and complement it and create your own mix. But this is very
aligned with what we’re trying to do there.

Walid: Yes. Different people have different tastes. Some people like books, some peo‐
ple like videos, some people like podcasts. Whatever floats your boat. But start with
the Linux Foundation, start with the GitHub repo. CNCF have a GitHub rebel for
their exam curriculum. They keep updating it. They actually mention some resources
there.

Adrian: Yes. Very good selection. By the end of the book, we are also adding, let’s
say, the champions in the community, including yourself, your personal repositories,
which you are recommending already, like a good structure for this exam. I remem‐
ber other people doing the same. These are good resources that are helping learners
around the world. Thank you.

Walid: Yes. Thank you.

Adrian: Well, I’m very happy we got some time to discuss these topics. I cannot wait
to release everything, the material, and what you mentioned, not in the format of a
video or a book. It’s small pieces for people to continue improving their learning and
to pass the exams. It’s not necessarily easy, even if it’s beginner level, but I think that
this is the way.

Walid: This is the way. True. Perfect.

Adrian: Well, thank you very much again. Have a lovely day.

Walid: Thank you, Adrian. Thank you very much.

We hope you have enjoyed this expert discussion with Walid Shaari. He is certainly
one of the top KCNA experts out there, and part of the original team who created the
exam questions. Feel free to explore his valuable KCNA resources, such as his KCNA
repository with relevant information to prepare the exam, and the amazing series
of three video sessions (including part 1 and part 2, and a deep dive of container
orchestration) with him and his colleague Brad McCoy.

This is the first of a series of expert interviews that will bring you applied and
exclusive insights, related to the KCNA exam and to the cloud native ecosystem and
its endless possibilities for upskilling, collaboration, and professional opportunities.

PLACEHOLDER EXPERT INSIGHTS | 39

PLACEHOLDER CONCLUSION - Chapter 1
We have now concluded the first of these seven chapters. At this point, you should
have a good initial idea of what the KCNA exam is about, and the learning approach
of this Study Guide. You have also gotten some exclusive insights on the KCNA exam
creation process, and some recommendations to start working on it. If you feel like
you are still missing some details, at both logistics and knowledge levels, don’t worry.
We will help you with everything.

Now, before moving to Chapter 2, please complete your study notes (if you are read‐
ing a hardcopy version of the book, feel free to use this page as a regular notebook)
with information about what you already knew and you are now aware of, the new
things you may have learned up to know, and those that you think you will need to
improve.

This may look a bit old fashioned, but remember that writing down things will
complement your reading and listening-based reading process. Even more, you will
have the opportunity to practice some of the concepts with hands-on platforms.

40 | Chapter 1: Introduction

Figure 1-3. Study Notes - Chapter 1

PLACEHOLDER CONCLUSION - Chapter 1 | 41

CHAPTER 2

The KCNA Exam as the Starting Point

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at shunter@oreilly.com.

Learning Kubernetes and getting certified is not an easy task. Just a few years ago,
available certifications on the topic were quite advanced for newcomers, but the
KCNA exam and certification are now feasible learning goals, with a good balance
between entry level elements and useful pieces of knowledge for Kubernetes practi‐
tioners. Also, it is an initial proof of value and knowledge for candidates looking for
professional opportunities.

If you are reading this book, that means you want to get the KCNA certification
from The Linux Foundation, but you may know less about Foundation itself (don’t
worry, we will cover it during this second chapter). Also, you should know that
passing this exam demonstrates a strong understanding of the Kubernetes and cloud-
native fundamentals, but it will also show that you have a grasp of the principles of
cloud-native development, security, etc. Thus, having this certification under your
belt prepares you for further advanced and specialized credentials as well as signaling
to the industry of your relevant and up to date knowledge on the topic.

43

But preparing and passing an online exam, especially if it is the first time you do it, is
not easy. In this chapter we will explain to you the exam details and logistics, in order
to set us up for success. We will be reviewing its structure, topics covered and what to
expect on game day.

Let’s start by learning about the exam creation and its origins.

The KCNA Certification by Linux Foundation and CNCF
Let’s start with the origins of the KCNA exam. Who created the KCNA exam? The
answer is The Linux Foundation, and the Cloud Native Computing Foundation
(CNCF), in partnership with Certiverse, an online platform for exam creation that
enabled a group of 15 renown subject matter experts to create test content asynchro‐
nously.

As a learner and exam taker, this information is important for you for a couple of
reasons: You will leverage The Linux Foundation’s online exam platform (the one we
will explain here, for you to get ready and not miss any important step). Also, the
content of the exam and other resources relies heavily on specific knowledge from
experts who often act as CNCF ambassadors or contributors, as we have seen with
Katie Gamanji’ intro, and Walid Shaari in Chapter 1.

As you begin learning about cloud native technologies, you will notice that both
The Linux Foundation and CNCF names come up frequently. In Figure 2-1, for
illustrative purposes and your general knowledge, you can see their foundation logos:

Figure 2-1. The Linux Foundation and CNCF Logos

The Linux Foundation was born in 2007 from the merger of two existing organiza‐
tions, the Free Standards Group (FSG) and Open Source Development Labs (OSDL).
It is a non-profit organization that “provides a neutral, trusted hub for developers and
organizations to code, manage, and scale open technology projects and ecosystems”. It
supports companies and developers to identify and contribute to projects that address
the challenges of industry and technology for the benefit of society.

44 | Chapter 2: The KCNA Exam as the Starting Point

The Linux Foundation (LF) is the umbrella organization for other projects and sub-
communities, one of which is the Cloud Native Computing Foundation. Actually, the
CNCF is one of the Linux Foundation’s largest sub-foundations but it has a unique
role to play in the ecosystem in that it serves as a community responsible for fostering
the growth and promoting open source cloud native computing technologies. You
can see in Figure 2-2 a sample of the list of LF projects. Feel free to bookmark
this URL and to explore its details to find other topics (e.g. databases, development,
financial operations for the cloud) that will complement your cloud native upskilling
journey.

Figure 2-2. : The Linux Foundation Projects and Communities

Seeing that the CNCF is just one of the many organizations under The Linux Foun‐
dation umbrella, it is not surprising that it is a wealth of knowledge when it comes
to online learning resources and documentation. The Linux Foundation works with
all these open source communities in order to create training, resources, and industry
standard certifications. It offers various learning paths composed of both self-paced
and instructor-led courses and materials, as well as certifications organized per skills
and technology groups.

The KCNA that is the subject of this book falls under The Linux Foundation’s
Cloud & Containers Learning Path. This and other learning paths include vast selec‐
tion of system administration, Linux development, telecommunications networking,
cybersecurity, DevOps, and other cloud topics. Based on the results of the self-
questionnaire in Chapter 1, you may want to explore the different learning paths,
based on the potential knowledge areas of improvement you have detected (i.e. those
where you feel you need to improve a bit more). For example, if you have failed most
of the Linux-related questions, you can go to the System Administration Learning

The KCNA Certification by Linux Foundation and CNCF | 45

Path, and check beginner level courses such as the Introduction to Linux class, which
is free and it’s available in both English and Spanish.

Related to the core requirements of the KCNA exam, you may want to take a look
at the Introduction to Cloud Infrastructure Technologies and the Introduction to
Kubernetes free courses, as they can bring a complementary perspective to the
existing catalog of O’Reilly Learning Kubernetes resources. Once again, depending
on your level of experience and professional background, the success formula will
combine this KCNA Study Guide as your main reference to prepare for the exam, but
also different sources of knowledge.

Apart from the aforementioned role as industry knowledge hub, and same as the
CNCF, the Linux Foundation international events (such as the Open Source Summits
in North America, Europe, LATAM, and China) conducts open source research, and
provides practical guidelines and support for open source collaboration. We recom‐
mend these and other pieces of knowledge, as they will complement your learning
experience and help you connect the dots between technologies, communities, etc.

Now that you know the overall structure of The Linux Foundation, and its role as
enabler for your professional up or reskilling adventure, let’s come back to the KCNA
exam and see the actual reasons for the creation of this certification, within the
end-to-end ecosystem of cloud native exams.

Why the KCNA matters and Why to Get Certified
The Linux Foundation’s Training and Certification team releases, in partnership with
edX and Linux Foundation Research, an annual Open Source Jobs Report to outline
the latest trends in open source careers and hiring demands, including those related
to cloud native and Kubernetes topics. This is the contextual information you need to
understand the actual value of the KCNA certification, as it will give you a clear idea
of the industry needs, and your market value as a cloud native professional.

If we take a look at the 2022 report and its previous editions, they showcase a clear
trend and the obvious need to bridge the talent gap, given the increasing demand
for qualified open source and cloud native talent. In 2022, 93% of hiring managers
reported difficulty finding sufficient talent with open source skills, while this same
figure was 87% in 2020. Perhaps not surprising, but the report also found that
hiring managers are more likely to hire someone with a certification. Concretely,
summarizing the report insights that are relevant for you:

The Unwavering Reign of the Cloud –
Skills in cloud and container technologies continue to be the most coveted, with
69% of employers on the lookout for such expertise. This demand is affirmed by
71% of open-source professionals.

46 | Chapter 2: The KCNA Exam as the Starting Point

Certifications Gain Prominence –
An overwhelming 90% of employers are ready to finance their employees’ certif‐
ication endeavors, and 81% of professionals aim to acquire additional certifica‐
tions, underscoring their rising value.

Compensation Emerges as a Key Incentive -
While financial rewards, encompassing salaries and bonuses, stand as the pri‐
mary retention strategy, an impressive two-thirds of open-source experts con‐
tend that an augmented salary would discourage them from job-hopping. As
flexible schedules and remote working become commonplace, monetary benefits
rise in significance, overshadowing lifestyle perks.

Increased Expenditure to Avoid Project Delays –
The prevailing approach to bridge skill deficiencies is through training, as indica‐
ted by 43% of hiring managers. However, hiring consultants to address these gaps
is on the rise too.

Persistent Lack of Open Source Experts –
A striking 93% of employers face challenges in recruiting individuals proficient
in open source. Moreover, 73% of these professionals believe they can effortlessly
transition to a new position if desired.

Escalating Cyber Security Imperatives –
Ranking fourth in recruitment decision influences, cybersecurity competencies
are highlighted by 40% of employers, only outpaced by cloud, Linux, and
DevOps skills.

Moreover, The Linux Foundation’s 2023 State of Tech Talent Report reiterates the
importance of industry certifications, and showcases cloud native and containeriza‐
tion as one of the key areas of hiring priorities for most of the companies, along with
AI and cybersecurity.

In parallel to this, the CNCF’s 2022 Annual Report, indicates that the KCNA exam
hit 4,000 registrations since its launch in November 2021, and that trend is similar
to other advanced certifications such as CKA, CKAD, etc. Other CNCF publications
such as the CNCF Annual Survey 2022, which contains a curated series of insights
from the cloud native industry, highlights the unstoppable adoption of cloud native
technologies (obviously, including Kubernetes), and reasons such as lack of talent or
security concerns being the main blocker for a lot of companies out there.

Let’s take a minute to reflect on this. What does it mean for you? Is the KCNA
exam a good investment of time and effort? Based on the industry trends and the
figures, it is clear that the KCNA will enable you to enter a promising industry, where
certifications have a clear value for hiring managers, and where the mix of high
demand and talent scarcity can give you the perfect scenario to shine and to continue
learning and progressing.

Why the KCNA matters and Why to Get Certified | 47

Although there is no official statistics on hireability of candidates passing the KCNA,
the benefit of this certification really lies in preparing you to get some initiative
experience in the job market, as well as by completing further advanced certifications.
Trust us for now, and let’s now deep dive into the details of the KCNA exam and its
official curriculum.

Exam Description and Curriculum
The Cloud Native Computing Foundation (CNCF) and the Linux Foundation define
the KCNA exam as the way to demonstrate foundational knowledge and skills in
Kubernetes and the wider cloud native ecosystem. Announced in 2021, the KCNA is
the way to “both prepare individuals for entry-level cloud roles and to sit for the KCNA
exam”. Yes, very similar to the goal of this KCNA Study Guide. Let’s start by the key
information of the exam:

Target audience
The KCNA serves as an introductory certification tailored for individuals aiming
to progress to advanced stages, by showcasing their foundational proficiency
in Kubernetes. It’s perfectly suited for those diving into or eyeing roles that
emphasize cloud-native methodologies.

Pre-professional profiles
Just because this is a beginner level exam does not mean that it is not suitable for
those already familiar with cloud technology. For any level of experience, there is
value in demonstrating solid understanding of cloud native topics which is what
this certification aims to do.

Certification insights
Earning the KCNA title authenticates an individual’s grasp of the overarching
cloud-native realm, with an accent on Kubernetes. The examination for KCNA
paves the way for individuals to immerse themselves in cloud-native tools and
readies them for other CNCF accreditations, such as CKA, CKAD, and CKS.

Proficiency showcase
Securing the KCNA accentuates an individual’s elementary acumen in Kuber‐
netes and allied cloud-native tools. This includes executing deployments via
rudimentary kubectl directives, discerning Kubernetes’ structure (encompassing
containers, pods, nodes, and clusters), recognizing the broader cloud-native
project spectrum (spanning storage, networking, GitOps, service mesh), and
assimilating the core tenets of cloud-native security.

Conceptual knowledge
Being a beginner level certification, the exam focuses on testing conceptual as
opposed to technical knowledge. This is meant to guide the learners to spend

48 | Chapter 2: The KCNA Exam as the Starting Point

more effort mastering the functions of the technology and its implementation
rather than to prove their ability to execute it in a simulated environment.

Entire cloud native ecosystem
How big is the entire cloud native ecosystem? The answer is large and growing.
However, the CNCF outlines the exact scope covered in this certification in their
curriculum. More discussion in this chapter, and detail to be covered in Chapter
3.

About the format: Even if the general description of the exam above shows KCNA
as an entry-level certification for practitioners who are starting out, the reality is that
it can still be a bit challenging for beginners. It doesn’t require practical knowledge
such as typing commands or making configurations (other advanced certifications
do have a working lab to test your knowledge), but the content being tested goes
into a level of detail that can only be acquired by practicing, or by studying very
targeted topics. In general, you will find multiple-choice questions (MCQ) with
several possible answers, including specific applied cases (questions that include a
specific company scenario, where you will need to choose a good option for their
needs). Last but not least, it is not an open-book exam so you will be relying on your
knowledge during the exam duration, with no access to this KCNA Study Guide or
other documentation.

In summary, the KCNA exam covers all basic pieces related to Kubernetes and
orchestration fundamentals, as well as cloud native orchestration, observability, and
application delivery. Most of these topics may not be familiar yet, but you will get
an introduction to them in the next chapters. Meanwhile, here is an overview of the
official KCNA curriculum, always updated and available via CNCF’s Github with a
high-level introduction of each exam topic.

This section is only an overview of the topics, but we will include
the details, descriptions, and explanations of each term within the
main five exam areas in Chapters 3 to 6. Meanwhile, we are includ‐
ing links to the main documentation references:

• Kubernetes.io Documentation - https://kubernetes.io/docs•
• CNCF Glossary - https://glossary.cncf.io•

You can consider these two URLs as the main source of terms and
descriptions, very useful for your cloud native upskilling, including
the KCNA exam preparation (some questions focus on core terms
that are described in these two pages).

Exam Description and Curriculum | 49

Part 1 - Kubernetes Fundamentals
It counts for 46% of the total exam content, and we can refer to this block of the
content as a Kubernetes 101 section. Maybe even 201, because some concepts such as
technical commands or architectural elements are not trivial. Concretely:

Kubernetes resources
One of the fundamental aspects of Kubernetes is its variety of K8s objects.
Concretely, some terms for new kinds of resources that you will discover soon,
such as pods, deployment, controllers, kubectl and its commands, ReplicaSets,
etc. These are the resources necessary to build cloud native architectures with
K8s.

Kubernetes architecture
Given the available resources, this portion of the test refers to the architectural
design and components of Kubernetes-enabled applications. How each compo‐
nent interacts with each other to carry out the function of the architecture.

Kubernetes API
As a Kubernetes practitioner, you will be dealing hands-on with this component.
The Kubernetes API is the interface that allows users to interact with Kubernetes
components to adjust resources and perform settings and configurations.

Containers
This portion deals directly with the notion of containerization, and its role
for microservices implementation. The concept of containers is at the heart
of Kubernetes. The Container Orchestration section below builds upon this
concept.

Scheduling
Scheduling in the context of Kubernetes implementation refers to the concept
of automated assignment of resources, in order to distribute workloads in an
optimal way, maximizing resource utilization and application performance.

Part 2 - Container Orchestration
This second block counts for 22% of the total exam content. Even if it is related
to the first “Kubernetes Fundamentals” section, it focuses on the core notion of
orchestration, and its management in production-level systems. It includes:

Container Orchestration Fundamentals –
Given that Kubernetes is one of the many industry tools available for container
orchestration, it’s natural that this portion makes up a big chunk of the exam.
This section deals with basic notions related to automating deployment, scaling,
and management of containerized applications.

50 | Chapter 2: The KCNA Exam as the Starting Point

Related topics –
Terms like runtime, cloud native security, networking, service mesh, and storage
are peripheral, yet essential to the practitioner’s ability to successfully orchestrate
and maintain containers in Kubernetes.

Part 3 - Cloud Native Architecture
The architecture part punts for 16% of the total exam content. Besides being an
important piece of the exam, it is also a great introduction to cloud native architec‐
ture and development topics, as well as the fundamentals of the CNCF and some
industry standards.

Cloud Native Architecture Fundamentals –
This section dives into the general cloud native architecture and relevant con‐
cepts beyond Kubernetes. Touching upon but not limited to microservices,
DevOps and Continuous Integration / Continuous Deployment pipelines (CI/
CD). Topics related to general cloud native knowledge areas and autoscaling and
serverless concepts.

Community, Governance, and Personas –
These are specific topics related to the Cloud Native Computing Foundation
(CNCF) and their setup. Given that K8s is the first project under their umbrella,
reinforcing open source culture and governance is an important factor for the
exam.

Open Standards –
CNCF and the Linux Foundation supports implementation and adoption of
international open source standards for cloud native, containerization, and
orchestration technology development. It contains several acronyms that may
be unknown for you right now, but that guide the standardization and alignment
of the different projects and initiatives.

Part 4 - Cloud Native Observability
The first of the two sections that count for 8% of the total exam content and grade. It
contains admin, maintenance, and support building blocks that will help you manage
your cloud native systems.

Telemetry and Observability
These terms (that we will explore later in Chapter 6) bring a holistic view of
cloud native systems based on quantitative information about their performance.

Exam Description and Curriculum | 51

Prometheus
Similar to Kubernetes, Prometheus is one of the earliest CNCF projects, and
one of the most relevant at cloud native level. It is a widely adopted tool for
monitoring and alerts.

Cost Management
This section aims at having the practitioners demonstrate their understanding
of cost implication of cloud utilization. It covers techniques and tools to control
cloud native costs..

Part 5 - Cloud Native Application Delivery
The last of the five sections, which is oriented to application development topics,
counts for 8% of the total exam content too. It goes from the fundamental capabilities
of cloud native applications, to the methods and tools to move them to production
level.

Application Delivery Fundamentals
Cloud native development is based on principles such as fluidity, resiliency, and
scalability. These principles drive the implementation of cloud native systems.

GitOps
Git-enabled control of cloud infrastructure, from development to deployment,
and app lifecycle. GitOps enables an end-to-end cloud infrastructure manage‐
ment framework for consistent development, making it easy to follow best practi‐
ces and guidelines. This section includes existing CNCF projects such as ArgoCD
and Flux.

CI/CD
It refers to the continuous Integration and Continuous Deployment for automa‐
ted cloud native development, deployment, and testing, and it includes other
CNCF projects like Flux and Argo.

All topics mentioned above will be covered in this study guide, and here is the high
level mapping of the Study Guide chapters, with the KCNA curriculum:

52 | Chapter 2: The KCNA Exam as the Starting Point

Figure 2-3. Mapping of the KCNA Curriculum & The Study Guide Chapters

Now, even if the official KCNA curriculum is the main scope reference for this
exam, you may find some additional pieces of knowledge that cannot be intuitively
deduced from the curriculum itself. For example, you may get a mix of descriptive
and command-related questions, which makes sense but maybe wasn’t clear for
newcomers when they read the official curriculum. Or the questions may rely on
specific preliminary knowledge, and some previous experience. For that reason, we
will add a few additional areas of knowledge that we believe will support both your
KCNA journey, and the post-certification work activities you choose.

Additional Areas of Knowledge (outside of the official
curriculum)
Once again, this section includes non-official topics, which means that they are not
directly evaluated in the KCNA exam, but that will help you identify additional
knowledge gaps depending on your background, and make passing this exam a bit
easier for you. Here is the authors’ selection, for your own analysis and preparation:

Part 6 - Kubernetes 101 Hands-on
Yes, the official curriculum includes Kubernetes fundamentals, and at this point it
should be clear for you as a candidate that the exam won’t include any interactive
platform to test your Kubeneretes hands-on experience. But that does not mean that

Additional Areas of Knowledge (outside of the official curriculum) | 53

you won’t need to know practical commands, or at least be able to identify them and
know how to use them.

For this purpose, here are our recommendations:

• Bookmark, read, and understand the main kubectl commands. We will of course•
discuss them later in Chapter 6, but the official documentation includes those
that you need to know, including the syntax and a very useful cheat sheet you can
print and study.

• Play with the O’Reilly Kubernetes Sandbox. This and other sandboxes offer a•
one-click on demand workspace for you to start exploring and testing different
commands and configurations.

• Leverage the existing interactive Kubernetes labs from O’Reilly. They are based•
on the amazing Katacoda platform, and they offer a variety of step-by-step
scenarios (e.g. defining and deployment resources, launching nodes). A big part
of them were developed by one of our industry experts, specifically Benjamin
Muschko who will join us in Chapter 4.

Part 7 - Linux Fundamentals
You will get similar recommendations from our Chapter 3 expert, but knowing Linux
and its terminal will make your exam and post-exam life easier. Let’s see what you can
do, in a pragmatic way, before taking your KCNA exam:

• Besides understanding Linux and its origins, you could focus on the command•
line, which is like the kubectl (a user interface without windows or icons, just
text). For you to get some initial knowledge, you can leverage existing cheat
sheets, or some applied tutorials for renown industry organizations.

• Same as before, you can leverage the O’Reilly Sandbox platform. Concretely, you•
have two options for a regular Linux command line, and a second version for
Rocky Linux (in case you want to work with Red Hat-compatible environments).
The O’Reilly Learning platform also includes specific Linux scenarios.

• Ideally, if you have time and you want to go deeper, you can always take the•
Linux Foundation Certified IT Associate (LFCA) exam, or at least take a look at
the related intro level and free resources.

Part 8 - API-enabled Development
As a cloud native and Kubernetes professional, you will leverage Application Pro‐
gramming Interfaces (API) as a way to connect to remote services, that will include
the Kubernetes API (a very important feature that we will explain later), but also
other development-oriented APIs you may have as part of your end-to-end solution.
The concept is pretty simple, but it can be a bit challenging or even abstract for

54 | Chapter 2: The KCNA Exam as the Starting Point

newcomers. If you have never worked with APIs, we recommend you to spend some
time, getting familiar with API-enabled environments by:

• Checking the vast list of API topics from the O’Reilly Learning platform.•
• Leveraging didactic material from industry actors such as Postman (which is an•

API platform for building and using APIs), and have some 101 intro videos and
documentation.

Part 9 - Telematics
You may not even know this, but there is an area of study called telematics that
combines telecommunications, electrical engineering, and IT / computer science.
One of the core key building blocks is what we call networking, which is the ability to
connect diverse systems so they can operate interactively. For example, the internet is
a network that connects your personal device with remote resources such as websites,
and online platforms.

This area relies on relatively complex knowledge, traditionally related to engineering
jobs. However, if you work with cloud native tools (including Kubernetes), the notion
of networking will come to you at some moment. We will cover this topic in Chapter
6, but don’t hesitate to take a look at the official K8s Networking documentation
before.

Part 10 - Web Development
This one can be considered as a basic area of knowledge. Building web-based applica‐
tions doesn’t necessarily mean building regular client-facing websites. It can be used
to create internal platforms that rely on the same kind of architecture and networking
elements.

If you have never worked on this kind of project, you can leverage existing resources
from both O’Reilly Learning, and other relevant actors, with special focus on the
notions of client-server model, and web servers. Once again, these topics are not part
of the evaluated knowledge of the KCNA exam, but understanding the fundamentals
will help you conceptualize the technical details related to cloud native and Kuber‐
netes.

Part 11 - Applied Usage
Last but not least, and as we saw in Chapter 1 with our inspirational success stories,
one of the best ways to integrate the learnings from the different official and non-
official areas of study of the KCNA exam is to understand how companies are using
cloud native and Kubernetes, and their typical use cases. Here are a few examples,

Additional Areas of Knowledge (outside of the official curriculum) | 55

but you can continue exploring this in parallel with your regular exam study and
preparation process:

Artificial Intelligence
You can containerize a machine learning model, deploy it as a scalable API
service for usage. The model can be deployed within a Kubernetes cluster, as this
will help handle large volumes of requests, scale based on demand

Website Creation
Imagine an e-commerce website with microservices like product catalog, user
authentication, payment gateway, in which we containerize each microservice
and deploy them in a Kubernetes cluster, so each service can work and scale
independently, preventing features and adapting to peak demand moments

Cloud Computing
Imagine a company working with two or three public clouds such as AWS,
Azure, or GCP. If the company wants to avoid vendor lock-in and desires to
utilize the same kind of resources via multiple cloud providers, or by combining
on-premises and cloud, they can containerize applications, databases, etc.

Internal Development
We can of course containerize our developed applications, and leverage tools we
use as part of the development lifecycle. For example, if we want to implement a
CI/CD pipeline, tools like Jenkins or GitLab CI will help us get the pushed code
from the repository, then build, test and deploy a new container.

Edge Computing
Same as cloud computing, imagine that you want to process data close to an
IoT device (i.e. sensors) across different geographies. Lightweight Kubernetes
distributions like K3s, you could deploy applications closer to the source, reduce
latency, and ensure efficient data processing at the edge.

This concludes the first block of topics related to the KCNA exam, including its
origins, structure, scope and format, key areas of knowledge, and some additional
topics you may want to explore to complement your preliminary knowledge. Let’s
proceed now with your study plan and exam logistics.

Exam Study Plan
So now that you have an idea what the exam will cover and what is the weight for
each section, how do you go about tackling it? The recommended study plan and
checklist below is our plan.

This is what we recommend for an average test taker who may have some experience
with Kubernetes and is looking at taking this exam for the first time. By no means is
this a one-size fits all mandate. You can consider this a list of what we have found to

56 | Chapter 2: The KCNA Exam as the Starting Point

work as a starting point to help you customize your learning plan for what works best
for you.

Step 1 - Determine your Current Level of Knowledge
We have already discussed this between Chapter 1 and 2, it is all about being aware
of our limitations, and adapting the study plan in consequence. How familiar are you
with the topics covered in this exam? If you have never heard of Kubernetes until you
picked up this book, then perhaps you have to spend a little more time studying for
this exam than if you have been working with it for a year.

No matter what level you are at, we recommend you take a diagnostic of your
level of knowledge and determine where your strengths and areas of focus are. The
self-diagnostic questionnaire from Chapter 1 is a good place to start, but this is a
continuous exercise, throughout your KCNA exam study journey.

If you are honest with yourself about what you know and don’t know, how you do
on this diagnostic test will showcase your current level of knowledge and determine
your readiness to tackle the exam. So at this point, if you have not taken the test yet,
we recommend that you bookmark the current page, go again to Chapter 1, and come
back here with your results.

Step 2 - Prepare and Adopt an Study Schedule
Now you are equipped with knowing the areas you need to pay attention to, you
can take the time you need to master these topics. We recommend creating a study
plan that includes between 1-3 hours per day in the weeks leading up to the exam.
Depending on your schedule and rigor, some students spend up to 15 hours per
week for 4 weeks studying before the exam, but it really depends on your previous
background, and ability to study and prepare for the exam. Concretely, ensure that
you understand each topic section that is covered in the exam, and take the time to
go over topics you are less familiar with. The ones outlined by your diagnostic test
as areas of improvement, or those that you will learn from the first team in the next
three chapters, are certainly what you should be focusing on.

Step 3 - Focus on the Right Material
This book is a comprehensive guide on the KCNA certification and exam. All the
materials covered in this book are tailored towards laying the fundamentals to Kuber‐
netes and preparing you for the KCNA exam. They go hand in hand with the candi‐
date’s handbook and other material published by the Linux Foundation. However,
though we consider this book to be THE guide on the KCNA exam, we did not
create the exam (and even if we did, the exam questions change regularly). The Linux
Foundation and CNCF are the official sources of information regarding the exam,
its rules and curriculum. Familiarizing yourself with the Cloud Native landscape

Exam Study Plan | 57

through their online presence is helpful in getting an up to date understanding of this
ever evolving open space.

Exam Logistics and What to Expect
The KCNA exam and its logistics preparation process is very specific to the The
Linux Foundation online examination platform and rules. Especially for first time test
takers, you will need to pay attention to these steps and get ready for the exam day.
Note that this information is accurate as of the time this book is published, some
details may change but the general process should be the same. Let’s see the main
steps:

Step 1 - Schedule Your Exam
All certifications and exams provided by The Linux Foundation can be scheduled on
their online portal. The process is always the same, regardless of the exam:

1. Go to their Training and Certification platform https://training.linuxfounda‐1.
tion.org

2. Select My Training Portal, this is key to enter your own use space.2.

Figure 2-4. The Linux Foundation - My Training Portal

3. In the authentication page you can see in Figure 2-5, create an account (sign up)3.
if you are a first time user, or Sign in with your credentials or SSO (i.e., existing
Gmail. Facebook, Github, and LinkedIn accounts) if you already have one. If
you’re creating the account for the first time, a request to verify your email will be
sent to the email address provided.

58 | Chapter 2: The KCNA Exam as the Starting Point

Figure 2-5. The Linux Foundation - Login and Sign-Up

1. From your new learning dashboard, scroll down and find the browse section.1.
Once there, click on search for content, and type “KCNA” to find the KCNA
exam from the list of courses and exams available. As seen below in Figure 2-6,
there are two options to register for the KCNA exam. You can register for the
exam alone for $250, or opt for the collection that includes the exam and the
Kubernetes and Cloud Native Essential Training (LFS250) for $299. As a test
taker, you have the choice to take it in English or in Japanese.

Exam Logistics and What to Expect | 59

Figure 2-6. The Linux Foundation - KCNA Exam Options

1. After selecting the KCNA exam, from Figure 2-7 click Enroll Now and complete1.
the checkout and payment process. You can make the payment online using a
credit card, and/or add any coupon you may have from an ongoing campaign,
or vouchers from your company’s membership (it can be the case for CNCF and
The Linux Foundation members).

60 | Chapter 2: The KCNA Exam as the Starting Point

Figure 2-7. The Linux Foundation - KCNA Enrollment

1. After you complete the process, you will be able to explore the checklist, and to1.
read the exam handbook.

2. Finally, you can proceed to schedule your exam. This option is only available2.
once you complete the preliminary steps. Pay attention to the date you prefer,
and the timezone. Online exam booking platforms will adapt to your specific
timezone, and let you choose among the available exam languages.

This series of steps conclude the initial logistics required for your KCNA exam. Now,
let’s proceed with the preparation details.

Step 2 - Exam Day Preparation
Prior to the day of the exam, you are highly encouraged to review the official candi‐
date handbook to familiarize yourself with the requirements. All Linux Foundation
Certification Exams including the KCNA are conducted online and monitored by a
proctor during the exam session via streaming audio, video and screen sharing feeds.

Given the demanding nature of the exam, you want to make sure that your computer,
the system and the internet bandwidth to work well during the period. Therefore, it
is highly recommended that you take the Online Proctoring Compatibility Check and
review the PSI Bridge Platform System Requirements to make sure your laptop meets
the online system proctoring requirements. Note that the latest version of Google
Chrome is recommended for the exam, and that you are not allowed to have other

Exam Logistics and What to Expect | 61

applications or browser windows running except the one on which the exam is being
shown. You’re allowed to use one active monitor, either built in or external. However,
dual monitors are not allowed. It may seem like a lot of work just to make sure your
computer is working fine during the exam, but it is better to make the necessary
changes to your system when you have the time rather than stressing out at the last
minute. The full list of system requirements is available here.

Given that your live audio and video will be taken (to proctor and review your
KCNA exam) the candidates must consent for it, keeping in mind that the test session
recordings are stored for no more than 90 days. Also, in order to be admitted to take
the exam, you need to present an acceptable form of unexpired Government-issued
original, physical identification (ID). Admissible forms of ID include passports, driv‐
er’s license, and national identification. With the ID, you have to make sure that the
room you’re taking the test in is quiet, private and well-lit. You must be alone in the
room without any notes or electronics other than your computer.

Similarly, the Linux Foundation mandates that the test takers comply with their
examination rules. Some may be intuitive whereas the others are good to know
beforehand. For example, your testing location must be clutter free with clear walls.
No paper or print-outs hanging on the wall. The room must not be a public space
such as a coffee shop or shared workspace. The candidate is not allowed to chew
gum, eat or drink except for clear liquids from a clear, label-free bottle or glass. Once
you sit down for the exam, you are not allowed to leave the desk or step out of the
view of the webcam. You may be tempted to jot down an answer or a question on
a piece of paper next to you, but note that the use of paper or electronic devices
outside of the computer screen is not permitted during the exam. These misconducts
are taken seriously. Certain violations of these rules may result in a warning from the
proctor, while others can result in immediate termination of the exam.

To make it easier to prepare for the exam, the Linux Foundation published a checklist
of steps the candidate must complete before the exam. The steps are available on
your platform and the candidates must complete certain steps in order to be able to
schedule the test or to take it. The My Portal platform is the one stop shop for all
things you need to complete the certification exam. Apart from registering for the
exam, you can also view your exam results there.

Finally, on exam day, after all the preparation you’ve done, it is time to do the exam.
Ensure you show up and are ready to launch the exam within 30 from the appoint‐
ment time otherwise, you may be considered no show and not able to reschedule.

You have 90 minutes to complete the KCNA exam. You need 75% or more to pass
the exam. All Linux Foundation multiple choice question exams are conducted on a
simple UI. You can review the screenshots here to familiarize yourself. To navigate
between questions, you can click the previous or next button. You can also flag an
item for later review which will be highlighted on the Review Screen. Once all the

62 | Chapter 2: The KCNA Exam as the Starting Point

questions are answered, a prompt to click Review Exam. The exam will end when the
timer completes or when you click Finish Exam.

Step 3 - Post-Exam Logistics
The results do not follow immediately after the exam is completed. Once available,
you will receive a notification via the email you used to register for the exam. Only at
that moment, you will be able to see your exam result on the My Portal platform.

If you pass, then congratulations, your certification is valid for three years. You
will have the possibility to add the certification as a verifiable badge on LinkedIn
and Credly, which is a platform that officially manages and recognizes your digital
credentials. You can choose to share it with potential employers or anyone you wish.
Once shared, they’ll be able to see that your KCNA certification is truly issued by the
provider and is valid. Add your certification to your resume and show it off, but keep
in mind that you will need to create a Credly account with the same email you already
used for The Linux Foundation access (otherwise you will be able to add and link
different email addresses from your Credly Profile settings).

However, if you did not pass the exam on your first try, do not sweat. The exam
comes with one retake opportunity (same as any other The Linux Foundation
exams). If this happens, you will leverage your exam experience, and actual under‐
standing of the kind of exam questions to continue study, focus on your weakest areas
of knowledge, and take the exam again.

This is everything in terms of exam process and steps. Let’s now see the potential
learning and certification paths, beyond the official certification roadmaps, in which
the authors of this KCNA Study Guide will provide you with an applied industry-side
point of view. This means, what you can do before and after taking the KCNA exam
to gain knowledge and experience, and to finally be part (if you are not still there) of
the next annual reports that highlight success and great professional opportunities.

Potential Certification Paths
Although the KCNA exam is currently not a prerequisite for other professional
advanced certificates to follow, the fact that it focuses on the functional concepts
related to the technology makes it the go-to first step certification every practitioner
should consider obtaining. This exam’s focus on laying solid groundwork is why
the CNCF recommends it as a good preparation for further advanced exams and
certifications in this field. But there are also some preliminary steps that may help
you achieve the goal.

In Figure 2-8, you can see the customized end-to-end view of your potential certifica‐
tion and learning paths as an KCNA candidate, before and after passing this exam, so

Potential Certification Paths | 63

you can contextualize where the KCNA stands and how you can both prepare it, and
make the most of it for your future learning journeys:

Figure 2-8. Potential Certification Paths for KCNA Candidates

This overview contains some vendor-related certifications from different providers,
mainly for illustrative purposes but also as a way to explore potential industry spe‐
cializations. Also, once you conclude your KNCA journey, you will have a clear
understanding of administration, development, monitoring, security, operations, and
cost management topics that will help you choose other potential areas of certifica‐
tion. Last but not least, The Linux Foundation has an official IT Career Roadmap that
includes the KCNA and other certifications, so you can take a look and prepare your
very own certification steps.

Summarizing, passing the KCNA exam is a signal to potential employers that you’ve
embarked on the journey of cloud native computing learning, but it is just the
beginning. Here is our selection of exam that you may want to consider in your
learning journey:

Kubernetes and Cloud Security Associate (KCSA)
The KCSA is a certification exam for Kubernetes and cloud-native security at
associate level, same as the KCNA. It was initially released in 2023, and it can
be seen as a complementary option, to continue diving into other Kubernetes-
related topics, before going to hands on, advanced certifications. Basically, it will
test your ability to configure, monitor and assess the security of Kubernetes clus‐
ters, and it covers topics such as security policies, controls, risks, vulnerabilities,
incident response, forensics, and best practices. Our recommendations:

64 | Chapter 2: The KCNA Exam as the Starting Point

It is a good option to continue your certification path after the KCNA, as you will
leverage your Kubernetes knowledge here too. It is a pre-professional exam that
prepares you for the CKS we will explain in this same list.

Based on the industry trends from The Linux Foundation and the CNCF, cybersecur‐
ity and container security are some of the hottest topics out there, as there is a clear
knowledge gap and a lot of demand. You may analyze if security-related topics are
interesting to you.

Check the exam page to explore all details and pricing.

Certified Kubernetes Administrator (CKA)
This online exam is especially tailored to learners who wish to demonstrate their
technical knowledge on Kubernetes administration. It’s a performance-based test
that requires solving multiple tasks from a command line running Kubernetes.
With 30% of the content being on hands-on troubleshooting intermediate level
issues commonly faced by administrators, the exam is the next gateway to hands-
on certifications. From a KCNA learner point of view, here are our recommenda‐
tions:

The CKA is not an easy exam. The knowledge requirements difference between the
KCNA and this certification goes from knowing the fundamentals of cloud native and
Kubernetes, to actually having several years of experience in managing Kubernetes-
enabled systems.

Based on the same trends that justify the value of the KCNA certification, obtaining
the CKA is a great career advantage for you, but also for companies looking for talent
and wanting to become a Kubernetes Certified Service Provider, as they will need
at least three employees CKA certified to be eligible. That along with the scarcity of
available CKA professional (around 40,000 CKAs worldwide in 2022), and the pro‐
jections of Kubernetes adoption (e.g. Gartner predicts that by 2027, more than 90% of
global organizations will be running containerized applications in production), it will
guarantee you great professional opportunities and benefits.

The exam details, requirements, and the official exam guide are available via The
Linux Foundation’s exam page.

Certified Kubernetes Application Developer (CKAD)
If you are planning to pursue a career as a Kubernetes-enabled application devel‐
oper, then this certification is next on your list of training. This 2-hour exam
tests practical knowledge on application design, build, deployment, all the way
to maintaining its security policies. As opposed to the KCNA exam, the CKAD
candidate is encouraged to have hands-on knowledge of container runtimes and
microservice architectures, from a software developer perspective

Potential Certification Paths | 65

If you decide to go from KCNA to these advanced certifications, the choice between
the CKA and the CKAD may be your first big decision. In reality, it is pretty simple.
Are you planning to leverage Kubernetes technologies, or do you prefer to play an
admin role in K8s environments? Depending on your preference, you may choose
one or the other.

Same as KCNA, CKA, the market demand is clearly justified. Now, if you choose the
CKAD, you may leverage the skills for different kinds of activities: typical software
development, creation of new AI-enabled solutions, website development and man‐
agement, etc. The developer side of the CKAD will be beneficial for different kinds of
profiles, check the official curriculum to see if it is your case. Based on statistics, the
CKAD is one of the popular options.

The exam information and requirements is, as usual, available at The Linux Founda‐
tion exams website.

Certified Kubernetes Security Specialist (CKS)
While the two certifications and the KCNA do not have a prerequisite, the CKS
requires the candidate to have an active (non-expired) CKA certification. Does
it make this an advanced certification? Well, the Linux Foundation marks this
performance based exam as being suitable for intermediate level candidates,
but in the big scheme of things, this one is pretty advanced. The certificate
aims at testing competence on a broad range of best practices for securing
container-based applications and kubernetes platforms during build, deployment
and runtime. The setup for this test differs from the ones mentioned prior as the
test is based on a real world environment through a cloud security simulation
platform.

The CKS is for sure not your next step from the KCNA, but it can be your end-goal
if you decide to go into the cloud native security road. The job market demand is
clearly favorable for this type of role, however if it will take you a few certifications to
get here.

Same as before, all information is available at The Linux Foundation’s CKS website.

Summarizing, looking at these four certifications give us a glimpse into a large set
of specializations that Kubernetes practitioners can develop for themselves. Note that
these certifications are only the starting point to demonstrating your knowledge,
as cloud native practitioners learn industry best practices for their respective needs
through hands-on experience and industry specific training.

In the next section, we will discuss with another great industry expert. Concretely,
Jim Zemlin, Executive Director at The Linux Foundation. We will explore the vast
certification ecosystem related to the KCNA, the impact of the KCNA exam for the
general talent generation process, and insider information to enable you to make the
most of this upskilling journey.

66 | Chapter 2: The KCNA Exam as the Starting Point

PLACEHOLDER CONCLUSION - Chapter 2
We are now concluding our second Chapter. The main goal was to provide you with
all required information to noy only pass the exam, but to also see the possibilities
beyond the KCNA and how they will leverage the skills you develop in this KCNA
journey.

Concretely, we have analyzed the origins and details of the KCNA exam, its end-to-
end logistics, as well as the related learning opportunities and other certification
paths. This should give you a good overview of the different options in front of you,
as well as the specifics of the KCNA certification, its official curriculum, and the
relation with all the preliminary topics we discussed in Chapter 1.

The next Chapter 3 will focus on the CNCF, its organizational details, some CNCF
projects besides Kubernetes, and of course exclusive expert insights from a very
relevant CNCF actor. Let’s get started.

Figure 2-9. Study Notes - Chapter 2

PLACEHOLDER CONCLUSION - Chapter 2 | 67

CHAPTER 3

CNCF and the New Era of Cloud Native

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at shunter@oreilly.com.

As you know already, the KCNA exam covers not only Kubernetes topics, but also
other cloud native fundamentals. That includes the CNCF structure, which is related
to how an open source community works, including its governance, project incuba‐
tion processes, individual contribution, etc. We will cover all that in Chapter 3. As a
KCNA candidate, this information is important for you because it is part of the scope
of the exam questions, but it is also very relevant for your cloud native journey.

The CNCF Origins
To set the stage for the new era of cloud native, let’s first examine the origins of the
CNCF. The CNCF is a non-profit that was created in 2015 to push for the use of
cloud native computing and to give cloud native technologies a place to call home.
It was set up by a bunch of tech companies like Google, Red Hat, and IBM because
they saw the need for an organization to speed up the adoption of cloud native
technologies and best practices.

69

From CNCF’s website: “The Cloud Native Computing Foundation (CNCF) hosts critical
components of the global technology infrastructure. We bring together the world’s top
developers, end users, and vendors and run the largest open source developer conferen‐
ces. CNCF is part of the nonprofit Linux Foundation”.

Currently, the Foundation is supported by companies and individual members who
are committed to advancing the cloud native landscape. The CNCF is governed by
a board of directors and is overseen by the The Linux Foundation, the non-profit
organization that promotes the use of open source software. The CNCF website itself
is a great source of information and resources.

Reality is that the establishment of the CNCF in 2015 had a great impact on the cloud
native industry, as it provided a central hub for the development and promotion
of cloud native technologies and best practices. Before that, there was no single
organization that was dedicated to advancing the cloud native landscape, and many
different technologies and approaches were being developed in isolation.

The CNCF has played a key role in standardizing and consolidating the cloud native
ecosystem, and has helped to drive the widespread adoption of cloud native technolo‐
gies by providing a forum for collaboration and sharing of ideas and knowledge. The
CNCF has also helped to establish a set of common practices and standards for cloud
native development, which has made it easier for organizations to adopt cloud native
approaches and technologies.

Overall, the birth of the CNCF in 2015 had a significant and lasting impact on the
cloud native industry, and has helped to accelerate the adoption and development
of cloud native technologies and practices, including Kubernetes but also other great
cloud native projects we will explore in this chapter, as they will be relevant for your
exam preparation.

Timeline of The Cloud Native Industry
Here are a series of events that describe the evolution of the cloud native industry
before and after the creation of the CNCF, and that we can see later in Figure 3-1:

70 | Chapter 3: CNCF and the New Era of Cloud Native

Figure 3-1. Cloud Native Timeline

Concretely, there were several key events that led to what we understand as cloud
native and containerization today. Starting from the old times:

The containerization origins
• 1979 - UNIX (a family of operating systems that derive from the original AT&T•

UNIX OS, developed by Bell Labs) releases the chroot system call in its version
7. chroot is a command in Unix and Linux that allows changing the root direc‐
tory for a running process and its children, often used for sandboxing, testing,
and recovery purposes. The idea was to provide an isolated disk space where
processes think it’s their root, but in reality, it’s just a subdirectory of the real root
filesystem. This can be seen as the predecessor of what modern containerization
is, even if it had more limited features.

• 1999-2000 - FreeBSD (an operating system used to power servers, desktops, and•
embedded platforms) releases jails, which are an evolution from the chroot, and
relatively similar to today’s containers.

• 2003-2004 - Google develops the Borg system. Technically, Borg was a “cluster•
manager that runs hundreds of thousands of jobs, from many thousands of dif‐
ferent applications, across a number of clusters each with up to tens of thousands
of machines”. Google released a paper that explains its technical details. Basically,
Borg was the predecessor of Kubernetes, but it wasn’t open source yet.

• 2008 - The Linux Containers (LXC) project is officially released, as an umbrella•
project behind initiatives such as LXC, LXCFS, distrobuilder, libresource and

The CNCF Origins | 71

lxcri, with the goal of offering distributions and vendor neutral environment for
the development of Linux container technologies.

• 2012 - Heroku introduces the 12-Factor app methodology, which is a well known•
set of best practices designed to enable the creation of software-as-a-service
(SaaS) applications. It provides guidelines for building web applications that can
be easily deployed to the cloud, scale gracefully, and remain resilient in the face of
changing infrastructure and environments.

• 2013 - Docker is released, setting a new industry reference for containers. It was•
introduced to the public by Solomon Hykes at a PyCon event. It was initially a
project within dotCloud, a platform-as-a-service company. The introduction of
Docker brought the concept of containers to the masses, making it simpler to
create, deploy, and run applications using containerization. One of the keys of
its success was the almost immediate release of its code as open source, weeks
after the announcement. You can read more about its origins at Docker: Up &
Running, 3rd Edition (O’Reilly).

• 2013 - Google presents Omega, a research project within the company, focused•
on the next generation of cluster management, which can be seen as an evolution
of Borg.

• 2014 - Google releases Kubernetes as an open-source version of Borg, which•
means opening their code to all contributors and other companies. During the
first months, Joe Beda did the first Github commit, and companies like IBM,
RedHat, Microsoft, and Docker joined the Kubernetes community. It was the
beginning of the Kubernetes era.

The rise of Kubernetes and the CNCF
• 2014 - As an example of the initial traction from the main industry actors,•

and after a series of collaborations with the Google team, RedHat decided to
support container orchestration with Kubernetes for their OpenShift V3.0. This
is very illustrative as the previous versions were based on Linux Containers and
other in-house developments from RedHat, but both the community support
and the specialized knowledge of the K8s Google team (thanks to their extensive
experience with Borg) were key factors for other companies to join.

• 2015 - Google and the Linux Foundation establish the Cloud Native Computing•
Foundation (CNCF) and Google donates the Kubernetes code. The idea behind
it was to have CNCF govern the future open source development of K8s and
interoperability and performance for both public and private clouds, and on-
premises.

• 2015 - Kubernetes 1.0 is released, with a total of 14,000 commits and more•
than 400 contributors. This version included improvements on App Services,
networking and storage, cluster management, performance, and stability.

72 | Chapter 3: CNCF and the New Era of Cloud Native

• 2015 - The Linux Foundation, with Docker and other organizations, launched•
the Open Container Initiative (OCI) to create open industry standards around
container formats and runtimes. As part of the initiative, Docker donated its
container format and the runC runtime (more information here).

• 2016 - The Pokemon GO video game uses Kubernetes via Google Cloud, becom‐•
ing a very notorious success story because it was the largest K8s deployment on
Google Container Engine at the moment.

• 2016-2018 - During this period, several cloud native projects were launched,•
including Helm (package manager), KOps (Kubernetes operations), or Minikube
(for local implementations). Other projects like Istio came from the collaboration
amongst Google, IBM and Lyft.

• 2018 - Kubernetes becomes the first CNCF graduated project, and both Apache•
Mesos and Docker announce support for it. The adoption trend at this point was
clear.

• 2018 - At that point, all the main hyperscalers, such as Google, Amazon, Micro‐•
soft, and IBM had released cloud-enabled managed services to support Kuber‐
netes.

• 2021-2023 - CNCF went from 120 to 170 projects, with more than 214,000•
contributors around the world. The new era of the cloud native ecosystem is a
reality.

These are just a few examples of how the cloud native industry, led by CNCF
and their contributors, has evolved in just a few years, reaching alignment around
containers-related formats and standards, with high levels of collaboration thanks to
the open source dynamics. Let’s now see the internal governance and way to work of
the CNCF.

Community dynamics and governance
As an open-source organization, the CNCF plays a pivotal role in guiding the future
of cloud computing and the technologies that underpin it. As a leading foundation,
it acts as both a steward and advocate for cloud-native technologies by providing
a structured environment, resources, and expertise, and it ensures that open-source
projects can grow, mature, and thrive in a rapidly changing technological landscape.
Some key aspects that explain their central role:

Multi-stakeholder structure
The CNCF relies on a series of groups with different roles, and a distributed
structure that enables accountability and collaboration. We will see the different
committees and groups.

The CNCF Origins | 73

Vendor Neutralism
One of the primary values of CNCF is to be vendor-neutral. This means that no
single company has undue influence over a project, regardless of their participa‐
tion and contribution to the project and its code. Instead, a community-driven
approach ensures that projects remain open, free, and not tied to any single
vendor’s commercial interests.

Project hosting and lifecycle
CNCF hosts multiple open-source projects that align with its mission. Those
projects go through a defined life cycle that includes Sandbox, Incubating, and
Graduated stages. We will explore this later in this same chapter, but the idea
behind this model is to adapt the support to the projects, at each phase of their
growth.

Promotion and upskilling
CNCF organizes and sponsors events, providing forums for collaboration, net‐
working, and knowledge sharing. They also support training and certification
programs to bolster cloud-native skills in the industry.

Community and Collaboration
CNCF emphasizes building a collaborative community. It provides guidelines on
governance, a code of conduct, and resources to ensure projects foster inclusive
environments.

Continuous advocacy
As the umbrella organization, CNCF plays a crucial role in marketing and pro‐
moting its projects. Projects under the CNCF umbrella receive assistance in
reaching a broader audience, which can be pivotal for open-source initiatives.

Regarding the structure, the CNCF is governed by a board of directors (officially
called the Governing Board, or GB) and is overseen by the Linux Foundation. That
board of directors is responsible for setting the overall direction and policies of
the organization, as well as approving new projects and members. These directors
are representatives from member companies, individual members, and the Linux
Foundation.

Besides the board, as we can see in Figure 3-2, there are several committees and
working groups that are responsible for specific areas of the organization, made up
of volunteers from the CNCF member companies and individual members. They are
responsible for things like project management, marketing, and events.

74 | Chapter 3: CNCF and the New Era of Cloud Native

Figure 3-2. CNCF Structure (source: CNCF)

Concretely, besides the governing board, there are other key elements for the CNCF
structure that help make the community dynamics work:

Technical Oversight Committee (TOC)
A group of technical experts who oversee the technical direction, provide neutral
guidance, and evaluate the projects submitted to CNCF. The TOC plays a critical
role in steering the foundation’s technical vision and direction, and it’s responsi‐
ble for the technical leadership and decision-making in different areas such as
project oversight, and connection with the rest of CNCF stakeholders.

End User Community
The group of cloud native adopters that provides insights and feedback on the
direction of cloud-native technologies, ensuring that projects remain relevant to
real-world needs. From CNCF’s website, the end user community is a group of
“experienced practitioners who help power CNCF’s end user-driven open source
ecosystem, steering production experience and accelerating cloud native project
growth”. You can explore the full list of end user companies, including those from
the previously mentioned success stories.

Special Interest Groups (SIG)
These groups focus on special topics based on areas of interest or needs from
the community, which are not directly related to one single project. Transversal
topics such as contributor strategy, storage and security, network, and others are
part of the existing group of SIGs.

The CNCF Origins | 75

Other Technical Groups
The CNCF hosts a number of technical advisory (TAG) and working (WG)
groups. While TAGs are permanent and intended to support technical activities,
WGs are meant to accomplish a specific goal and disband once that goal is
achieved. As a community member, you can find existing TAGs and propose new
WGs.

Overall, the CNCF governance structure is designed to ensure that the organization
is transparent, accountable, and responsive to the needs of its members and the cloud
native community. Part of their great mission is to create a series of resources that will
be very useful for your KCNA journey, let’s explore them.

Key CNCF resources
The CNCF has a growing set of resources for companies and individuals to learn
about cloud native technologies, enabling you to interact with other actors and to
join the cloud native practitioner community. We will highlight their usefulness for
your KCNA upskilling and general learning. Some of the resources that the CNCF
provides to the community include:

Community Forums
The CNCF boasts an active community that collaborates across various platforms
and channels, by maintaining a number of online platforms where members can ask
questions, share information, and collaborate on projects. Concretely:

Online discussion
The CNCF community has an active Slack workspace where members can dis‐
cuss topics related to cloud-native technologies, ask questions, and share insights.
Within the CNCF Slack, there are channels dedicated to specific CNCF projects
like Kubernetes, Prometheus, and others. Recommendations:

• Join the cloud-native.slack.com workspace, and explore the different chan‐•
nels. For your KCNA journey, the #certification channel will help you con‐
nect with other exam candidates and post any questions.

• In addition to the CNCF Slack, you may want to take a look at the dedicated•
Kubernetes Slack workspace, which is not managed by CNCF but includes
the #kcna-exam-prep and #kubernetes-novice channels that contain good
advice and resources too.

Mailing Lists
CNCF uses mailing lists extensively for asynchronous communication, including
general CNCF mailing lists and project-specific lists where discussions about
development, issues, and updates related to that project take place. Recommen‐
dations:

76 | Chapter 3: CNCF and the New Era of Cloud Native

• Join the general mail list to get updates from CNCF, as they usually include•
recommendations and opportunities that will support your KCNA and cloud
native journey.

• Explore the other subgroups to join related mail lists, more specific to CNCF•
projects, working groups, etc. There is nothing specific to the KCNA but it
will keep you updated with relevant community and project-related informa‐
tion.

• The CNCF mailing list system is similar to the one from The Linux Founda‐•
tion. It basically relies on the groups.io platform to provide scalable email
distribution and subscription. In your case, if you have never used it, you
will need to create a free account before joining the general mail list and the
subgroups.

Repositories
CNCF-related topics are mostly hosted on CNCF’s GitHub. As any other repo,
it contains code, issues, pull requests, and discussions related to that project. As
part of the official repo, there is a feature called Github Discussions that includes
some forum-kind of discussions for each subfolder of the repo. Major projects
have their own repository, for example:

• Kubernetes - https://github.com/kubernetes/kubernetes•
• Prometheus - https://github.com/prometheus/prometheus•
• Helm - https://github.com/helm/helm•
• We will explore these and other CNCF-related projects by the end of Chapter•

3.

Community Meetings
Regular community meetings are held for CNCF projects, SIGs, and TAGs. These
meetings often take place over Zoom and are open for anyone to join. Agendas
are typically shared ahead of time, and recordings or minutes of the meetings are
often made available for those who couldn’t attend, and the calendar is publicly
available for you to check the next meetings. As a KCNA candidate, it may be
good for you to choose and join some of these meetings, to understand the work
dynamics of these groups.

Social Channels
The CNCF has a YouTube channel where it uploads recordings of webinars,
community meetings, conference talks, and other relevant content. This is a great
resource for those looking to catch up on what’s happening within the CNCF
ecosystem, and you can leverage it to watch past events and to understand how
the CNCF works. Also, the CNCF has a presence on platforms like Twitter
(including a second account for the Student Community), LinkedIn, and others.
These channels are used for announcements, sharing updates, and engaging with

The CNCF Origins | 77

the broader tech community. Last but not least, the CNCF Blog is a great source
of updated information, news, and applied cases.

In person and online events
The CNCF hosts a number of events throughout the year, which brings together
experts and practitioners from across the cloud native ecosystem to share ideas and
knowledge. The CNCF also supports regional events and meetups around the world
(feel free to explore the upcoming ones by location). Concretely:

KubeCon + CloudNativeCon
This is the flagship conference of the CNCF and focuses on Kubernetes (thus
“KubeCon”) and other cloud-native technologies. The event typically happens
multiple times a year, rotating between North America, Europe, and Asia Pacific
regions. At KubeCon + CloudNativeCon, attendees can expect keynotes, techni‐
cal sessions, workshops, and various networking opportunities.

As a cloud native and KCNA learning, you should pay attention to any scholar‐
ship or sponsorship opportunity to join these events. CNCF usually encourages
diversity by bringing practitioners from all around the world.

Kubernetes Community Days
Organized by local Kubernetes communities, the K8s Community Days events
focus specifically on Kubernetes and its ecosystem. They are meant to promote
face-to-face collaboration and provide local communities an opportunity to net‐
work and learn from one another.

Webinars
Throughout the year, CNCF hosts various webinars that focus on specific
projects, technologies, or trends within the cloud-native ecosystem. These webi‐
nars are usually free to attend and provide a great way for community members
to stay updated without traveling to a physical event.

CNCF End User Events
These events are tailored for end users of cloud-native technologies, providing
them a platform to share their experiences and learn from each other.

CloudNativeDays
These are smaller, localized events that might be seen as regional or more focused
versions of KubeCon. CloudNativeDays events are typically organized in collabo‐
ration with local cloud-native communities.

Project-Specific Events
Given the wide range of projects under the CNCF umbrella, there are also
project-specific events, meetups, and summits that take place. For example, there
might be a Prometheus conference or a Fluentd summit.

78 | Chapter 3: CNCF and the New Era of Cloud Native

Cloud Native Security Day, Cloud Native Storage Day, and others
These are co-located events often held alongside KubeCon + CloudNativeCon,
focusing on specific areas within the cloud-native ecosystem, like security or
storage.

Educational resources
The CNCF offers a range of educational resources, including online courses, webi‐
nars, and tutorials, to help people learn about cloud native technologies and best
practices. As a KCNA candidate, these resources are gold for you to understand cloud
native topics, and to prepare your exam:

The CNCF Landscape,
An interactive tool that allows you to get a single view of CNCF-related actors
and projects, with filters by provider, CNCF project, industry, etc. It is (really)
full of information so you will need to navigate it, but it is a very rich and always
updated source of information. For purely illustrative purposes, because it cannot
be shown in just a single page (or even a website), you can see in Figure 3-3 what
the landscape looks like, or you can simply visit it by typing l.cncf.io:

Figure 3-3. CNCF Landscape (source: CNCF)

The CNCF Origins | 79

The CNCF Guide
As an extension of the landscape, this extensive guide summarizes the key aspects
of the CNCF community, highlighting the areas of knowledge (including techni‐
cal 101 sections) and the most relevant projects, so you can see it as one of the key
source of information to prepare the KCNA exam (actually, an amazing reference
for you to save via Ctrl+P and keep it close to this KCNA Study Guide).

The official CNCF Glossary
This online glossary is the source of official descriptions for cloud native terms
from the KCNA certification. It includes descriptions for most of the topics that
are part of the exam, and the good news is that the community has evolved
it a lot during the last years, including multi-language options (check the top-
right menu of the glossary web) to see the terms in other languages such as
Spanish, Portuguese, Italian, Hindi, Bengali, Dutch, etc. This, along with the
official Kubernetes Documentation, are great complementary readings, and a
clear reference for the kind of questions you will get on exam day.

The CNCF End User Tech Radars
These technology radars are great for you and the rest of the community to
understand the level of adoption related to specific projects and tools. Basically,
CNCF asks several end user companies about these tools, to understand how
they are using them, and their recommendation. Concretely, the radars have
three levels:

Adopt
The CNCF End User Community wholeheartedly endorses this technology.
After extensive use across various teams over extended durations, it has
consistently demonstrated reliability and value.

Trial
The CNCF End User Community has experienced positive outcomes with
this technology. We suggest giving it a thorough evaluation.

Assess
The CNCF End User Community has tested and sees potential in this tech‐
nology. We advise considering it when it aligns with particular requirements
in your project.

There are several themes for the technology radars (based on the recommenda‐
tions from the community) including DevSecOps, multicluster and secret man‐
agement, database storage, observability, and continuous delivery. All of these
can be great indicators for KCNA learners like you to understand the current
adoption trends, and the important projects and tools to learn about.

80 | Chapter 3: CNCF and the New Era of Cloud Native

The Cloud Native Trail Map
Another key piece of knowledge for your KCNA exam preparation. The trail
map is a visual description of how adopter enterprises can start their cloud
native journey. This is relevant for you as a KCNA candidate not only because
of the explanation of the different cloud native steps, but also the CNCF project
examples of solutions available for each of the steps (e.g. Argo for CI/CD). We
will explain all these projects later in Chapter 3.

Figure 3-4. Cloud Native Trail Map (source: CNCF)

In parallel with this cloud native journey, you can explore the cloud native
maturity levels, which is a CNCF framework for adopter companies to under‐

The CNCF Origins | 81

stand how to move on, along five different maturity levels: Build, operate, scale,
improve, and optimize. You can combine this and the cloud native trail map
stages to understand how companies go ahead with their cloud native adoption.

The CNCF community is huge, so are their areas of interest. From kitchen cook‐
books, to kids-style educational books for cloud native topics (don’t get it wrong,
they are highly visual and totally recommended for KCNA candidates!). Feel free
to explore this and other assets, as they will contribute to your general culture and
connections with other cloud native practitioners.

Mentorship and Ambassadors
Besides the educational resources, there are additional opportunities that can support
your cloud native journey, after or during your KCNA exam preparation. Concretely,
CNCF facilitates mentorship opportunities for people to develop new skills by help‐
ing in different CNCF projects, with remunerated roles. It is a good space for mentors
and mentees to connect and discuss. There are even some public testimonials from
previous mentees that explain their experience and the value of this program for the
cloud native career.

Also, you may take a look at the CNCF Ambassadors program, which enables
advocates for the cloud native ecosystem to support and represent the cloud native
community with notable contributions such as event organization, content creation,
etc.

CNCF projects and Maturity Levels
The CNCF hosts a variety of open source projects for cloud native technologies.
Hosting a project at the CNCF means that the project becomes part of the CNCF’s set
of projects with a neutral home to grow and thrive. This is particularly appealing for
projects looking to get credibility and adoption, garner wide-scale industry support,
but also attracting a diverse set of contributors.

The projects also get access to critical resources, including cloud credits, funding for
specific needs, infrastructure for CI/CD, and other tools necessary for the project’s
growth. Basically, everything required at technical, marketing, legal, training, and
business development level.

Also, these projects follow the official levels of maturity of the CNCF. This means,
they are put into different categories depending on how mature they are. That level
of maturity is based on metrics such as community adoption, developer participation,
etc. As we can see in Figure 3-5, the CNCF has four categories for maturity: incubat‐
ing, graduated, sandbox, and retired. Concretely:

82 | Chapter 3: CNCF and the New Era of Cloud Native

Figure 3-5. CNCF Project Maturity Levels

Sandbox projects
Entry level for new or experimental projects, offering neutral hosting and access
to the broader CNCF community for growth and exposure. The key criteria
to enter the sandbox stage are adoption of the CNCF Code of Conduct, TOC
sponsorship, and an open-source license. This stage is their way to start.

Incubating projects
Promising projects, with substantial level of community contributions, an active
user base, and integration within the CNCF ecosystem. They receive mentorship
and increased visibility, but they require TOC sponsorship and passing a CNCF
security audit.

Graduated projects
Mature projects with wide adoption, clear governance, and regular releases. They
have been fully tested and have shown that they are stable and widely used. These
projects obtain premier visibility within the CNCF ecosystem, and prioritized
access to CNCF resources and support.

Archived projects
Archived projects aren’t being maintained or supported by the CNCF anymore,
including the interruption of marketing and other privileges that are only avail‐
able for active projects. Some examples of archived projects? Brigade, Open
Service Mesh, OpenTracing, and rkt.

Related to the CNCF projects, there are two levels of involvement:

The CNCF Origins | 83

Contributors
Individuals who contribute to the project in any form, including sporadic contri‐
butions. They can range from code, documentation, design, and more. You can
explore contributing opportunities within the community.

Maintainers
People with a more elevated and sustained role in the project. They are typically
trusted members of the community who have shown commitment and exper‐
tise. There are official resources dedicated to guide maintainers in their specific
project goals.

For your KCNA preparation, take a look at these additional topics: The detailed
graduation criteria, with specific details of the CNCF requirements for each stage of
maturity, and the project proposal process, which will extend your knowledge of how
the CNCF processes work.

Main CNCF Projects for the KCNA Exam
For your KCNA exam, you mostly need to know the graduated projects. They are not
a lot, and you only need to know their main scope of activity, as the KCNA focuses
mostly on project awareness. We will include some official descriptions from CNCF’s
website, as they are using the most accurate wording for your KCNA exam, and direct
links to the annual reports from some of the most important projects:

Argo
Argo is a set of Kubernetes-native tools for deploying and running jobs and
applications on Kubernetes. You can check some project insights from their
2022 project report, mostly related to its growth, community contribution and
adoption, events, and training-related topics. It will give you an idea of the Argo
project, which is one of the most important CNCF projects out there. Also, there
are several Argo-related CNCF Slack channels for the different subprojects.

Subprojects:

Argo Workflows
A Kubernetes-native workflow engine for orchestrating parallel jobs on
Kubernetes.

Argo CD
A GitOps continuous delivery tool for Kubernetes. It leverages Git reposito‐
ries as a source of truth for Kubernetes resources and applications.

Argo Rollouts
An advanced deployment controller for Kubernetes which facilitates iterative
deployments.

84 | Chapter 3: CNCF and the New Era of Cloud Native

Argo Events
An event-driven solution for Kubernetes, allowing for triggering Argo Work‐
flows or K8s native resources based on events.

• CNCF Category: Continuous Integration & Delivery•
• Website: https://argoproj.github.io•
• CNCF Page: https://www.cncf.io/projects/argo•
• Landscape Card: https://landscape.cncf.io/selected=argo•

Containerd
Defined as an open and reliable container runtime, it provides the basic function‐
alities required for running containerized applications, with focus on simplicity,
robustness, and portability. It was originally developed as a part of Docker, but
they announced it in 2016 as a standalone project, then moved the project to
CNCF one year after. You can get more insights from their 2020 project report.
You can also visit the #containerd channel in CNCF’s Slack.

• CNCF Category: Container Runtime•
• Website: https://containerd.io•
• CNCF Page: https://www.cncf.io/projects/containerd•
• Landscape Card: https://landscape.cncf.io/?selected=containerd•

CoreDNS
A DNS server that provides everything required for service discovery (i.e. auto‐
matically detecting network locations) in most networked environments, includ‐
ing distributed systems like Kubernetes.

• CNCF Category: Coordination & Service Discovery•
• Website: https://coredns.io•
• CNCF Page: https://www.cncf.io/projects/coredns•
• Landscape Card: https://landscape.cncf.io/?selected=core-dns•

CRI-O
A lightweight container runtime that acts as a bridge between Kubernetes and
container images, allowing Kubernetes to use any OCI (the Open Container
Initiative, we will explain this initiative and others by the end of this chapter)
compliant runtime as the container runtime for running its pods.

• CNCF Category: Container Runtime•
• Website: https://cri-o.io•
• CNCF Page: https://www.cncf.io/projects/cri-o•
• Landscape Card: https://landscape.cncf.io/?selected=cri-o•

The CNCF Origins | 85

Envoy
Its official description is “a cloud-native high-performance edge/middle/service
proxy”, which means that it is a high-performance proxy designed to manage
and optimize network traffic in cloud-native applications. Envoy was originally
developed at Lyft and then donated to the CNCF. It was built to address the
specific challenges of microservices architectures, especially in high-scale, pro‐
duction environments. Their 2019 project report is a good way to understand
its relevance within the community. Check the #enjoy Slack channel for some
interesting live discussions.

• CNCF Category: Service Proxy•
• Website: https://www.envoyproxy.io•
• CNCF Page: https://www.cncf.io/projects/envoy•
• Landscape Card: https://landscape.cncf.io/?selected=envoy•

Etcd
A very relevant distributed key-value store (i.e. a database with some specific
kind of format) for the most critical data of a distributed system. Same as
other CNCF projects, you can visit their 2021 project report to analyze their
community insights and level of adoption, and the #etcd Slack channel.

• CNCF Category: Coordination & Service Discovery•
• Website: https://etcd.io•
• CNCF Page: https://www.cncf.io/projects/etcd•
• Landscape Card: https://landscape.cncf.io/?selected=etcd•

Fluentd
Another important CNCF project. Fluentd provides a unified logging layer via an
open source data collector between data sources and backend systems. You can
visit their most recent project report from 2020.

• CNCF Category: Logging•
• Website: https://www.fluentd.org•
• CNCF Page: https://www.cncf.io/projects/fluentd•
• Landscape Card: https://landscape.cncf.io/?selected=fluentd•

Flux
Same as Argo, Flux is part of the CI/CD ecosystem of tools. It automates
the deployment, scaling, and management of containerized applications using
GitOps principles, where a Git repository serves as the single source of truth for
declarative infrastructure (i.e. ensuring that the state of a K8s cluster matches the
configuration stored in a Git repository).

86 | Chapter 3: CNCF and the New Era of Cloud Native

• CNCF Category: Continuous Integration & Delivery•
• Website: https://fluxcd.io•
• CNCF Page: https://www.cncf.io/projects/flux•
• Landscape Card: https://landscape.cncf.io/?selected=flux•

Harbor
Harbor is a container registry that secures artifacts with policies and role-based
access control, ensures images are scanned and free from vulnerabilities, and
signs images as trusted.

• CNCF Category: Container Registry•
• Website: https://goharbor.io•
• CNCF Page: https://www.cncf.io/projects/harbor•
• Landscape Card: https://landscape.cncf.io/?selected=harbor•

Helm
Package manager for Kubernetes that makes it easier to define, install, and man‐
age Kubernetes applications with the use of pre-configured Kubernetes resources
(in this context, those resources are called charts). Take a look at their 2020
project report, and Slack channels such as #helm-dev and #helm.

• CNCF Category: Application Definition & Image Build•
• Website: https://helm.sh•
• CNCF Page: https://www.cncf.io/projects/helm•
• Landscape Card: https://landscape.cncf.io/?selected=helm•

Istio
A service mesh project that adds a layer of infrastructure between services and
the network that allows them to communicate securely and reliably. Additionally,
Istio Wasm uses WebAssembly modules (a web standard for binary instruction
format) to extend the behavior of the Istio service mesh.

• CNCF Category: Service Mesh•
• Website: https://istio.io•
• CNCF Page•

— https://www.cncf.io/projects/istio—
— https://www.cncf.io/projects/istio-wasm—

• Landscape Card•
— https://landscape.cncf.io/?selected=istio—
— https://landscape.cncf.io/wasm?selected=istio-wasm—

The CNCF Origins | 87

Jaeger
Initially developed by Uber, Jaeger helps developers monitor and troubleshoot
transactions in complex distributed systems by providing a visual representation
of the flow of requests through services and latency bottlenecks. Their latest 2020
project report will complement your knowledge of this relevant project.

• CNCF Category: Tracing•
• Website: https://www.jaegertracing.io•
• CNCF Page: https://www.cncf.io/projects/jaeger•
• Landscape Card: https://landscape.cncf.io/?selected=jaeger•

Keda
From its official description, KEDA is a Kubernetes-based event driven auto
scaling component. The goal of this project is to bridge the gap between K8s and
event-driven architectures, ensuring that applications can scale based on external
metrics or events.

• CNCF Category: Installable Platform•
• Website: https://keda.sh•
• CNCF Page: https://www.cncf.io/projects/keda•
• Landscape Card: https://landscape.cncf.io/serverless?selected=keda•

Kubernetes
Previous and next chapters of this KCNA Study Guide talk extensively about the
K8s project, but we will keep the main URLs here for the sake of completeness of
this list. Same as other projects, you can find their 2023 project report, including
a second version in Japanese. Both CNCF and Kubernetes.io Slack workspaces
contain plenty of K8s-related discussion channels.

• CNCF Category: Scheduling & Orchestration•
• Website: https://kubernetes.io•
• CNCF Page: https://www.cncf.io/projects/kubernetes•
• Landscape Card: https://landscape.cncf.io/?selected=kubernetes•

Linkerd
One of the pioneering service mesh projects designed to provide observability,
reliability, and security for microservices-based applications, without requiring
changes to the application code.

• CNCF Category: Service Mesh•
• Website: https://linkerd.io•
• CNCF Page: https://www.cncf.io/projects/linkerd•

88 | Chapter 3: CNCF and the New Era of Cloud Native

• Landscape Card: https://landscape.cncf.io/?selected=linkerd•

Open Policy Agent (OPA)
It is a policy-based engine to control cloud native environments that allows you
to enforce policies across a wide variety of software, including K8s, microservices
APIs, CI/CD pipelines, etc.

• CNCF Category: Security & Compliance•
• Website: https://www.openpolicyagent.org•
• CNCF Page: https://www.cncf.io/projects/open-policy-agent-opa•
• Landscape Card: https://landscape.cncf.io/?selected=open-policy-agent-opa•

Prometheus
A very relevant CNCF project, with its own certification options (as we have seen
with the PCA exam before). It provides a monitoring and alerting toolkit, with
great success due to its robustness and community support. The 2019 project
report is a good way to understand the adoption trends, making it one of the
most important graduated projects.

• CNCF Category: Monitoring•
• Website: https://prometheus.io•
• CNCF Page: https://www.cncf.io/projects/prometheus•
• Landscape Card: https://landscape.cncf.io/?selected=prometheus•

Rook
Rook is a cloud native storage for Kubernetes, for production level management
of file, block and object storages.

• CNCF Category: Cloud Native Storage•
• Website: https://rook.io•
• CNCF Page: https://www.cncf.io/projects/rook•
• Landscape Card: https://landscape.cncf.io/?selected=rook•

SPIFFE
Also known as Secure Production Identity Framework For Everyone, it provides
a standardized way to assign and validate identity to software systems in a diverse
environment.

• CNCF Category: Key Management•
• Website: https://spiffe.io•
• CNCF Page: https://www.cncf.io/projects/spiffe•
• Landscape Card: https://landscape.cncf.io/?selected=spiffe•

The CNCF Origins | 89

SPIRE
Known as the SPIFFE Runtime Environment, SPIRE is an implementation of the
SPIFFE standards. It’s a runtime environment that automatically validates, issues,
and renews identity credentials for workloads in a given system.

• CNCF Category: Key Management•
• Website: https://spiffe.io/spire•
• CNCF Page: https://www.cncf.io/projects/spire•
• Landscape Card: https://landscape.cncf.io/?selected=spire•

The Update Framework (TUF)
A framework to secure software update systems. It provides protection even
against attackers that compromise the repository or signing keys.

• CNCF Category: Security & Compliance•
• Website: https://theupdateframework.github.io•
• CNCF Page: https://www.cncf.io/projects/the-update-framework-tuf•
• Landscape Card: https://landscape.cncf.io/?selected=the-update-framework-•

tuf

TiKV
Defined as a distributed transactional key-value database, based on the design of
Google Spanner and HBase, but simpler to manage and without dependencies on
any distributed file system.

• CNCF Category: Database•
• Website: https://tikv.org•
• CNCF Page: https://www.cncf.io/projects/tikv•
• Landscape Card: https://landscape.cncf.io/?selected=ti-kv•

Vitess
Last but certainly not least, Vitess is a MySQL compatible, horizontally scalable,
cloud-native database solution. The 2020 project report contains more useful
insights about its relevance within the cloud native ecosystem.

• CNCF Category: Database•
• Website: https://vitess.io•
• CNCF Page: https://www.cncf.io/projects/vitess•
• Landscape Card: https://landscape.cncf.io/?selected=vitess•

Obviously, the maturity level is not the only sign of relevance for the CNCF projects.
There are other incubating projects (at the moment we write this Study Guide, but

90 | Chapter 3: CNCF and the New Era of Cloud Native

they may evolve and move to graduation) that you may want to explore, such as
Thanos, Cilium, CNI, gRPC, OpenTelemetry, or Kyverno.

Summarizing, this section contains the main information that you need to know, but
we encourage you to visit all the URLs, explore the project reports, and learn as much
as you can about these projects. This will serve your KCNA preparation but also to
general cloud native culture.

Related initiatives and work groups
Besides the CNCF and their projects, there are other international initiatives and
projects that are very important for the cloud native ecosystem. They are part of the
scope of your upcoming KCNA exam, and they serve as reference for any existing or
new CNCF project. Concretely:

Open Container Initiative (OCI)
A project under the Linux Foundation’s umbrella. Its primary goal is to design
open standards for container formats and runtimes in the cloud-native ecosys‐
tem, so containers are both consistent and interoperable, allowing for smooth
portability between different platforms and environments.

Container Network Interface (CNI)
It’s a specification and a set of tools for configuring container networking, and it’s
especially relevant in the cloud-native ecosystem where containers play a pivotal
role.

Container Runtime Interface (CRI)
It is a plugin interface defined by Kubernetes that allows the kubelet (a compo‐
nent in the Kubernetes node we will see in Chapters 5 and 6) to use various
container runtimes, without the need to recompile, and without being explicitly
tied to any specific one of them.

Container Storage Interface (CSI)
This interface is a standard one between container orchestrators like Kubernetes
and the storage systems, that reduce the manual efforts to add diverse storage
systems to the container orchestration engines.

Service Mesh Interface (SMI)
It is a specification for service meshes on K8s. It provides a standard interface
for service meshes on Kubernetes and defines a set of common, portable APIs.
By doing so, SMI aims to provide interoperability between different service mesh
technologies, such as Istio and Linkerd.

This section concludes the main content of Chapter 3, in which we have explored
the CNCF, the origins of the cloud native ecosystem, the most relevant projects,
and some important standards. All these knowledge blocks are part of the KCNA

The CNCF Origins | 91

exam scope, so pay attention to these topics as they are relatively simple. Once
again, leverage the education resources, including the CNCF Landscape Guide with
additional 101 explanations, and references to existing projects.

And talking about the CNCF Landscape, let’s get some expert insights from one of the
key executives of the CNCF, who is also a great contributor to the landscape project.
Concretely, our Chapter 3 expert insights will bring Mr. Chris Aniszczyk, CTO of the
CNCF.

92 | Chapter 3: CNCF and the New Era of Cloud Native

CHAPTER 4

Essential Concepts for Cloud Native
Practitioners

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at shunter@oreilly.com.

In this chapter, we will explore the essential concepts related to Cloud Computing.
Having a solid understanding of the basics allows us to build upon them for advanced
implementation. For this purpose, and even if we know that every exam candidate
may have different levels of preexisting knowledge, we will cover the end-to-end of
cloud-related topics, from the basics to other advanced notions that you will leverage
later in Chapters 5 and 6 for Kubernetes.

Concretely, we will cover the introduction to general cloud computing, its evolution,
infrastructure, commercialization, and the road to cloud native. The goal is to pro‐
vide a holistic picture of how cloud computing evolves into what we know today. The
material in this chapter includes explanations of topics covered in the KCNA exam.

93

General Cloud Computing
Let’s start from the beginning. What is cloud computing? And why do we mean
“clouds”?

The cloud refers to servers that are remotely accessible over the internet. Softwares
and databases are run on these servers. Imagine buildings (often referred to as data
centers) full of physical servers. A company that owns these data centers rents out
the ability to use the computing powers of these servers to other users or companies.
These users then do not have to manage physical servers themselves. Running their
applications on these clouds, a computing model that allows remote allocation of
computing resources owned by a third party for external users is what is generally
referred to as Cloud Computing.

More officially, the CNCF defines cloud computing as “a model that offers compute
resources like CPU, network, and disk capabilities on-demand over the internet.
Cloud computing gives users the ability to access and use computing power in a
remote physical location. Cloud Service Providers (CSP) like AWS, GCP, Azure,
DigitalOcean, and others all offer third parties the ability to rent access to compute
resources in multiple geographic locations”.

Before the advent of cloud computing, organizations typically had to rely on building
and managing their own physical infrastructure to support their computing needs.
This is typically called on-premises or bare metal infrastructure. It involved procur‐
ing servers, storage devices, networking equipment, and other hardware components,
as well as establishing data centers or server rooms to house and maintain these
resources, which are costly and often cumbersome to manage.

Also, you may have heard the term monolithic application. The term refers to a
traditional software that is a single piece of complicated software that continues to
increase in size and complexity as new features and abilities are added onto it. In
order for the monolith to function, it must reside and run on a single system that
supports it. This hardware system of specific capacity such as memory, networking
capabilities, storage, and computational ability is complex to build, maintain and
expand. Scaling up or down a part of this operation is difficult as it requires another
server with a load balancer. To do this, organizations have to assess the needs,
weigh the benefits against the cost, go through a procurement process and once
obtained, set it up. This process can take months or years, making it difficult for the
organizations to respond quickly to the demand. This is not to mention the work that
the engineers have to do in order to keep all server instances up to date with upgrades
and security or operational patches. The disruptions in service are hard to avoid.

If a monolith is a hard to move mammoth, then microservices is like a colony of
bees. Bees come together to carry out many well-organized functions. Their shapes
and sizes are easy to adapt. They can adjust and move with agility. That is why organ‐

94 | Chapter 4: Essential Concepts for Cloud Native Practitioners

izations move away from monolithic applications and start building microservices
instead.

As you can see in Figure 4-1, microservices refer to small independent processes
coming together to form a complex application. These microservices communicate
with each other through Application Programming Interfaces (APIs) over a net‐
work. You may have heard of external APIs. API specifications dictate the way that
each component interacts with each other regardless of them being in the same
application.

Figure 4-1. Microservices-enabled Development

Now, think of the fact that microservices are small and independent. They can
communicate with each other easily. That means there is no need for them to reside
together on a single hardware. The hardware can similarly be smaller and separated.
Each microservice can find the hardware that best suits their characteristics and
needs. This is where cloud computing comes in.

As connectivity, storage, and hardware technologies advanced, cloud computing
became an answer to the challenges associated with traditional computing and mon‐
oliths. With Amazon’s launch of Amazon Web Services in 2006, which enabled
organizations to rent server space remotely, cloud computing gained mainstream
adoption and revolutionized the way organizations approach their computing needs.
With cloud computing, organizations can leverage the resources and services of cloud
service providers, accessing computing power, storage, and other resources over the
internet. They can scale resources up or down on-demand, pay for what they use, and
benefit from the provider’s expertise in managing and maintaining the underlying
infrastructure. More importantly, it enabled organizations to focus more on their core
business activities and software development rather than worrying about hardware
maintenance, infrastructure planning, and scalability constraints.

General Cloud Computing | 95

This is what microservices and cloud computing are a match made in heaven.
Together, with containers (see details in chapter 5 and 6), they are a trifecta of
modern cloud application architecture. Containers fill in the missing piece in making
microservices run easily anywhere. It can be considered as an add-on package that
isolates the microservice from dependencies and operating system. Containers make
microservices self-sufficient to be run in any environment, any cloud, and any desk‐
top. Technologies like Docker or Podman are used to create and run containers.

To manage, deploy and scale containerized code in the cloud and take full advantage
of it, we need a system. Container orchestration refers to the ability to automatically
provision, deploy and scale containerized applications on the cloud. Systems like
Kubernetes and Docker Swarm do just that. They allow the users to manage the
containers across the clouds.

This application architecture is crucial in the popularization of cloud computing in
the modern days. The commercialization of the cloud depends on its connectivity
and user’s ability to access it from anywhere. In the next section, you will explore the
different ways that the cloud services are structured and made available in the market.

Commercialization of Cloud Computing
Cloud Service Providers (CSPs) offer cloud technology with differing degrees of
administration, maintenance, and self-service functionalities, so their clients do not
need to buy physical machines or develop their own services. Not dissimilar to a
rental agreement, CSPs allow their clients to pay to use their infrastructure and serv‐
ices without having to build, own and maintain them. A consumption-based pricing
strategy is typically employed where customers are charged based on the resources
they utilize and the duration of usage. This flexible pricing structure eliminates the
need for upfront capital investments and allows organizations to align their costs
with actual resource consumption, optimizing their IT budgets. Public and private
organizations use this type of service as a financial choice of operational expenditure
(OPEX).

Now, the commercialization of cloud computing technologies offers different levels
of service, as we can see in Figure 4-2. Basically, tradeoffs between financial cost and
technical control, giving the adopters the option to choose the model that suits them
better. The “as a Service / aaS” model has different levels of implementation as listed
below.

96 | Chapter 4: Essential Concepts for Cloud Native Practitioners

Figure 4-2. Managed Cloud As-a-Service Levels

IaaS, Infrastructure-as-a-Service
CSPs provide users with computing, networking, and storage resources to create and
run their applications. Users have a high level of control but also higher maintenance
required. In this case, the users rent barebone server space and storage from the
providers. A popular analogy for IaaS is that it is like renting a plot of land. The
possibilities are endless. You can build anything you want on it. However, know that
you will bear the cost of building material and equipment.

One of the reasons why IaaS is appealing to the users is to reduce capital expenditure
and transform them into operational expenses. Instead of procuring the hardware
and building their own cooling server room, they simply engage the CSP to provision
and manage the infrastructure which can be accessed over the internet.

Other benefits of IaaS include scalability efficiency and boosting productivity. In the
scenario where the business need is unpredictable, IaaS allows the users to respond
to the need by quickly increasing or decreasing the resources as needed. The IT
professionals in the organization do not have to worry about maintaining a data
center with high availability. The CSPs are in charge of ensuring that the service is
available to the users at all times, even when there is a problem with an equipment.
This allows the organization to concentrate on the strategic business activities.

Examples of IaaS are Amazon Web Services (AWS) EC2, Microsoft Azure Virtual
Machines, and Google Compute Engine.

Commercialization of Cloud Computing | 97

PaaS, Platform-as-a-Service
In the case of Platform-as-a-Service, cloud providers equip their users with a plat‐
form for applications to run, as well as all the IT infrastructure required. In other
words, the users rent the equipment and tools to build their own building on the
infrastructure. PaaS provides a platform for the developers to develop, run and
manage their own application without having to worry about the infrastructure.
Infrastructure management, security patches, updates and other administrative tasks
are taken care of by the provider. When using PaaS, organizations can forget about
setting up and maintaining application servers and the various environments. They
pay only for the resources that they use which makes it attractive in the scenario
where they want to quickly build, test and deploy applications.

PaaS requires less maintenance when compared to IaaS but the users also have
less level of control. Some examples of PaaS providers include Google App Engine,
Microsoft Azure App Service, and Heroku.

SaaS, Software-as-a-Service
The CSPs offer applications plus the required platform and IT infrastructure over the
internet. The cloud providers build, maintain and offer the applications for the users
on demand. Generally, these ready-to-use products are available for a subscription
fee. In this model, the users do not have to build the building themselves. The
building is available for them to rent, all they have to do is move in and pay rent.
The renter can use it as if they own the building most of the time. However, knowing
that while the landlords will fix things when they are broken, not all functions can be
customized according to their needs.

SaaS makes it very easy for the organizations to implement new technology with
very little effort to train their staff. There is no need for an IT staff member to even
manage the software as it is all taken care of by the provider.

This model is simple to use with limited maintenance required for the users. Popular
SaaS that you may be familiar with include Salesforce, Google Workspace, Slack and
Dropbox.

CaaS, Container-as-a-Service
While you may be more familiar with IaaS, PaaS and SaaS, CaaS is gaining popularity
among IT professionals, particularly microservices developers. CaaS refers to the
automated hosting and deployment of containerized software packages. It is usually
available for a subscription fee, hence, the as-a-service concept. Designed based on
industry standards such as Open Container Initiative (OCI) and Container Runtime
Interface (CRI), CaaS makes it easy to move from one to another cloud provider.

98 | Chapter 4: Essential Concepts for Cloud Native Practitioners

Without CaaS, software development and operations teams need to deploy, manage,
and monitor the underlying infrastructure that containers run on. This infrastructure
is a collection of cloud machines and network routing systems that requires dedicated
DevOps resources to oversee and manage. There is no need to install, operate, or
maintain the container orchestration control plane. In other words, CaaS solutions
remove the complication of actually orchestrating the container orchestration tool.

Some examples of CaaS include Amazon Elastic Container Service (ECS) and Ama‐
zon Elastic Kubernetes Service (EKS). ECS is a container orchestration and manage‐
ment service provided by AWS. It offers a choice of orchestrators including its own
native orchestration tool. Similar to ECS, EKS is a fully managed Kubernetes Service.
Other popular CaaS tools are Azure Container Instances (ACI) and Google Cloud
Run.

FaaS, Function-as-a-Service
CSPs enable users to create packages of code as functions without maintaining any
infrastructure. This is a very granular cloud usage option which makes it especially
interesting for development activities. To use the same analogy, FaaS allows the renter
to pay only for the room in the building that’s being used at the time.

FaaS model allows developers to write and deploy code in the form of functions that
are executed in response to specific events or triggers. Since the code is deployed
without provisioning or managing servers or backend infrastructure, it is often
referred to as serverless cloud computing. FaaS is suitable for users who wish to
run specific functions of the application without managing the servers. The users
only have to provide the code and pay per duration or number of executions.

Some CaaS tools mentioned in the previous section are integrated within an environ‐
ment that is serverless, so some CaaS solutions have the characteristics of FaaS. The
key here for FaaS is that the underlying infrastructure and platform is all taken care of
by the providers. Some examples of FaaS are AWS Lambda, Google Cloud Functions.

Cloud Computing Infrastructure
There are different types of cloud computing. General cloud computing often refers
to the “public” cloud, which is a global infrastructure from big providers, physically
shared for and by different clients, but logically isolated with their own work environ‐
ments. However, here is a comprehensive list of all the options:

Public Cloud
The physical cloud resources (servers) are organized and distributed by the cloud
provider. This means that two or more companies can use the same physical infra‐
structure. As opposed to public parks or libraries, public clouds actually have a

Cloud Computing Infrastructure | 99

private owner. The owner provides access and usage of the cloud to their clients
who pay them a fee. Examples of public clouds include AWS, Google Cloud Platform
(GCP) or Azure from Microsoft.

Private Cloud
The whole “cloud” is for one single organization. It is commonly used in environ‐
ments where a very high level of control is required. Private clouds allow the users
to leverage all the advantages that come with cloud computing but with the access
control, security, and resource customization of an on premise infrastructure. Some
organizations may opt for private cloud if they deal with sensitive and confidential
information or strict regulations that mandates greater visibility and control on
access, software/hardware choices and governance. What’s interesting here is that
because private clouds (often dubbed “on-prem” solutions) are built with the same
fundamentals as public clouds, it allows the organization to easily migrate to or
share its workload with public clouds, leading to something called “Hybrid Cloud”
solution.

Hybrid Cloud
Hybrid cloud refers to when an organization decides to utilize both public and
private clouds for their cloud computing, storage, or services needs. Sharing the load
between private and public cloud options allow the organization to create a versatile
setup based on your needs. This approach is one of the most common setups today
because of its flexible options to optimize the usage and costs including risk sharing.

Multi Cloud
A type of Hybrid cloud setup. Some organizations may choose to use cloud technol‐
ogies from multiple providers. This can make sense in terms of cost optimization
(when provider A is cheaper than provider B for some specific services), or to
leverage the combined offer of services (which may be different depending on the
combination of providers)

100 | Chapter 4: Essential Concepts for Cloud Native Practitioners

Figure 4-3. Types of Cloud Infrastructure

Organizations choose their “-aaS” models and type of clouds based on their own
business needs and preferences. After they choose their cloud, they have to decide
how to deploy their systems, services, and applications. That’s where the concepts of
virtualization, containerization, and orchestration come.

The Virtualization, Containerization, and Orchestration
Trifecta
Organizations then have to ask themselves how to deploy systems, services or appli‐
cations to make them available to everyone within the organization, embracing the
benefits of cloud-enabled systems, such as availability or scalability. Likely, they will
utilize already deployed services and deploy others based on techniques such as
virtualization, containerization, and others.

Virtualization
Virtualization is a technology that enables the creation of virtual versions or repre‐
sentations of physical resources, such as servers, operating systems, storage devices,
or networks. It allows multiple virtual instances to run simultaneously on a single
physical machine, each isolated and behaving as if it were running on its dedicated
hardware.

In traditional computing, each physical server or computer typically runs a single
operating system and hosts specific applications. However, virtualization enables

The Virtualization, Containerization, and Orchestration Trifecta | 101

the abstraction and sharing of physical resources among multiple virtual machines
(VMs) or virtual environments.

Containerization
Containerization is a technique in software development and deployment that
involves encapsulating an application and its dependencies into a self-contained
unit called a container. A container provides a lightweight and isolated runtime
environment that allows applications to run consistently across different computing
environments, such as development machines, testing environments, and production
servers.

Containers are created from container images, which are pre-built packages that
include the application code, libraries, runtime environment, and any other depen‐
dencies needed to run the application. These images are typically created using
containerization platforms like Docker.

The key components and concepts in containerization are:

Container Image –
A container image is a static, read-only file that serves as a blueprint for creating
containers. It contains the application code, along with the necessary runtime
dependencies, libraries, and configuration files. Container images are portable
and can be shared and distributed across different systems.

Container Runtime –
The container runtime is responsible for running and managing containers. It
provides an isolated and secure execution environment for containers, ensuring
that they have their own filesystem, processes, and network stack while sharing
the host machine’s operating system kernel.

Containerization Platforms –
Containerization platforms, such as Docker and container orchestration systems
like Kubernetes, provide tools and services for building, running, and managing
containers at scale. They offer features like container orchestration, networking,
storage, and monitoring to simplify the deployment and management of contain‐
ers.

Container Orchestrators –
Container orchestrators, such as Kubernetes, manage the deployment, scaling,
and monitoring of containers across multiple hosts or nodes. They automate the
scheduling of containers, ensure high availability, and provide advanced features
like load balancing and service discovery.

Benefits of containerization include:

102 | Chapter 4: Essential Concepts for Cloud Native Practitioners

Portability –
Containers can run consistently across different environments, from develop‐
ment to production, enabling easier deployment and migration of applications.

Efficiency –
Containers are lightweight and have fast startup times, allowing for efficient
resource utilization and rapid scaling.

Isolation –
Containers provide isolation between applications and the host system, enhanc‐
ing security and preventing conflicts between dependencies.

Reproducibility –
Containers encapsulate all dependencies and configurations, ensuring consistent
application behavior and simplifying collaboration between teams.

DevOps Enablement –
Containerization aligns well with DevOps practices, enabling faster and more
streamlined software development, testing, and deployment workflows.

The main difference between virtualization and containerization is that virtualization
creates separate virtual machines with complete operating systems, while containeri‐
zation encapsulates applications and their dependencies within lightweight containers
that share the host OS. Virtualization provides stronger isolation, while containeriza‐
tion offers faster startup times, lower overhead, and more efficient resource utiliza‐
tion, making it well-suited for modern application deployment and microservices
architectures. As we can see in Figure 4-3, lightweighting is one of the key advantages
of containers:

The Virtualization, Containerization, and Orchestration Trifecta | 103

Figure 4-4. Virtualization vs Containerization

Orchestration
Orchestration refers to the automated management, coordination, and execution of
complex tasks or processes, like a musical conductor in a symphony. It involves
controlling and organizing various components, services, and resources to achieve a
desired outcome efficiently and reliably.

Orchestration plays a crucial role in the deployment and operation of distributed
applications, especially in cloud computing and microservices architectures. It helps
automate and streamline processes that involve multiple interconnected compo‐
nents, such as provisioning and scaling resources, managing dependencies, handling
deployments, and ensuring high availability.

Kubernetes is a type of container orchestrator. Basically, it manages service-oriented
application components that are tightly scoped, strongly encapsulated, loosely cou‐
pled, independently deployable and independently scalable. Each service focuses
on a specific business functionality and can be developed, deployed, and scaled
independently. In a microservices architecture, an application is decomposed into a
set of self-contained services, where each service handles a specific task or business
capability.

104 | Chapter 4: Essential Concepts for Cloud Native Practitioners

Relationship between Cloud Computing and Cloud Native
Cloud computing and cloud-native are related concepts but refer to different aspects
of modern computing. As we have seen, cloud computing refers to the delivery of
computing services over the internet, providing on-demand access to a variety of
resources, including servers, storage, databases, software, and networking. It involves
leveraging remote servers and infrastructure provided by cloud service providers to
store and process data, run applications, and perform computing tasks. Examples of
cloud computing service providers include Amazon Web Services (AWS), Microsoft
Azure, and Google Cloud Platform.

Cloud computing offers benefits such as cost efficiency, scalability, flexibility, accessi‐
bility, and reliability. It eliminates the need for organizations to build and manage
their own physical infrastructure, allowing them to focus on their core business
activities while leveraging the resources and services offered by cloud providers.

Cloud native, on the other hand, is an approach to developing and deploying
applications that takes full advantage of cloud computing capabilities and leverages
cloud-native technologies and practices. It is about designing, building, and running
applications specifically for the cloud environment, with a focus on scalability, resil‐
ience, and agility. They make use of microservices and containerization technologies,
such as Docker, to package applications and their dependencies into lightweight,
portable containers that are often managed and orchestrated using tools like Kuber‐
netes. Along with DevOps (development operations, which we will explain by the end
of this chapter, and CI/CD), we get the key building blocks of cloud native:

Figure 4-5. Cloud Native Building Blocks

Besides other success stories we have seen before, here are a couple of cloud native
examples. Netflix is a prime case of a cloud-native application. It utilizes microser‐
vices architecture and runs on Amazon Web Services (AWS) cloud infrastructure.

Relationship between Cloud Computing and Cloud Native | 105

Each component of Netflix’s application, such as user profiles, recommendations, and
video streaming, is built as a separate microservice, allowing for scalability, fault tol‐
erance, and continuous deployment. Similarly, Lyft, a ride-sharing platform, is built
as a cloud-native application. It uses microservices architecture to handle various
functions such as ride matching, real-time tracking, and payments. Lyft employs
cloud computing platforms like AWS and Google Cloud Platform (GCP) to ensure
scalability, availability, and cost optimization.

In summary, cloud computing is about delivering computing services over the
internet, while cloud-native refers to an approach to application development and
deployment that leverages cloud computing capabilities and adopts cloud-native
technologies and practices. Cloud-native applications are designed and built specifi‐
cally for the cloud, taking advantage of microservices, containerization, and orches‐
tration to achieve scalability, resilience, and agility.

Building Cloud Native Applications
So, we know cloud computing helps build cloud applications that are efficient to
deploy and resilient to maintain. Like anything with new, best practices emerge out of
experience. It is through this experience that the Twelve-Factor App manifesto came
about.

The Twelve-Factor App Manifesto The manifesto was created by the company Her‐
oku in 2012. It outlines a methodology for building software-as-a-service apps that
can be applied to apps written in any programming language, and which use any
combination of backing services (database, queue, memory cache). The twelve factors
are outlined below:

Codebase –
A twelve-factor application should have one codebase tracked in version control,
but there can be multiple deployments of this codebase. For example, produc‐
tion, staging, and development environments should all come from the same
codebase.

Dependencies –
Declare and isolate dependencies explicitly. Do not rely on the existence of
system-wide packages. This ensures consistent environments and avoids the
“works on my machine” problem.

Config –
Store configuration that varies between deployments (e.g., database credentials,
API keys) in the environment. This separates the configuration from the applica‐
tion, ensuring that the application is environment agnostic.

106 | Chapter 4: Essential Concepts for Cloud Native Practitioners

Backing Services –
Treat backing services like databases, caching, messaging systems, and so forth
as attached resources. This means that a local MySQL database should be treated
the same as a managed Amazon RDS instance, for instance.

Build, Release, Run –
Strictly separate the build and run stages. The build stage converts code into
an executable bundle, the release takes the build and combines it with the envi‐
ronment’s config, and the run stage (runtime) runs the app in the execution
environment.

Processes –
Execute the application as one or more stateless processes. Any data that needs to
persist should be stored in a stateful backing service, like a database.

Port Binding –
Export services via port binding. Your application should be self-contained and
not rely on a separate web server; it should be able to bind to a port and start
accepting requests.

Concurrency –
Scale out using the process model. This means that performance scaling should
be achieved by adding more processes rather than trying to make individual
processes bigger and more complex.

Disposability –
Maximize robustness with fast startup and graceful shutdown. Processes should
strive to start quickly and shut down gracefully by releasing their resources and
shutting down in response to a SIGTERM signal.

Dev/Prod Parity –
Keep development, staging, and production environments as similar as possible.
This reduces discrepancies and “works on my machine” issues, leading to more
predictable deployments.

Logs –
Treat logs as event streams. Instead of managing log files, apps should produce
logs as a continuous stream of events and let the environment handle the storage
and archiving.

Admin Processes –
Run admin/management tasks as one-off processes. This means that tasks like
database migrations should be run as separate processes, ideally in an identical
environment to the regular long-running processes of the app.

Building Cloud Native Applications | 107

The Twelve-Factor methodology is a comprehensive guide, and while not all applica‐
tions will strictly adhere to every factor, they provide a solid foundation for building
scalable and maintainable SaaS applications. From a KCNA point of view, you can
consider these factors as industry standards when it comes to cloud native develop‐
ment.

Other Relevant Cloud Native Topics
There are several terms related to cloud native that explain methodologies, best prac‐
tices, technical paradigms, etc. Most of them are described by CNCF in their official
glossary of terms. Besides everything you have seen up to now, and the next two
Kubernetes-first chapters, here are some fundamental terms you need to familiarize
with before taking the KCNA exam:

DevOps and CI/CD
According to the CNCF glossary, DevOps is a methodology in which teams own
the entire process from application development to production operations, hence
DevOps. It goes beyond implementing a set of technologies and requires a complete
shift in culture and processes. DevOps calls for groups of engineers that work on
small components (versus an entire feature), decreasing handoffs – a common source
of errors.

The reality is that the definition of DevOps is one of the most debated terms in the
field. DevOps implementation often entails a practice of moving testing, quality, and
performance evaluation early in the development process. This move is sometimes
referred to as “left shift”, as in shifting these steps to the left closer to or even before
code is written.

Even more, there is a visual representation (Figure 4-6) of what an iterative DevOps
cycle means, as a series of steps for the software development and release process:

108 | Chapter 4: Essential Concepts for Cloud Native Practitioners

Figure 4-6. DevOps Lifecycle Loop

1. Plan - This is the initial phase where the team plans out the features, improve‐1.
ments, or fixes that they want to implement. Requirements are gathered, and
tasks are prioritized.

2. Code - Developers write and commit the source code. This could involve feature2.
development, bug fixing, or code refactoring. Tools like Git are commonly used
for version control.

3. Build - The source code is compiled into executable artifacts. Build tools, such as3.
Maven, Gradle, or Jenkins, automate this process, ensuring that the code can be
reliably built into software.

4. Test - Automated tests are run to ensure that the software is reliable, secure,4.
and meets the quality standards. This can encompass unit tests, integration tests,
system tests, and more.

5. Release - Once the software passes tests, it’s ready for release. Automated deploy‐5.
ment tools can push the software into staging or production environments.
The release process might involve Continuous Integration (CI) and Continuous
Deployment (CD) pipelines.

6. Deploy - The software is deployed to production servers. This step is sometimes6.
combined with the release, especially in CD environments where code is auto‐
matically deployed once it passes all tests.

7. Operate - After deployment, operations teams monitor and maintain the system.7.
This includes ensuring uptime, scaling resources as necessary, and addressing
any runtime issues.

Other Relevant Cloud Native Topics | 109

8. Monitor - The software’s performance and health are continuously monitored.8.
Monitoring tools can detect and alert teams to anomalies or failures. Feedback
from monitoring is used to identify areas of improvement, and the loop begins
anew.

These steps plus the previously explored 12-factor manifesto lead us to the notion
of CI/CD. This acronym stands for Continuous Integration and Continuous Deliv‐
ery/Deployment. The “CD” part often refers to two possible options:

Continuous Delivery –
An extension of CI. It ensures that the code is always in a deployable state after
passing CI pipelines. In this case the release process is still manual.

Continuous Deployment –
While Continuous Delivery ensures code is always deployable, Continuous
Deployment goes a step further. Every change that passes the CI tests is automati‐
cally deployed to the production environment without manual intervention.

These are fundamental principles in the DevOps philosophy, emphasizing the auto‐
mation of the software development and deployment processes. They are designed to
increase the velocity, efficiency, and reliability of software releases, based on the eight
iterative DevOps steps.

GitOps and Infra as Code (IaC)
GitOps is a way of doing DevOps using git repositories as the source of truth for all
configuration and code and automating deployments. Using git principles provides a
clear and versioned history of changes, enabling easy rollbacks, auditability, and peer
review. Then, once changes are merged into the main branch of the repository, they
are automatically applied to the infrastructure. This reduces manual steps and errors
and ensures a consistent state of infrastructure.

Basically, it allows CI/CD tools to handle the infrastructure as code (IaC), which
is the practice of storing the definition of infrastructure as one or more files. This
replaces the traditional model where infrastructure as a service is provisioned man‐
ually, usually through shell scripts or other configuration tools. Examples of these
tools include Terraform, Ansible, Puppet, and other native ones from the public
cloud providers.

Declarative vs Imperative
One of the key concepts in cloud native is the notion of declarative or imperative,
which focuses on two different programming paradigms, in this case to specify the
expected configuration for cloud native systems:

110 | Chapter 4: Essential Concepts for Cloud Native Practitioners

Declarative –
It requires that you specify what you want to achieve without detailing the step-
by-step procedures to get there. For example, picture it like setting a destination
in your GPS. You specify where you want to go, but you don’t need to provide
the GPS with turn-by-turn directions, because iit figures out the best route on its
own. In software terms, this often involves setting configurations or states that
the system should adhere to, and letting the underlying logic determine how to
accomplish that.

Imperative –
Now, imagine you’re giving someone step-by-step directions to reach a particular
destination. This embodies the imperative approach. In an imperative style, you
give a series of commands or steps that need to be executed in sequence to
achieve the desired result. It’s like writing a detailed recipe where each step is
explicitly stated. In programming, this translates to writing out each action and
logic operation in detail.

Stateful vs Stateless
Stateful and Stateless are two fundamental concepts in computing and software
design that describe how systems or processes retain information over time and
across interactions. Concretely:

Stateful –
A system or process is considered stateful when it retains or remembers informa‐
tion from one transaction to the next. This “state” information can be used to
influence future transactions, meaning that past interactions can affect future
ones.

Stateless –
A system or process is considered stateless when it doesn’t retain any record of
previous interactions. Each transaction is processed without any memory of past
transactions. Every request is treated as an entirely new operation.

Egress and Ingress
These two terms are commonly used in telematics / networking and cloud environ‐
ments to describe the flow of traffic in relation to a particular point of reference, usu‐
ally a network boundary or a specific system. This term is applicable to Kubernetes,
and the direction of the traffic coming and leaving to/from the cluster. Concretely:

Ingress –
Ingress refers to the incoming traffic that is being routed to a specific network,
system, or application. It’s essentially about managing and allowing external users

Other Relevant Cloud Native Topics | 111

or systems to access your internal resources. In the K8s, an “Ingress” is also a
specific object that manages external access to services within a cluster.

Egress –
Egress pertains to the outgoing traffic that is being routed out of a specific
network, system, or application. It’s about managing and controlling the access of
internal resources to external destinations.

In cloud computing, providers usually have controls and tools to manage egress
traffic due to both cost and security concerns. For instance, an organization may want
to restrict or monitor which external services a cloud-based application can access.

Serverless
Serverless is a cloud native development model that allows developers to build
and run applications without having to manage servers. There are still servers
in serverless, but they are abstracted away from the developer. A cloud provider
handles the routine work of provisioning, maintaining, and scaling the server infra‐
structure. Developers can simply package their code in containers for deployment.
Once deployed, serverless apps respond to demand and automatically scale up and
down as needed. Serverless offerings from public cloud providers are usually metered
on-demand through an event-driven execution model. As a result, when a serverless
function is sitting idle, it doesn’t cost anything.

These are just a few terms that you need to know before starting Chapters 5 and 6,
that will exclusively focus on Kubernetes and its technical details. But before that, we
will get our regular end-of-chapter expert insights, in this case from someone who
knows the KCNA and other Kubernetes certifications very well: Benjamin Muschko,
who is a renown cloud native consultant, and the author of the O’Reilly CKA, CKAD,
and CKS Study Guides.

112 | Chapter 4: Essential Concepts for Cloud Native Practitioners

CHAPTER 5

The Key Role of Kubernetes

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at shunter@oreilly.com.

In this chapter we will explore the change in software architecture paradigm changes
and the role that Kubernetes plays to streamline either the development and opera‐
tion of applications in the Cloud Native realm and the industry adoption since its
inception to now. Understanding the ecosystem around container technology and in
which scenarios Kubernetes excels over other technologies is a journey, a worth it
one. Passion and excitement; both are behind the rising of container orchestration
technologies where the intersection of industry momentum , the relentless open
source community and the industry shifting towards a more standardized and inter-
operable ecosystem has brought us where we stand today.

113

Figure 5-1. CNCF Orchestration and Management Technology landscape

As you can observe in the Figure 5-1, the landscape of projects in the Orchestration
and Management are is huge with Kubernetes being the project of reference as of
today.

In short this chapter will help you to establish a foundational knowledge and solid
roots on the basics of Kubernetes which going deep as long as the you advances in the
CNCF certification paths.

Let’s uncover the Key role of Kubernetes through the following sections!

An introduction to containers and orchestration
technologies
In the previous chapters you probably came to the conclusion that the way appli‐
cations are built and deployed today has fundamentally changed with the rise of
containerization adoption. And that change of the application has opened up a rich
variety of tools available which are part of a healthy ecosystem where new projects are
being incubated at the time you are reading this book.

A couple of words resonate in many different forums and discussions: “Cloud
Native”...

But what is Cloud Native? as introduced in the previous chapter:

“Cloud native is an approach to developing and deploying applications that takes full
advantage of cloud computing capabilities and leverages cloud-native technologies
and practices. It is about designing, building, and running applications specifically for
the cloud environment, with a focus on scalability, resilience, and agility. They make
use of microservices and containerization technologies, such as Docker, to package
applications and their dependencies into lightweight, portable containers that are often
managed and orchestrated using tools like Kubernetes”

However, looking at the commonly known “cloud native” ecosystem from an archi‐
tecture and business angle can be overwhelming. And both angles are related one
each other….

114 | Chapter 5: The Key Role of Kubernetes

It does not make sense to define and deploy a “by the book” cloud native architecture
if it does not fit into the business borders we navigate though. Both sides need to be
aligned because one cannot survive without the other. As simple as that.

No solution has only benefits without drawbacks and taking a decision for choosing
one tool over another without understanding the bigger picture can lead to poor
decisions and add technical debt instead of the other way around.

This book is not an architecture design reference for Cloud Native architectures
(specifically event-driven and/or microservices architecture) as there are specific
books covering those areas in depth.

However it pretends to be the reference guide for understanding the overall spectrum
and getting a good general knowledge about the community behind the main projects
and the industry around container technology.

So let’s delve into the container technology through the different milestones that
shaped the industry as of today.

Containers
There are many different ways to explain what this technology is. It’s more important,
however, to understand the problem it tries to solve.

For our purposes, containers are a lightweight, portable and fast way to package
and deploy software (along with all their dependencies) reducing the management
burden needed to consistently deliver value deploying fixes, updates and new features
in production. It is as simple and as complex as that.

An introduction to containers and orchestration technologies | 115

Figure 5-2. Inside a container

If you are familiar with software development techniques or IT operations, you may
be thinking about all the different areas a technology like containers has the potential
to impact. Perhaps you work as a developer in a well established organization where
the software shipment processes have been established for many years. Or perhaps
you work in the operations team keeping the lights on. Either way you will soon
realize that this technology not only has a potential impact on the development and
operational side. There are other sides like organization’s teams cultural aspects which
need to be taken into account if you pretend to adopt a container first strategy.
Setting a DevSecOps culture needs to be in place if you want your team to succeed in
the Cloud native era.

Let me share with you a personal story that I hope helps you to understand the need
for doing things differently in the application development and software architecture
area.

Many years ago I had the luck of being a Product Manager in the world’s leading
provider for networking and mobile networks equipment. It was 2013 and at that
time almost every telco operator had our technology to provide 2G, 3G and 4G
mobile networks. For the ones familiar with Telco business, there are two domains
which are key for any telco operator: Oss (operational support systems) and Bss
(Business support systems). I worked in the engineering team developing the Oss
applications (application in charge of network operation, including monitoring and
fault management among others).

116 | Chapter 5: The Key Role of Kubernetes

This application was used in almost every telco operator in the world for operating
their mobile’s network. As you can imagine (remember it is 2013) it was a 3-tier
monolithic application with the middleware tier containing different functions but
tightly coupled between all of them.

An introduction to containers and orchestration technologies | 117

Figure 5-3. 3-Tier Monolith application

118 | Chapter 5: The Key Role of Kubernetes

Managing the radio network is a mission critical task for any operator so the appli‐
cation had to be reliable and deployed in high availability configuration. Nothing
special for 2013 mission critical systems….

However, at the time that radio access network equipment evolved to offer new cells
to address network capacity and coverage issues (pico cells, micro cells, etc..) the
amount of Nodes connected to the application grew exponentially. And because of
the components being highly coupled between them the only option to accommodate
the new radio nodes was to scale the application vertically (i.e providing more CPU,
RAM and Disk to the server where each tier run). But as you can anticipate this is a
valid approach until reaching the limits of the hardware or the underlying software
itself (not to mention the cost in terms of downtime required, software fine-tuning
and a long list of drawbacks that it implies).

We were facing the “nice to have” scaling issue (I put “nice to have” in quotes because
it’s known that this issue appears when an application experiences such a great
success that user adoption grows exponentially and therefore business is expected to
grow).

However, the scaling issue for a mission critical application which is responsible to
keep every mobile network working is more complex than other scenarios (telco
networks are considered critical infrastructure in most of the countries around the
world, hence needs to be in compliance with very hard requirements).

We struggled scaling every tier but specially hard was to scale the persistence layer
(the database engine) because the underlying technology had it’s own limits to scale
vertically.

And if you are thinking that scale was only an issue to accommodate new nodes in
the network, you are seeing only one side of the bigger picture. At that time we were
stuck with an application that had a huge impact in several areas of the company:

• The backlog of new features for the radio nodes required the Oss application•
to be able to configure and handle it properly. So if the application couldn’t
manage this requirement, it would put in trouble the radio network roadmap
(and therefore signing new contracts with the operators)

• The backlog of use-cases for the app itself started to grow and teams struggled to•
deliver new functionality and keep commitments about deliveries.

• The application that was awarded a few years ago for being state of the art in•
terms of reliability and security was suddenly a software stack unable to deliver
the functionality required for the new radio scenarios.

You can think that this could have been anticipated (and in fact it was anticipated few
years earlier) but the growth rate was bigger than we could even imagine. Nowadays
we are tired to see examples of applications scaling to almost unlimited levels but in

An introduction to containers and orchestration technologies | 119

the timeframe 2011-2013 there were not such examples to learn or even anticipate the
hyperscale issues.

We took every software piece to its practical limit and even with that it was far to our
requirements.

This was the trigger to shift to a micro-services architecture which could potentially
scale limitless and accommodate any radio network configuration and size operation.

Well, I changed the above story a little bit (only the date where we started to see that
our architecture would reach the limits) to show you a real example about scaling.
The truth is that we anticipated that our application would reach its limits soon and
started working in parallel in a new generation Oss application. However it was not
until 2014 where we were able to start testing it in the real world and we had to
struggle with the issues I mentioned above in the former application.

Scaling is a major barrier for growth and expansion even having a software architec‐
ture highly decoupled. Scale needs to be managed and the scale an application can
grow today in a very interconnected world is much faster and in a different pattern
than the paradigm it was before.

In a situation like this, container technology is your ally for making scale a truly “nice
to have” issue.

Working with container technology is usually a great fit for different application
architecture patterns (and also a big “don’t” for anti patterns) but especially for those
whose domains of functionality are split in smaller pieces of software , generally
independent and communicated through well defined APIs (in the application men‐
tioned earlier some examples of domains were: node performance collector, node
fault management, node synchronization, different user views, etc…..)

That’s basically what microservices architectures are used for and the number of
microservices running to shape an application can be large (or extremely large).
Commonly a microservice will run in 1 to n containers and the complexity of man‐
agement rises exponentially when more microservices are waiting to be handled. Let’s
just try to imagine the amount of microservices belonging to our OSS application
mentioned earlier (from hundreds to thousands of them) and now, let’s extrapolate
that to the whole set of applications needed in an organization…….and…. Voilá…..
A perfect operational storm again for developer and operations teams!

120 | Chapter 5: The Key Role of Kubernetes

Figure 5-4. shows an image I included in my first container presentations when I worked
for RedHat trying to explain why a container management is required to avoid a
disaster.

This image helps us to understand how putting containers in production without
any control can lead to issues. Think of the ship as the hardware where your contain‐
ers will be running. You need to find the right balance when putting (deploying)
containers in the host machine having into account the size of the container, the
content inside, etc. Otherwise it can make your server requirements unbalanced and
struggling to serve the containers needs degrading the performance (and the user
experience). The whole ship is sinking.

Managing containers at scale is challenging, especially when dealing with large num‐
bers of containers and complex application architectures. This is where container
orchestration comes in.

Container orchestration
Container orchestration provides a useful set of functionalities, which are always
evolving as the industry requirements and use cases bring new requirements. For
the sake of simplicity we will define container orchestration as the cornerstone piece
which provides us the required functionality to automate the deployment, scaling,
and management of containerized applications.

An introduction to containers and orchestration technologies | 121

There are different solutions today that aim to solve the containerization manage‐
ment and operation at scale challenges, each of them with some similarities but dif‐
ferences among architecture, deployment, management and underlying technologies.

We will dig deeper in the following sections to understand the ecosystem and the
different solutions and implementations available but the bare minimum capabilities
that a container orchestrator should provide are:

• Provisioning and Deployment of containers•
• Scaling based on workload requirements•
• Load balancing that allows us to distribute incoming traffic across different•

container instances keep an optimal performance.
• Resource Allocation utilizing compute resources (CPU, Memory and Disk) effi‐•

ciently while maintaining application performance
• Health Monitoring and Recovery so if a container fails or becomes unhealthy the•

orchestrator can automatically restart it or instantiate a new one.
• Service Discovery capabilities allowing containers to find and communicate with•

each other.
• Security and Isolation enforcing security policies defined by admins preventing•

or reducing security breach and vulnerabilities exposure.

Containers ecosystem and standards
With the proliferation of different container platforms during the last few years it
started to be difficult to use containers across different platforms. And many are still
confused with some terms and even with the relationship between Docker Inc (the
company) and docker (as technology).

Let’s quickly look back to 2013 when Docker Inc created a tool named Docker built
on top of the already existing LXC stack. Yes, you read it correctly: 2013 . However
the technology behind Docker was present in the Linux Kernel several years before
2013.

Linux Container
LXC or “Linux Container” as it is known, emerged as a distinctive method of
operating-system-level virtualization with the purpose of orchestrating the operation
of numerous discrete Linux systems, known as containers.

In contrast to conventional virtual machines that establish complete autonomous vir‐
tual systems, LXC instead builds a simulated environment with its unique allocation
of resources such as CPU processing power, memory, block I/O, and networking
capacity, among others. The underlying mechanisms that enable this resource gover‐

122 | Chapter 5: The Key Role of Kubernetes

nance are “namespaces” and “cgroups” within the Linux kernel that governs the LXC
host .

Namespaces:
Namespaces do a very special job in a Linux box – they keep processes isolated
from each other. We can simplify its function saying that namespaces provide process
isolation inside the operating system.

There are 6 common types of namespaces in wide use today:

• PID Namespace: In Unix-like operating systems, every process receives a unique•
numeric identifier called a Process ID (PID) when it’s created. Even if multiple
processes share the same human-readable name, their PIDs distinguish them.
As described in the man page:
“PID namespaces allow containers to provide functionality such as suspend‐
ing/resuming the set of processes in the container and migrating the container to
a new host while the processes inside the container maintain the same PIDs.”

• Net Namespaces: Imagine a network environment where processes function•
independently, separate from the host and other namespaces. Each net name‐
space has its unique network interfaces, routing tables, firewall rules, and net‐
work settings.

• UTS Namespace (Unix Timesharing System): For simplicity let’s assume it pro‐•
vides a way to isolate two specific system identifiers: the hostname and the NIS
domain name.

• User Namespace: The user namespace allows to create isolated environments for•
processes.

• Each user namespace has its own set of user and group ID (uid and gid) that are•
separate from the global system.

• Mnt Namespace: It allows to isolate mount points such that processes in different•
namespaces cannot view each others’ files.

• Inter-process communication namespace: This namespace is probably one of the•
most complex. For simplicity let’s think about it as the functionality that allows
isolating communication resources between processes ensuring that processes
within the same namespace can interact with shared memory, semaphores and
message queues while remaining separate from processes in a different namne‐
space.

Cgroups (or Control Groups)
In simple terms, cgroups are like traffic cops for important resources such as CPU,
memory, network, and disk usage. They ensure that each process or group of pro‐

Containers ecosystem and standards | 123

cesses doesn’t hog too much of these resources. They’re crucial for containers because
containers often have many different processes running together, and cgroups help
handle them as a unit.

These two pieces of software are the foundation of the technology we use for running
containers. Amazing, isn’t it?

At that time (2013) , what Docker released (and it changed the software shipment
paradigm) was that the user, using a tool called “docker” , had the capabilities to pack‐
age containers into images (the concept of images is crucial) to move them between
machines in a very easy way. Docker were the first ones who tried to make containers
a standard software unit, as they state in their “Standard Container Manifesto”.

At this point, you are probably seeing some similarities with the virtualization tech‐
nology sunrise. But this time, with the previous experience in the industry around
the virtualization technology development and the absence of standards for the tech‐
nology, it was clear for the actors participating in the container development that a set
of standards should be promoted to guarantee interoperability between platforms ,
avoiding vendor lock in and contributing to a healthy ecosystem of tools.

Note: I always highlight that we have to give credit to Docker as a company for
starting and actively supporting many initiatives around standardization of container
technology and donating projects as important as runc (we will talk about it in the
next chapter).

Then, What do the Container standards provide?
They provide a common set of specifications and guidelines for container platforms,
making it easier to use containers across different platforms providing compatibility
as long as the standards are followed by the solutions’ ecosystem. Following the
standards will ensure that containers are portable and interoperable, regardless of
where they are deployed.

With more than 20 years working in technology I must admit this is the very first
time I’ve seen a real commitment from each actor in the industry to make interoper‐
ability a reality and push for it at every layer.

The most important and widely known standard in the container ecosystem is the
Open Container Initiative (OCI).

The OCI is a collaborative project, formed under the auspices of the Linux Founda‐
tion with the purpose of creating open industry standards around container formats
and runtimes. The OCI was launched on June 22nd 2015 by Docker, CoreOS and
other leaders in the container industry.

Many people mistakenly believe that the Open Container Initiative (OCI) is only rele‐
vant to Linux container technologies due to its affiliation with the Linux Foundation.

124 | Chapter 5: The Key Role of Kubernetes

However, this perception is misguided and while Docker technology originated in
the Linux ecosystem, Docker worked closely with Microsoft to expand the container
technology, platform, and tooling to the world of Windows Server. In fact the tech‐
nology that Docker has contributed to the OCI is not limited to any specific architec‐
ture or operating system. It could be applied to any multi-architecture environment.

At the time of writing this book, the list of Members of the OCI includes a variety of
actors in the industry, as it can be seen in the following figure:

Figure 5-5. List of OCI Members in 2023

Container Solutions
Now that we have seen the dates for key events in the containerisation ecosystem
and we have presented the main standard available, let’s have a look at the container
solutions available in the realm of container orchestration and are commonly used:

Docker Swarm
It is the first Docker’s container orchestration project with the first version released in
2014. Prior to Docker version 1.12 it was the only native Docker option for clustering
hosts. It was installed as standalone and used to create a cluster of Docker engines,
enabling us to connect multiple Docker engines together and manage them as a
single entity.

Starting from Docker 1.12 a set of features were added to the core Docker Engine
making multi-host and multi-container orchestration easier. With this release it was
not required to install the Docker Swarm software as a standalone deployment

Containers ecosystem and standards | 125

anymore. Instead it was included in the Docker Engine and starting a swarm was
called “Enabling swarm mode”.

Today, Swarm mode (based on the swarmkit project) is the only solution from
Docker to manage and orchestrate Docker hosts.

In 2020 the Docker swarm project was renamed to classicswarm and was finally
archived 1st February 2021.

Nomad
Nomad is a container orchestrator and workload scheduler developed by HashiCorp
and first version was released in 2015.

You can think in Nomad as a lightweight orchestrator as it is architecturally simpler
than other solutions in part because it is focused in cluster management and schedul‐
ing designed with the Unix philosophy of having a small scope. It relies in external
tools like Consul for service discovery/service mesh and Vault for secret management
for instance.

Kubernetes
Though we are going to dig deeper into what Kubernetes is in the next section and
next chapter, it’s important to present it here as it’s part of the ecosystem of container
solutions and one of the most important projects in the container area nowadays.

Kubernetes or K8s in its abbreviated name is an open-source platform built with the
purpose of automating the orchestration, scaling, management, and deployment of
applications encapsulated within containers. Its role is to streamline the management
of applications that are constructed and launched via containerization, including
technologies like Docker containers.

The current ecosystem around container technology is so huge that there are also
tools which we can consider meta orchestrators as they allow the management of
different container orchestration solutions from a single and centralized tool. This
is the case of Rancher , developed by Rancher Labs and acquired by Suse in 2020.
Rancher versions 1.x supported Swarm, Mesos and Kubernetes orchestrators and
its own orchestrator called Cattle. From version 2.x onwards Rancher is focused
on being a management platform for deploying and running Kubernetes clusters
anywhere and on any provider.

What is Kubernetes?
We briefly presented Kubernetes in the previous section but for understanding it
from its roots we have to look back to 2003/2004 and the different stages that made it
possible to be the project it’s today.

126 | Chapter 5: The Key Role of Kubernetes

Going back to 2003/2004, it was the time when Google introduced “Borg” system
(which is known as the Kubernetes’ prelude).

Borg is essentially a cluster manager that orchestrates the ballet of thousands of
applications across a sprawling web of machines at Google. We can think of Borg as
the precursor to Kubernetes, and as an example of how innovation transforms the
way we wield computing power.

Before Kubernetes took the open-source world by storm, Borg was already redefining
how applications interact with machines.

The following figure shows Borg’s architecture which was included in a paper written
by Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, John Wilkes

Figure 5-6. Borg’s architecture

What is Kubernetes? | 127

In 2014 Google announced kubernetes, a project created by Joe Beda, Brendan Burns,
and Craig McLuckie who were soon joined by other Google engineers, including
Brian Grant and Tim Hockin.

That’s the reason Kubernetes design and architecture has its roots at project Borg as
many of the developers at Google working on Kubernetes were formerly developers
on the Borg project.

As soon as the Kubernetes community was created in mid 2014, several companies
joined the project (Red Hat, Microsoft , IBM and Docker) and July 2015 is the
month when the Kubernetes 1.0 version was released since Google considered it was
production ready. Together with that release, Google also donated the Kubernetes
project to a newly formed foundation — the Cloud Native Computing Foundation
(CNCF) that will be run by the Linux Foundation- making Kubernetes the very first
project under the governance of the CNCF.

And Why is Kubernetes so important and why should you learn it?
Kubernetes adoption has grown rapidly since the release of its first version and the
pace of adoption is accelerating year over year.

Dynatrace (a global technology company known for providing a software observa‐
bility platform) run a report that shows some interesting figures about Kubernetes
adoption:

• In 2022 Kubernetes became the key platform for moving workloads to the public•
cloud

• With an annual growth rate of +127 percent, the number of Kubernetes clusters•
hosted in the cloud grew about five times as fast as clusters hosted on-premises.

The rhythm of adoption together with the industry support and contribution to
Kubernetes project supports the market message around Kubernetes being the facto
container orchestration standard.

There are many factors which have contributed to Kubernetes becoming the industry
standard for container orchestration, but among its numerous advantages and bene‐
fits one of the primary reasons for Kubernetes’ success is that it is an open-source
platform maintained by the Cloud Native Computing Foundation (CNCF).

As presented in previous chapters of this book, the CNCF is a vendor-neutral orga‐
nization that promotes the adoption of cloud-native technologies, and with that
mission the CNCF ensures that Kubernetes is developed in an open and transparent
manner, and is not tied to any specific vendor or platform.

128 | Chapter 5: The Key Role of Kubernetes

This has helped to create a thriving ecosystem around Kubernetes, with a large and
active community of developers and contributors leading innovation and adoption
across the industry.

But this adoption wave has brought its own challenges, especially the ones related
to scaling, operating and managing the applications and the underlying technology
supporting them. As these challenges started it has positively contributed to drive
Devops adoption practices in many organizations and teams, requiring a shift in
the way Developers, Operations and Security teams work together, promoting a
DevSecOps culture in many organizations.

Current Industry trends
We are living in an exciting time of technological evolution where numerous projects
in the open source community are maturing from incubation stages to mature
projects and of course, new projects are entering incubation.

The CNCF website itself provides this information through the CNCF landscape.

At the time of writing, there are 36 projects that have entered the incubation phase,
the vast majority of which belong to the Kubernetes ecosystem.

Although it is not the purpose of this book to go through all the projects in the
Kubernetes ecosystem (which would make this book endless) it is important that you
keep a generic view to understand the momentum that the open source community is
experiencing in the Kubernetes ecosystem, specifically under the CNCF.

Figure 5-7. Source: Cloud Native Landscape (cncf.io)

Current Industry trends | 129

Under this umbrella of constant evolution in the industry it is risky making predic‐
tions about the evolution of the containers and container orchestrators ecosystem,
but there are determinant drivers that will mark its evolution and future develop‐
ment. Let’s take a look at the most significant ones:

Artificial Intelligence
2023 can be marked as the year one of Generative AI. It was the year where artificial
intelligence systems, specifically those oriented to the Natural Language Processing
(NLP) subset and thanks to the emergence of LLMs presented new ways of inter‐
acting with different kinds of data and also providing capabilities to what it’s call
Augmented Intelligence through embedding AI in a variety of applications.

It is specifically in this framework, embedding AI in applications, where containers
and orchestrators such as Kubernetes are and will be key in the coming years.

As the use cases of generative AI increase and its use is democratized and AI is
infused into new or existing applications, having a modern infrastructure supporting
software architectures capable of behaving elastically to adapt to the usage patterns of
the same and being highly scalable will be the norm, and here containers and specifi‐
cally Kubernetes are positioned as the preferred technology to host these applications.

But it is not only the use cases derived from generative AI that will further accelerate
(if possible) the evolution and adoption of Kubernetes. Current deep learning models
that allow to emulate in some way some of the human cognitive functions, through
pre-trained models ready to be used, are a good match to be deployed in containers.
From computer vision models to services capable of translating speech and text, there
are today models ready to be deployed on containers, allowing a quicker and easier
access to the technology.

Apart from the two shared scenarios where AI will have a major impact on the
evolution and adoption of Kubernetes, there is a third stream of evolution underway
that has to do with simplifying the operation of Kubernetes clusters.

Kubernetes is a complex system, as we will see in the next chapter, and its manage‐
ment and operation are not straightforward. Enterprises and teams often underesti‐
mate the complexity of Kubernetes and containers at scale, and underestimate the
amount of both, expertise and tooling needed to operate Kubernetes the right way.

This is creating a barrier for enterprises that want to adopt Kubernetes or scale its use
in those that have already begun adoption. In addition to this learning curve, there is
also a shortage of talent with solid skills to successfully tackle these projects.

The open source community is working hard with focus on projects to simplify the
use of Kubernetes with the help of AI. Projects such as k8sgpt-ai are a good example

130 | Chapter 5: The Key Role of Kubernetes

of the efforts to simplify Kubernetes operations specifically for Site Reliability Engi‐
neers (SRE).

Vector Databases
Vector databases provide a powerful and efficient way to store, index and work
with high-dimensional vector data making them essential for applications like recom‐
mendation engines, object detection, audio recognition and any modern AI-driven
application.

These databases store information in the form of vectors, which are mathematical
representations of objects or data in a multidimensional space where each element of
the vector encodes relevant and contextual information about the data it represents.
This feature is essential for generative AI, as it allows generative models to under‐
stand and manipulate data more effectively.

Let’s have a look at the reasons why vector DBs are a fundamental technology in the
current paradigm:

Efficient search and recovery: Vector databases allow highly efficient search and
retrieval of data using similarity-based algorithms. This is essential in applications
such as searching for similar images, retrieving related music and videos, and person‐
alized recommendations on streaming platforms.

Complex Data processing: Vector databases are ideal for handling complex data,
such as time series, geospatial information and biological data, as these can be effec‐
tively represented as vectors in a multidimensional space.

Generative Artificial Intelligence: The popularity of vector databases has increased
significantly due to their relevance in generative artificial intelligence. These data‐
bases are used to store representations of data, such as text or images, which can then
be creatively manipulated and combined to generate new and realistic content, such
as AI-generated text or images.

Machine Learning and Data Analytics: Vector representations are fundamental to a
wide range of Machine Learning and data analysis techniques. Vector data are used
as inputs for classification, clustering, regression algorithms and more, facilitating the
application of predictive models and advanced analytics.

Due to the evolution of artificial intelligence in recent years, it is increasingly com‐
mon to find applications running machine learning models that require reliability
and scalability to respond to an unpredictable number of requests. It is here where
once again Kubernetes is the ideal ally for its execution, allowing scaling based on
different metrics. This in turn also enables or will enable new scenarios where it may
be necessary to run a vector ddbb on a Kubernetes cluster and there are some open
source projects that already cover this possibility.

Current Industry trends | 131

An example from the Linux Foundation’s Data projects pillar is the Milvus Vector
DB.(Vector database - Milvus).

Another interesting project for the reader that also allows it to run on Kubernetes is
Weaviate Welcome | Weaviate - vector database

We will continue to see advances in this fieldand new innovative projects emerging
from the OpenSource community.

Edge Computing
Some AI-driven apps are built to cover scenarios where Near Real Time responses are
required and that generally the requests are made in environments or devices with
difficult access to reliable telecommunications networks.

Also on the rise are use cases where the execution of analytical models or even gen‐
erative AI models need to be executed embedded (vehicles, home appliances....etc).
This is where the concept of Edge Computing takes on more relevance as instead
of relying exclusively on remote data centers or the cloud, Edge Computing brings
compute capacity directly to the edge of the network, close to where the data is
generated.

As edge computing infrastructure has evolved, efficient orchestration of containers
and distributed services has become imperative and Kubernetes has become the
cornerstone in managing applications and services in edge infrastructure scenarios.

Edge Computing and Kubernetes will continue to redefine the way we interact with
technology in an increasingly connected world. As edge applications continue to
expand into industries with relevant IoT capabilities such as Industry 4.0 and even
telemedicine scenarios, the orchestration and management capabilities offered by
Kubernetes will continue to be essential to ensure their execution.

Platform Engineering
Platform Engineering is a holistic approach focused on providing a unified tech‐
nology platform that enables development teams to efficiently build, deploy and
maintain applications without worrying about the underlying complexity of the
infrastructure.

The basis of the Platform Engineering paradigm is to treat infrastructure as code
(IaC). This means that infrastructure resources, such as servers, networks and data‐
bases, are defined and managed by code, which facilitates automation, reproducibil‐
ity, life cycle management and scalability.

In this context, a technology like Kubernetes, which has revolutionized the way
organizations manage and scale applications, is a fundamental piece of the ecosystem

132 | Chapter 5: The Key Role of Kubernetes

of technologies used under the Platform Engineering concept, taking advantage of its
main characteristics:

• Automated deployments: Kubernetes allows to automate the deployment of•
containerized applications and services, reducing time to market and minimizing
human error.

• Dynamic Scalability: Kubernetes provides the mechanism for applications to•
automatically scale on demand, ensuring optimal performance at all times,
whether for a steady stream of users or unexpected traffic spikes.

• Resource management: Kubernetes provides advanced resource management,•
which means that applications can efficiently share underlying resources without
conflict.

• Resilience and fault tolerance: Kubernetes is designed to handle failures trans‐•
parently (as long as the application software architecture is designed for this
paradigm). If a container or node fails, Kubernetes can automatically re-route
traffic to a healthy service and ensure that the application continues to run.

• Application updates without downtime: Upgrades and security fixes can be•
deployed without downtime thanks to Kubernetes’ ability to manage multiple
versions of an application at the same time.

A Practical Example: The Platform Engineering Team in a fictitious company
To illustrate how Platform Engineering works with Kubernetes, let’s consider a team
of Platform Engineers at an e-commerce company. This team is responsible for
providing a robust technology platform for the web application development team.

They use Kubernetes to create highly available and scalable container clusters. These
clusters can manage web applications, databases, caching systems and more. Platform
engineers define and maintain all infrastructure resources as code, allowing them
to make changes quickly and securely so the developers don’t need to worry about
Kubernetes and the rest of pieces are correctly configured and secured. They only use
the catalog of services available in the platform and use it for building the application.

When the development team releases a new version of the application, platform
engineers use Kubernetes to deploy it seamlessly, scaling dynamically on demand.
If a server fails, Kubernetes automatically takes care of redirecting traffic to healthy
servers. They also constantly monitor the performance and health of the infrastruc‐
ture to ensure uninterrupted service.

Current Industry trends | 133

Alternatives for Kubernetes in the Orchestration
Although Kubernetes is widely popular, there are alternatives that allow the ecosys‐
tem to continue to innovate in container management and specifically in distributed
service orchestration. The choice of a container orchestration platform will always
depend on several factors and although Kubernetes is widely accepted as the de facto
standard in the industry, factors such as the complexity of an application, the skills of
the team (DevOps) and the investments made in infrastructure, can be determinant
in the choice.

Knowing the alternative solutions allows us to make an informed decision about
the container orchestration and distributed application platform that best suits our
boundary conditions.

Let’s take a look at the main alternatives to Kubernetes:

Apache Mesos and Marathon
If there is a solution we could argue whether they fit in the container orchestration
area or not it’s the case of Apache Mesos with Marathon framework. Comparing it
with Kubernetes side by side wouldn’t be fair as they are not originally built to cover
the same functionality but with Marathon as the container orchestrator they can fit to
solve the same scenario.

Apache Mesos is a distributed resource (not container) manager that focuses on
providing an abstraction layer for resource management in server clusters. Marathon,
on the other hand, is a container orchestrator that runs on top of Mesos and allows
you to manage containerized applications.

Seeing that both could fit into an architecture of an application designed to be
deployed and run in a distributed fashion you would want understand what are
the main differences and features of Mesos and Marathon compared to Kubernetes.
Without deeping in architecture aspects the main differences are:

• Focused design on resource management: The main difference between Mesos•
and Kubernetes is their focus. Mesos focuses on resource (infrastructure) man‐
agement, which makes it highly scalable and suitable for managing resources in
large-scale environments. Kubernetes, on the other hand, tries to abstract the
management of the underlying compute resources and focuses on application
orchestration and state management.

• Configuration and Deployment: Configuring and deploying a Mesos and Mara‐•
thon cluster can be more complex than doing so with Kubernetes, especially for
users less familiar with cluster-level resource management.

134 | Chapter 5: The Key Role of Kubernetes

• Top Scalability ranks: Mesos and Marathon are designed to manage large-scale•
applications and handle extremely large and distributed workloads. However,
numerous success stories of using Kubernetes in highly scalable and distributed
applications have demonstrated the reliability of Kubernetes in this regard, and it
can compete with Mesos and Marathon in this regard.

Openshift
Red Hat Openshift (whose upstream project is called OKD) is an orchestration
platform whose core technology is Kubernetes. It is therefore an alternative platform
but not an alternative technology since the engine of Openshift is Kubernetes.

Red Hat OpenShift differs from Kubernetes in its approach, since being designed as
a platform it provides a ready-to-use solution for enterprise environments including
all the necessary ecosystem pieces to have a tested and certified application devel‐
opment and deployment platform with interoperability between its different pieces
guaranteed by Red Hat. As an enterprise solution, it includes additional security,
administration and development features to reduce the learning and adoption curve
of the teams.

The main differential features of Openshift are:

• Advanced security enabled: OpenShift is also intended for use in highly regu‐•
lated environments and therefore offers advanced security capabilities such as
container isolation and centralized identity and access management as a base.
Kubernetes is also utilized in highly regulated environments but the hardening
needs to be done adhoc.

• Reactive Support: Red Hat offers enterprise support and training services for•
OpenShift, which makes it a very attractive option for teams that want to abstract
from the complexity of managing Kubernetes vanilla clusters (a vanilla kuber‐
netes cluster refers to the most basic setup of Kubernetes) .

• Integrated development: OpenShift includes all the necessary tools for applica‐•
tion development, such as CI/CD pipelines, Jenkins integration and code reposi‐
tories.

Benefits of Containerization for Businesses
Containerization has evolved from a niche technology to a mainstream solution
that is changing how businesses develop, deploy, and manage software. Embracing
containerization is not just a technological shift; it’s a strategic move that enables
organizations to thrive in an increasingly competitive and digital world including a
cultural mindset in the teams.

Benefits of Containerization for Businesses | 135

The benefits for an organization embracing container technology adoption are not
always easy to measure.

Besides the operational benefits (greater agility, scalability, efficiency, and security)
there are other benefits which are not easily measure but nevertheless , has the larger
impact in an organization, such as:

Business Agility
Adopting containerization technologies can drive business agility. Organizations can
respond quickly to changes in the marketplace, implement new features or services
faster, and adapt nimbly to changing customer demands. This agility can make all the
difference in a company’s ability to stay competitive.

Innovation Acceleration
Containerization fosters an environment conducive to innovation. Development
teams can more easily experiment with new ideas and technologies, as implementa‐
tion and management of containers is faster and less error-prone. This can result
in the creation of innovative products or services that set the company apart in the
marketplace.

Collaboration
Containerization promotes collaboration between development and operations
(DevOps) teams. Standardizing environments and automating deployments facili‐
tates cooperation and communication between these teams, leading to faster and
more reliable software delivery.

Resiliency and Business Continuity
The scalability and fault tolerance inherent in containerization can improve a compa‐
ny’s resilience to disruptions and disasters. The ability to migrate applications and
services quickly and efficiently in the event of failures can minimize downtime and
reduce the impact on business continuity.

Talent Attraction and retention
Adopting cutting-edge technologies, such as containerization, can make a company
more attractive to technology professionals. Developers and IT professionals are
often looking to work in innovative and up-to-date environments, which can help in
retaining talent and attracting new, qualified employees.

136 | Chapter 5: The Key Role of Kubernetes

Customer Satisfaction
The benefits of containerization, such as faster delivery of features and greater appli‐
cation stability, can improve customer satisfaction. Customers appreciate seamless
experiences and frequent updates that are responsive to their needs and this will
finally results in business improvements.

Summary
We have ended our journey about Kubernetes and its key role in the cloud native
realm. We have explored why Kubernetes is a cornerstone of the cloud native eco‐
systems and its pivotal role in containerization technologies and how it empowers
businesses.

From agility and innovation to collaboration and resiliency, Kubernetes offers a
robust platform for modern application deployment.

The next chapter will be more practical chapter with code examples equip you
with the knowledge to feel comfortable in your first steps with this technology and
allowing you pass the exam.

Summary | 137

CHAPTER 6

Technical Kubernetes Topics

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 6th chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at shunter@oreilly.com.

The way that applications are built and deployed today has fundamentally changed
with the rise of containerization adoption and Kubernetes is rapidly becoming the
preferred solution for deploying and managing software in cloud environments.
However, it presents a significant learning curve, particularly for newcomers.

In this chapter, our goal is to simplify the Kubernetes landscape by providing a
high-level overview of its essential components and their interactions, making it
accessible to those who are just getting started.

We will explore the key components and features of Kubernetes, such as the master
and worker nodes, the pod lifecycle, the service discovery and networking mecha‐
nisms, and the security and observability tools.

We will also present the concept of service mesh, a powerful technology that enhan‐
ces the management and reliability of microservices architectures.

139

In the last section you will be provided with a list of most used Kubernetes com‐
mands and output samples that will help you to grasp the concepts.

By the end of this chapter, you should have a solid understanding of how Kubernetes
works under the hood and how it enables you to build and deploy scalable, resilient,
and secure applications.

The innovation pace in the open source community is fast and
every new kubernetes release contains tons of new pieces of code
that brings new features to the product.
For keeping up the learning with the rhythm of news we encourage
you to check the release notes that is delivered with every new
release.
LINK https://kubernetes.io/releases/

Note about Kubernetes releases:
In general, Kubernetes versions are expressed as x.y.z, where:

• x is the major version.•
• y is the minor version.•
• z is the patch version, following Semantic Versioning terminology.•

The Kubernetes 1.19 cycle was far longer than usual. The Release Team extended it to
lessen the burden on both Kubernetes contributors and end users due the COVID-19
pandemic. Following this extended release, the Kubernetes 1.20 release became the
third, and final, release for 2020. It means that starting from 1.20 release there are 3
release cycles per year (until 1.19 it has a cadence of 4 releases per year).

End users will now experience a slower release frequency and a more gradual
enhancement graduation rate.

140 | Chapter 6: Technical Kubernetes Topics

Figure 6-1. Example of release cadence of minor versions.

We strongly recommend you to check the following link in a monthly basis to review
the delivery of new patch versions:

https://kubernetes.io/releases/patch-releases/

Kubernetes Basic Concepts: from Containers to Clusters
In the previous chapter of this KCNA study guide we discussed how Kubernetes
abstracts away the complexities of infrastructure and empowers people and busi‐
nesses to focus on their applications rather than operational burden. Now, let’s ven‐
ture beneath the surface and uncover the magic that powers Kubernetes.

Kubernetes Cluster
A Kubernetes cluster is the fundamental building block that allows you managing
containerized applications.

At the more basic architecture concepts it is built up from two different planes:
Control Plane and Data Plane. We will deep into these concepts later in the chapter
but for now let’s simplify with the following description:

• Control Plane: You can think of it like the brain of Kubernetes. The control plane•
orchestrates containers, manages clusters, and ensures everything runs smoothly.
It’s responsible for maintaining the desired state of the system.

Kubernetes Basic Concepts: from Containers to Clusters | 141

• Data Plane: The data plane is like the body of Kubernetes. It carries out com‐•
mands from the control plane and handles the actual work.

Figure 6-2. Kubernetes Cluster Architecture

Before going deeper in the main components of each Kubernetes plane, let’s present
the container and pod concepts in a Kubernetes cluster.

Kubernetes Container:
A “container” in Kubernetes refers to a self-contained, lightweight instance that
encapsulates a service or application along with all of its dependencies and configura‐
tions necessary for it to function properly. We can think of it as a logical instantiation
of a docker file.

Note: What is a Docker file?
A Dockerfile is a simple text document containing a set of instructions. These
instructions guide the creation of a Docker image. Think of it as a recipe for building
a customized container image where you specify details like the base image, environ‐
ment variables, file locations, network ports and other components required to run
your application.

142 | Chapter 6: Technical Kubernetes Topics

Figure 6-3. - Dockerfile to create an image which run a redis-server and expose the port
6379

We recommend learning the basics of creating images from dockerfiles. The follow‐
ing link includes the reference for learning it:

https://docs.docker.com/reference/dockerfile/

In the docker ecosystem, the flow to run a container is showed in the next figure:

Figure 6-4. Steps for running a Docker container

Kubernetes Basic Concepts: from Containers to Clusters | 143

A container can be a database, a web application, and API, etc....

The concept of a container in Kubernetes is exactly the same as we saw in the previ‐
ous section of this study guide, highlighting its portability and scalability, meaning
that once an application is running in a container, it can run in any Kubernetes
environment, whether in development, test or production.

Containers are deployed and run on the worker nodes within the Kubernetes cluster
and each node can host multiple containers, each running different applications or
services. Besides containers make it easy to package, deploy, and scale applications,
and they are the runtime environment for workloads in a Kubernetes cluster.

144 | Chapter 6: Technical Kubernetes Topics

Figure 6-5. Kubernetes Containers

Kubernetes Pod
Pods are the smallest deployable units in Kubernetes and represent a single instance
of a running process within the cluster. A pod is seen as a structure which abstracts
one or more containers which are deployed together in the same host (see figure 6-6).

Typically an application runs in one or more pods (depending on their architecture).

Kubernetes Basic Concepts: from Containers to Clusters | 145

Figure 6-6. Pods running in a Kubernetes Cluster

Now that you know how container and pod fits into the greater Kubernetes architec‐
ture, let’s go back to our Kubernetes Cluster and go deeper into its components.

The cluster itself provides the necessary infrastructure and resources for the applica‐
tions to run, including networking and storage ensuring high availability and fault
tolerance by distributing the applications across multiple nodes, so if one node fails,
an application can continue running on another.

In a Kubernetes cluster, there are different types of nodes, each serving a specific
purpose in the overall infrastructure and workload management. These nodes collec‐
tively work together to ensure the proper functioning and resilience of the cluster.
There can be nodes serving different roles or just one, depending on the cluster
configuration needed.

These nodes are part of the two differentiated planes that builds the cluster:

• Control Plane•
• Data Plane•

Let’s delve into the nodes presented in a Kubernetes cluster.:

Master Node
The master node is the control plane of the Kubernetes cluster. It manages and
controls all the activities in the cluster, such as scheduling, scaling, and monitoring
of workloads. In production clusters, it’s common to have multiple master nodes for
high availability and redundancy (a minimum of three master nodes).

Key components running on the master node include the Kubernetes API server,
which acts as the entry point for cluster management, the controller manager, the

146 | Chapter 6: Technical Kubernetes Topics

scheduler, and etcd, which is a distributed key-value store used for storing cluster
configuration data.

Worker Node
Worker nodes are responsible for running the actual workloads, such as containers
and pods. They belong to the data plane and execute the tasks assigned to them by
the master node. Worker nodes can be scaled horizontally to accommodate more
workloads.

Key components running on worker nodes include the Kubelet and the Container
Runtime. The Kubelet communicates with the master node and manages containers
on the node, and the Container Runtime is responsible for running containers (e.g.,
Docker or containerd).

Etcd Node (Optional)
Etcd (https://etcd.io/) is a distributed key-value store which often runs on the master
node. However, in some configurations, especially in larger clusters or highly avail‐
able setups, etcd might run on dedicated etcd nodes. Etcd nodes function will be the
same as if it runs on the master node: responsible for storing the configuration data
and the desired state of the cluster.

Figure 6-7. Kubernetes Cluster components

Components of the Control Plane
The Kubernetes’ control plane manages the overall state of the system and ensures
that the desired state is maintained.

While control plane components can be distributed across various machines within
the cluster, setup scripts often follow a simplified approach by deploying all control
plane components on a single machine (Master Node). Typically, user containers
are not scheduled on this machine. Let’s have a look at each of the control plane
components

Kubernetes Basic Concepts: from Containers to Clusters | 147

Api Server
The Kubernetes API server, a key component of the control plane, serves as the
interface for accessing the Kubernetes API. The primary implementation of this
server is known as ‘kube-apiserver.’ It’s designed for horizontal scalability, meaning
you can expand its capacity by deploying multiple instances. These instances can be
utilized to load balance incoming traffic effectively.

From an user perspective the interaction with a Kubernetes cluster can be through
the UI provided by Kubernetes Dashboard (https://kubernetes.io/docs/tasks/access-
application-cluster/web-ui-dashboard/) and/or via Command Line Interface.

Note: Kubectl and Kubeadm
For interacting with Kubernetes Clusters Kubernetes provinces a command-line tool
called kubectl. This tool facilitates the communication with the cluster through the
Kubernetes API.

Once kubectl is installed in your laptop, the tool looks for a configuration file named
kubeconfig in the $HOME/.kube directory (it can look into a different directory by
setting the KUBECONFIG environment variable or using the -kubeconfig flag).

The syntax of kubctl commands is: kubectl [command] [TYPE] [NAME] [flags]

Command: Specifies the operation (e.g create, get, describe, delete)

Type: Specifies the resource type (case-insensitive)

Name: Specifies the name of the resource (case-sensitive)

For example:

#kubectl get pods —all-namespaces

This kubectl command will list all the pods present in the cluster.

Figure 6-8. Example of kubectl command in a minikube environment

Kubeadm on the other hand is a tool provided by Kubernetes to simplify the process
of creating and bootstrapping a Kubernetes cluster (it’s used if you plan to install your
own cluster from scratch) performing the necessary actions to get a minimum viable

148 | Chapter 6: Technical Kubernetes Topics

cluster up and running. Kubeadm does not handle the underlying infrastructure
provisioning. If you are interested in learning more check the official documentation:

https://kubernetes.io/docs/reference/setup-tools/kubeadm/

Etcd
Etcd serves as a reliable, consistent, and highly-available key-value store that under‐
pins Kubernetes’ storage for all cluster-related data. If your Kubernetes cluster relies
on etcd as its storage backend, it’s crucial to establish a data backup strategy to ensure
data integrity and availability.

Alternatives to etcd includePostgreSQL , mySQL or yugabyteDB and it’s seeing a great
adoption mainly driven to rely on distributed SQL DB engines which provides better
reliability and recovery options.

As of today Kubernetes is tightly coupled to etcd so control plane components (API
Server) expect an etcd-like interface to which they can write and from which they
can read. So for replacing etcd for any other RDBMS a piece of software in charge of
translating the underlying RDBMS engine to an etcd-like one is needed.

The project that is widely used for translating etcd API is Kine (https://github.com/
k3s-io/kine)

Scheduler
The scheduler is responsible for assigning newly created Pods to specific nodes in a
Kubernetes cluster. It considers a range of factors when making scheduling decisions,
including resource needs, constraints, affinity/anti-affinity rules, data locality, work‐
load interactions, and deadlines.

Controller Manager
The controller manager is a daemon that embeds the core control loops released in
Kubernetes.

Note: What are Control Loops?
In applications of robotics and automation a control loop is an endless loop that
supervise and readjust the state of the system.

In Kubernetes a controller is a control loop that watch the state of the cluster and then
make or request changes where needed.

The main controllers released in Kubernetes are:

• Replication Controller - Ensures the desired number of replicas for a pod.•

Kubernetes Basic Concepts: from Containers to Clusters | 149

• Endpoints Controller - Populates the endpoints resource (used for service dis‐•
covery)

• Namespace Controller: Manages kubernetes namespaces•
• ServiceAccount Controller: Creates default service accounts for pods•

Note: What are Kubernetes namespaces?
Namespaces in Kubernetes are a similar approach to Linux namespaces. Basically
they provide a way to organize and isolate resources within a cluster.

Each namespace serves as a virtual cluster within the physical Kubernetes cluster.
Resources (pods, services, volumes,...) within a namespace share a common scope for
names.

Namespaces allow you to isolate different projects, teams or customer within the
same cluster and provide a mechanism to attach authorization and policies to specific
parts of the cluster.

Note: What are ServiceAccount?
A ServiceAccount in Kubernetes is a special type of account that represents non-
human entities within a cluster. It grants a unique identity, and both application
pods and system components can utilize its credentials. This identity serves various
purposes, such as authenticating with the API server and enforcing identity-based
security policies.

ServiceAccounts play a crucial role in several scenarios:

1. Pods Communicating with the API Server1.
2. Pods Communicating with External Services (for example authenticating to pri‐2.

vate container image registries)
3. External Services communicating with the API Server (for example in a CI/CD3.

pipeline to release a new app version)
4. Third party security software: Some tools rely on service account identities to4.

group pods into different security contexts

Cloud Controller Manager
In certain situations, it’s beneficial to enable Kubernetes to interact with specific cloud
providers or infrastructure platforms using the provider’s APIs.

150 | Chapter 6: Technical Kubernetes Topics

For instance it can be optimal to use the provider’s API to handle nodes, configure
load balancer or any other infrastructure operation.

With the Kubernetes 1.16 release a new binary called cloud-controller-manager was
shipped.

This controller is an optional component in the cluster and the main reason behind
shipping it as an optional component is because in earlier releases it was part of the
Kubernetes Controller manager. Splitting it in an optional component decoupled it
and allows different providers to develop their controller managers.

Similar to the controller-manager, the cloud-controller-manager consolidates multi‐
ple independent control loops into a single binary, executed as a single process.

Components of the Data Plane
The Data Plane (sometimes called worker plane) is where workloads (applications)
run within a Kubernetes cluster. You can think of it as the plane where containers
execute, communicate and process requests.

The foundation of the data plane are the Worker Nodes which are physical or
virtualized machines where pods are hosted.

Let’s see what are the main components of the Data Plane:

Kubelet
Kubelet is an essential piece of the Data Plane running in each worker node and
acting as a bridge between the control plane and the execution of the workloads.
Kubelet has an extensive list of critical tasks inside the cluster but the main ones are:

• Pod lifecycle management: Kubelet monitors the health status of pods and per‐•
forms Starting, stoping and restarting containers as needed. It also receives the
commands sent from the control plane regarding pod creation, updates and
deletions.

• Kubelet is responsible for ensuring that the pod and containers configuration and•
status match the desired state specified by the control plane.

• Reporting back the node’s status to the control plane: Kubelet communicates•
with the Kubernetes Control Plane establishing a communication channel for
exchanging information required for cluster health and functionality together
with the API-Server running in the control plane. Kubelet updates the control
plane about the node’s health, availability and capacity metrics.

Kubernetes Basic Concepts: from Containers to Clusters | 151

Kube-proxy
The other essential component of the data plane is Kube-proxy and its main area
of responsibility is managing network connectivity within the cluster. Among their
main tasks are:

Service Loce Balancing:
When a pod communicate with a service, kube-proxy ensures that requests are
load-balanced across the relevant pods.

Iptables or IPVS rules management:
In Linux nodes there are two modes available in kube-proxy:

• Iptables Mode:•
• IPVS Mode•

In general you can think of Ip tables rules as simpler to configure but it become
inefficient and operationally complex at scale when we work with a large number
of services. IPVS is an alternative mode which provides in general better perfor‐
mance.

Network Address Translation:
NAT is used by kube-proxy for managing traffic between services and pods . It
allows services to abstract away the underlying pod network space. When a new
service or endpoint is created, it abstracts the underlying pod IPs, allowing other
services to communicate with it using the service’s virtual IP address.

Note: About Iptables, IPVS and eBPF
Kubernetes relies on networking components to manage communication between
services and pods.

In this journey today there are different options available: iptables, IPVS, and the
emerging star, eBPF.

Iptables is a technology being around for a while but was not created for an extensive
case as Kubernetes networking. Iptables struggle with large rule sets and this leds to
performance issues causing latency and CPU overhead.

While IPVS (IP Virtual Server) offers an alternative to iptables for load balancing and
service proxying being more efficient than Ip tables it also become complex when
dealing with a large number of services and endpoints and struggle to dynamically
update rules being less flexible for real-time changes.

In that context eBPF (extender Berkeley Packect Filter) is a rising technology that
allows programmable processib within the Linux Kernel. Think of it as a tool
that supercharges networking components as eBPF outperforms IPVS significantly

152 | Chapter 6: Technical Kubernetes Topics

through an ease of network management, reduced overhead in terms of resource
consumption and improving observability and dynamic updates in real-time.

The industry standard for Kubernetes networking using eBPF technology is Cilium
(https://cilium.io/get-started/) which is currently a graduated project in the CNCF
landscape.

Cilium can replace kube-proxy entirely as it implements a Container Netowrking
Interface (CNI) that we will present in the next section.

Figure 6-9. Diagram of traffic path with Iptables mode vs Cilium eBPF (source: CNI
Benchmark: Understanding Cilium Network Performance)

Inside Kubernetes Architecture
As described in the earlier chapters of this book, Kubernetes is built as a distributed
system where many different pieces need to work together to make the system as
reliable and trusted as required in today’s applications.

For that reason there are architectural building blocks and concepts that need to be
well understood to deploy a cluster that fits the requirements or your applications.

In this section we will focus on four fundamental architectural concepts:

• Containers communication basics and single container and multi container pod•
architecture patterns

• Container Runtime Interface•

Inside Kubernetes Architecture | 153

• Container Network Interface•
• Container storage Interface•

Kubernetes Single Container Pod and Multi Container Pod
As described earlier in the chapter, Pods are the smallest deployable units in Kuber‐
netes and a pod can be composed of one or various containers. Practically if you want
to run a container in a kubernetes cluster you will need to create a pod to run it. This
type of construction is called a single container pod. On the other hand, if you need
to run several containers in the same pod, you will end up having a multi-container
pod.

You may be wondering why a multi-container pod can be required. This is a common
question when learning kubernetes and how software architectures can be “deployed”
in kubernetes.

Well, imagine that you want to run a web server in Kubernetes which is expected
to receive hig-traffic (imagine an e-commerce website during the Black Friday for
instance) . The web server will handle user requests, server product pages and process
transactions. The cache service (Redis, Memcached…) will store frequently accessed
data such as product listings, images, descriptions and user session information
reducing the load of the web server ensuring a great user experience.

In this case speed is key and we want both services to be in sync. This is a scenario
of tightly coupled processes and a multi-container pod could be a good fit. While
the multi-container pod pattern will bring some beneficials in terms of resource
efficiency it also introduces some complexity in terms of operational management
(dependency challenges, scalability constraints, spin up order,, etc).

The multi-container pod has its own characteristics in terms of intra pod communi‐
cation and understanding them will facilitate your decision whether to use it or not.

Multicontainer pod communication
There are three multi-container intra pod communication mechanism:

Shared Network Namespace . Within a pod, all containers operate within a shared
network namespace, allowing them to establish communication via the localhost
interface.

For example, consider the scenario displayed in figure 6-9 where a pod houses two
containers — one listening on port 8001 and the other on port 8002. In this setup,
Container 1 has the capability to interact with Container 2 seamlessly using the
localhost address, specifically on port 8002.

154 | Chapter 6: Technical Kubernetes Topics

Figure 6-10. Multi-Container Pod Networking

Note:For detailed information see https://kubernetes.io/docs/concepts/workloads/pods/
#pod-networking

Shared Storage Volume. Within a pod, containers have the ability to share a common
storage volume, enabling them to exchange information by reading and making
alterations to files within this shared storage space (see figure 7-5).

Inside Kubernetes Architecture | 155

Figure 6-11. - 11: Multi-container Pod storage shared sample

Shared process Namespace. An alternative method for containers to establish commu‐
nication when belonging to the same Pod is through the Shared Process Namespace.
When activated, processes in a container are visible to all other containers in the
same pod and enables containers within the same pod to signal one another (for
example sending a SIGHUP signal which is one of the set of Termination Signals
used to tell a process to terminate). To activate this functionality, the shareProcessNa‐
mespace setting in the pod specification must be configured as ‘true’.

156 | Chapter 6: Technical Kubernetes Topics

Figure 6-12. Multi-Container Pod Shared process namespace

Multi-container Architectural Patterns
The use of the multi-container pod is closely associated with three specific archi‐
tectural patterns that offer structure and guidance when designing multi-container
pods in Kubernetes. They promote modularity, maintainability, and flexibility in
orchestrating complex applications and choosing the appropriate pattern depends on
the specific application requirements.

We delve into these three primary patterns below and provide examples illustrating
scenarios in which their application proves advantageous.

Sidecar Pattern. In this pattern, a main container is accompanied by one or more
sidecar containers (see figure 6-13). The sidecar containers extend or enhance the
functionality of the main container such as logging, monitoring or data synchroniza‐
tion.

For instance consider an NGINX web server container responsible for hosting a
website. This web server container can be paired with a complementary “sidecar”

Inside Kubernetes Architecture | 157

container, which is designed to fetch website content from a GIT repository and serve
it to users.

Figure 6-13. Example of Sidecar container pattern

Adapter Pattern. In the adapter pattern the deployment involves placing a primary
container alongside an adapter container. The adapter container assumes the respon‐
sibility of standardizing and normalizing the output generated by the primary con‐
tainer

Consider for example a main container that produces logs in different formats. The
adapter container can convert these logs into a consistent format for centralized
logging.

158 | Chapter 6: Technical Kubernetes Topics

Figure 6-14. Example of Adapter Pattern

Ambassador Pattern. In this pattern, an ambassador container acts as a proxy or
intermediary for the main container as shown in figure 6-15. It facilitates communi‐
cation between the main container and external services.

One of the most common use cases for using this ambassador pattern is including
a container responsible to handle authentication, load balancing, or SSL termination
for the main application container.

Figure 6-15. Example of Ambassador pattern

Keep in mind that although multi-container pods deviate from the ‘one process per
container’ guideline, they present advantages such as the ability to reuse granular
containers and facilitate seamless communication within the pod. Thus, whether
dealing with closely integrated components or specialized functions, multi-container
pods offer versatility and operational efficiency in Kubernetes deployments.

Inside Kubernetes Architecture | 159

Note: About Multi-Container pods
Patterns for composite containers by Brendan Burns

We recommend reading the following post written by Brenda Burns in 2015:

https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-patterns/

In Kubernetes 1.28 a new feature to support sidecar containers natively in Kubernetes
that ease the lifetime management of the sidecar container. At the time of writing this
book it’s still in alpha stage.

.

Figure 6-16. Kubernetes features lifecycle

https://kubernetes.io/blog/2023/08/25/native-sidecar-containers/

Container Runtimes in Kubernetes
Kubernetes accommodates diverse container runtimes, also commonly called con‐
tainer engines. As of the writing of this book, Kubernetes version 1.28 mandates
that the runtime aligns with the Container Runtime Interface (CRI), a standardized
interface which allows kubernetes to seamlessly support a diverse array of container
runtimes, all without the cumbersome need for recompilation. In short, the CRI is a
plugin interface which enable kubelet to use a variety of container runtimes.

https://kubernetes.io/docs/concepts/architecture/cri/

A container runtime is a software component responsible for executing and manag‐
ing containers. It serves as the underlying engine that allows containers to run on a
host system. In the context of Kubernetes, the choice of container runtime plays a
pivotal role in the orchestration and execution of containerized workloads.

160 | Chapter 6: Technical Kubernetes Topics

Kubernetes supports several container runtimes that comply with the CRI, including:

• Containerd•
• CRI-O•
• Docker Engine•
• Mirantis Container Runtime•

Each container runtime offers its unique set of advantages, and within the Kubernetes
community, there have been calls to expand support for a variety of runtimes. In
the Kubernetes 1.15 release, the Container Runtime Interface (CRI) was initially
introduced as an Alpha release. Since then, it has matured and made substantial
contributions, significantly enhancing Kubernetes’ capabilities in terms of flexibility
and extensibility regarding container runtime support.

As you may recall from the previous chapter, we discussed a pivotal standard in the
container ecosystem: the Open Container Initiative (OCI). This standard outlines
how containers should operate, and one of its most renowned implementations is
‘runc,’ often referred to as a Low-Level Runtime.

Low-Level Runtime (Runc)
To get a clear idea of what Runc is , let’s look at Docker’s own explanation from 2015:

“Over the last 5 years Linux has gradually gained a collection of features which make
this kind of abstraction possible. Windows, with its upcoming version 10, is adding
similar features as well. Those individual features have esoteric names like “control
groups”, “namespaces”, “seccomp”, “capabilities”, “apparmor” and so on. But collec‐
tively, they are known as “OS containers” or sometimes “lightweight virtualization”...
Docker makes heavy use of these features and has become famous for it. Because
“containers” are actually an array of complicated, sometimes arcane system features,
we have integrated them into a unified low-level component which we simply call
runC. And today we are spinning out runC as a standalone tool, to be used as
plumbing by infrastructure plumbers everywhere. runC is a lightweight, portable
container runtime. It includes all of the plumbing code used by Docker to interact
with system features related to containers”

Source: https://www.docker.com/blog/runc/

At this moment you may be trying to figure out how each of these pieces (Con‐
tainer Runtime and Low-Level Runtime) fit into the Kubernetes architecture. The
Figure provides a simplified view to understand where each piece fits in the Docker
and Kubernetes stack.

Inside Kubernetes Architecture | 161

Figure 6-17.

162 | Chapter 6: Technical Kubernetes Topics

Containerd and CRI-O stand as the most widely deployed container runtimes in
Kubernetes. However, the choice between them falls beyond the scope of this book.
If you’re interested in delving deeper into these two runtimes, we recommend exam‐
ining the differences in architecture and minimum hardware requirements for each.
In general, for the vast majority of users, the selection between ContainerD and
CRI-O may not be readily apparent, although it’s worth noting that ContainerD was
contributed by Docker to the CNCF (Cloud Native Computing Foundation), foster‐
ing ongoing collaboration and project evolution, while CRI-O is primarily supported
by Red Hat.

Modifying the container runtime in Kubernetes is not a common occurrence, but
thanks to the CRI specification, it is a straightforward operation.

Teams may consider changing the container runtime based on performance , security,
compatibility or resource constraints reasons.

Container Network Interface
Container Network Interface is a specification that defines how container runtimes
interact with network plugins. You can think of it as the bridge that connects contain‐
ers and the network.

For a detailed information about Network plugins we recommend to read the official
documentation referred in:

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-
plugins/

Container storage Interface
Container Storage Interface is an initiative to unify the storage interface across con‐
tainer orchestrators (Kubernetes in our case) and storage vendors (Ceph, PortWorx,
NetApp, etc).

The interface define the operations to allow dynamic provisioning and attaching and
detaching storage volumes to containers .

More detailed information in the CSI project repository: https://kubernetes-csi.git
hub.io/docs/

Navigating Kubernetes states
In the previous section we went through the main architecture pieces over kubernetes
is build up. Now you are equipped to navigate to the functional aspects of Kubernetes
and specifically in this section, the states and lifecycle management of applications
(which ultimately run as Pod).

Navigating Kubernetes states | 163

In the Kubernetes’ domain, managing the lifecycle of containerized applications
across a distributed cluster of nodes involves intricate coordination. At the heart of
this orchestration lies the pivotal concept of application states. These states, which
can be broadly categorized into two distinct types—stateless and stateful—play a
foundational role in how Kubernetes efficiently deploys, scales, and maintains appli‐
cations through controllers.

Furthermore, Kubernetes introduces a critical resource known as ReplicaSets, and
building upon this foundation, it offers even more sophisticated controllers like
Deployments and StatefulSets.

Let’s explore these states and the role played by ReplicaSets, Deployments, and State‐
fulSets, DaemonSet and Job/CronJob Controllers

Stateless Applications
Stateless applications are the essence of agility in the Kubernetes landscape. They
operate seamlessly without reliance on maintaining persistent data or state informa‐
tion on the local node. Stateless applications are designed to excel in a dynamic and
ever-changing environment, where horizontal scaling and resilience are top priorities.

Consider typical stateless applications like web servers, microservices, and load
balancers. These software components excel at rapidly generating new instances,
efficiently handling traffic, and accommodating a surge in user activity. Stateless
applications are usually easier to deploy, and resilient in the face of node failures.

Stateful Applications
In contrast to their stateless counterparts, stateful applications bear the weight of
responsibility for managing data and state information. These applications are tied
to the data they oversee, and their deployment requires measures to ensure data
persistence, consistency, and availability during scaling or failure scenarios.

Kubernetes addresses the unique needs of stateful applications through the introduc‐
tion of StatefulSets, a specialized controller that orchestrates the deployment and
scaling of stateful workloads.

Stateful applications span a broad spectrum including databases, message queues, and
applications reliant on unique network identifiers.

Deployments: Orchestrating Stateless Scalability
A Deployment, a higher-level controller, provides a declarative approach to managing
the rollout and scaling of stateless applications.

Deployments offer a powerful and user-friendly way to ensure the desired number of
replicas is maintained for stateless applications. They not only facilitate the horizontal

164 | Chapter 6: Technical Kubernetes Topics

scaling of containers but also allow for easy updates and rollbacks without downtime.
By defining the desired state of the application, Deployments handle the process of
creating and managing ReplicaSets, which in turn ensure the specified number of
replicas is maintained.

StatefulSets: The custodian of stateful applications
StatefulSets, as a specialized controller within Kubernetes, provide stable network
identifiers, ensuring that each replica of a stateful application maintains a consistent
identity. Moreover, StatefulSets offer the gift of persistent storage, enabling data to
survive the life cycle of a Pod and persist even in the face of node disruptions.

This combination of identity and persistence makes StatefulSets the go-to choice for
managing databases, message queues, and other data-intensive workloads.

ReplicaSets: Safeguarding Replication and Reliability
ReplicaSets serve as vigilant guardians for both stateless and stateful applications.
These resource controllers are indispensable for maintaining the optimal replication
and reliability of applications. Whether it’s a stateless application relying on Deploy‐
ments, or a stateful application managed by StatefulSets, ReplicaSets play a pivotal
role in ensuring that the desired number of replicas is maintained, thus facilitating
scalability and fault tolerance.

DaemonSet Controller
DaemonSet Controller ensures that a specified Pod runs on every node within the
Kubernetes cluster. Unlike Deployments or ReplicaSets that focus on keeping a given
amount of replicas across the cluster (for instance imagine a cluster with 5 worker
nodes and a pod which is declared to run with a ReplicaSet=3. The ReplicaSet con‐
troller will ensure that there are 3 replicas running across the cluster but it does not
mean at all that every node will run a replica) DaeonSets focus is to ensure that the
specified Pod runs in every node. You can rely on properties such as Node Affinity
and Tolerations to define in which specific nodes the Pod specified as Daemonset will
run on.

Job and CronJob Controllers
First let’s define what a job means in Kiubernetes realm.

A Job represents a single, self-contained task or batch job that don’t need to run all
the time. It’s a good fit for one-time tasks (for instance a data import into a DB) or
running a batch (making a backup, generating reports, etc..)

Navigating Kubernetes states | 165

The Job Controller will ensure that the task completes successfully, creates the Pods
required for running the job and in case of a fail, it will retries the task.

A CronJob is an scheduled task in Kubernetes which need to run periodically (hourly
cleanup, daily backups, etc) and uses a cron-like syntax to define the schedules

Note: Reference material recommended

https://kubernetes.io/docs/concepts/workloads/controllers/

Workload Auto-scaling, Kubernetes Events and Pod
lifecycle
To comprehend Kubernetes events, it’s essential to grasp the underlying dynamics of
resource allocation and container management within an active application.

In the real world, applications are never used at a constant rate. User activity ebbs
and flows, influenced by factors like time of day or specific events (Black Friday for
instance). CPU, memory, and networking demands fluctuate throughout runtime.
Here, the Kubernetes scheduler (remember the architecture Figure 6-7) takes center
stage, dynamically distributing computing and memory resources to cater to appli‐
cation’s evolving needs. Kubernetes provides a variety of mechanism which allow
scaling operations:

Horizontal Pod Autoscaler (HPA):
It automatically updates a workload resource (Deployment or statefuSet) for automat‐
ically scaling the workload to match the demand Horizontal Scale means that as
response for more load, more Pods will be deployed. The HPA can be actioned based
on observing metrics such as average CPU utilization, average memory utilization, or
any other custom metric you specify.

166 | Chapter 6: Technical Kubernetes Topics

Figure 6-18. Horizontal Pod Autoscaler

(source: https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/)

Vertical Pod Autoscaler (VPA):
Vertical pod Autoscaler provides the mechanism to adjust the pod resources require‐
ments (mainly CPU and memory reservations) based on their historical resource
usage. It can scale vertically up (if more resources are needed) or down (if the pod
requirements are over reserved).

Unlike HPA, VPA doesn’t come with Kubernetes by default. It’s a separate project that
needs to be installed.

Workload Auto-scaling, Kubernetes Events and Pod lifecycle | 167

Figure 6-19. Represent differences between VPA and HPA

The VPA project is found in the following repository: https://github.com/kuber
netes/autoscaler/tree/master/vertical-pod-autoscaler

Cluster Proportional Autoscaler (CPA):
There can be workloads that require to scale based on the cluster size as for example
core system components (CoreDNS is a typical workload that fits for using CPA)
where based in the number of nods or pods in the cluster, CPA dynamically adjusts
the number of replicas required for the workload.

Same as VPA, CPA is not included in Kuberentes by default but in their GitHub
repository:

https://github.com/kubernetes-sigs/cluster-proportional-autoscaler

Autoscaling based on Events
Another Auto scaling mechanism that can be required for your workloads is when
decisions for scaling up/down needs to be triggered by an event. For example imaging
an application that processes images when a new image is stored in a queue. In the
event of a high number of images in the queue waiting to be processed you might
want to scale out the number of pod replicas to process the images faster and once the
number of images in the queue is low, scale in for freeing up resources (or reducing
costs). That’s a simple example but it can be used for any event-driven workload.

The project that allows a Kubernetes cluster implement autoscaling based in events is
KEDA (Kubernetes Event-Driven Autoscaler).

168 | Chapter 6: Technical Kubernetes Topics

Cluster Autoscaler
We have seen how to auto scale pods depending on a variety of situations. However
there is another scenario that you can find when working with distributed systems
and applications. Imagine that you have configured your HPA for scaling dynamically
(scale out and scale in) based on the requests coming to your service. HPA will
evaluate the target metrics and if it matches the configuration you specified in your
workload deployment, HPA will scale out your application by increasing the number
of replicas (pod replicas). Now you can rest because Kubernetes HPA will manage it
for you.

But, what happens if the HPA update the deployment and ReplicaSet number for new
pods being deployed but there are no free resources in your worker nodes that can
accommodate the new replicas?

Well that is a very different scenario….. Now you will need to horizontally scale (Scale
Out) oyour cluster so you have resources available to accommodate the new Pods.

That’s exactly what Cluster Autoscaler is used for and it allows you to dynamically
adjust the cluster size (out and in) based on the workload requirements.

For more information about Cluster Autoscaler we recommend to read the official
information in the corresponding GitHub repository:

https://github.com/kubernetes/autoscaler

Note: CoreDNS and KEDA
CoreDns is the default DNS service for Kubernetes. It’s a graduated project under
the CNCF and it’s build as a chain of plugins so you can only use the plugins for
the functionality you really need. Between other functions it can provide service
discovery. The configuration is done through the “Corefile” where you define the
server configuration and the plugins loaded.

For detailed information about CoreDNS you can read the official site:

https://coredns.io/

Keda (Kubernetes event-driven autoscaler) is another graduated project under the
CNF. KEDA enhances Kubernetes by providing better scaling options for event-
driven applications with a catalog of 50+ built-in scalers for various cloud platforms,
databases, messaging systems, telemetry systems, CI/CD and more.

For detailed information you can read the official site:

https://keda.sh/

Workload Auto-scaling, Kubernetes Events and Pod lifecycle | 169

Note: Node Affinity , tolerations and taints.
Node affinity, taints, and tolerations are Kubernetes concepts that help to schedule
pods onto appropriate nodes.

Node affinity: is a property of Pods that attracts them to specific nodes (either as
a preference or a hard requirement). For example you can ensure that Pods are
scheduled on nodes with GPU available or in an specific availability zone if using an
hyperscaler infrastructure.

Tains and tolerations works together to ensure that Pods are not scheduled into
inappropriate nodes.

Taings are applied to nodes and allow you marking nodes that should not accept any
Pods that do not tolerate the tains.

Tolerations however are applied to Pods and allow the scheduler to place Pods with
marching taints.

Taints and tolerations are useful for scenarios where critical workloads need to run in
a reserved bunch of nodes.

If a Pod has a matching toleration, it can be scheduled on a tainted node.

More information:

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Assign Pods to Nodes using Node Affinity | Kubernetes

Now that you know what are the scenarios for scaling distributed applications and the
austoscalers available, it’s time to unfold the functionality of the Scheduler.

Kubernetes scheduler is a control plane component responsible for assigning Pods to
Nodes. Behind the scenes the Pods that need to be scheduled are added to a queu and
the scheduler continuously select Pods from the queue and assigns them to suitable
Nodes based on constraints and available resources.

Scheduler actions may involve terminating nodes or pausing pods linked to particular
applications. The resources reclaimed are either reassigned to other applications or
held in reserve until demand resurfaces.

Resource reallocation can therefore be intentional or unforeseen as for instance
sudden performance shifts can trigger node failures or even the removal of nodes
from the cluster. These events may also lead to disruptions, such as pod evictions,
kernel panics, or the deletion of virtual machines.

Responding effectively to these events is paramount. Equally critical is gaining insight
into the underlying causes behind specific application behaviors and in this scenario

170 | Chapter 6: Technical Kubernetes Topics

is where Kubernetes event objects play a pivotal role in providing context. Let’s delve
deeper into how these events fit into the overall picture.

In the Kubernetes ecosystem, an event serves as an automated record created in
response to changes in resources, such as nodes, pods, or containers. At the core of
these events are alterations in state and Kubernetes events serve as the watchful eyes
that monitor and capture key milestones and transitions. For instance, transitions in
a pod’s lifecycle or reallocation processes and scheduling may also generate events
(see figure 6-20).

Understanding the Pod lifecycle is fundamental for managing and troubleshooting
applications in Kubernetes as it enables us to monitor the status of the workloads,
handle errors gracefully, and ensure efficient resource utilization within the cluster.

Figure 6-20.

The journey of a Pod begins with its creation. This typically occurs when an applica‐
tion or workload is deployed to the cluster. A Pod specification is defined, detailing
the containers, their images, and resource requirements. When this specification is
submitted to the Kubernetes API server, the Pod enters the “Pending” phase.

Workload Auto-scaling, Kubernetes Events and Pod lifecycle | 171

Pending Phase
During the Pending phase, Kubernetes orchestrates the allocation of resources
required by the Pod. It seeks an appropriate node in the cluster to host the Pod. This
node should satisfy the Pod’s resource requests and affinity rules while respecting any
anti-affinity constraints. Once a suitable node is found, the Pod transitions to the
“Scheduled” phase.

Scheduled Phase
In the Scheduled phase, the Kubernetes scheduler successfully assigns the Pod to a
node. However, the Pod is not yet running on the node. Kubernetes now instructs
the Kubelet on the chosen node to initiate the container(s) defined within the Pod
specification.

Running Phase
With the Kubelet’s action, the Pod enters the Running phase. In this state, the con‐
tainers within the Pod are actively executing, serving your application or workload.
The Pod remains in the Running phase until it completes its task or encounters an
issue.

Succeeded or Failed Phase
When a Pod’s containers complete their intended tasks without errors, the Pod
transitions to the “Succeeded” phase. Conversely, if any container within the Pod
encounters an unrecoverable error, the Pod moves to the “Failed” phase. In both
cases, the Pod’s primary purpose is fulfilled.

Termination
The last phase of a Pod’s lifecycle is Termination. During this phase, the Pod is
gracefully shut down. Resources are released, and the Pod is removed from the clus‐
ter. The termination process may involve cleaning up any attached storage volumes
and releasing network resources. Once completed, the Pod ceases to exist within the
cluster.

If the Pod cannot be gracefully shutdown it is forcefully terminated but it can lead
to Data Loss (if the applicacion inside the Pod has open connections or unfinished
transactions).

As outlined earlier in the chapter, a Pod comprises one or more containers, and
Kubernetes not only monitors the overall phase of the Pod but also keeps a close
watch on the state of each individual container within the Pod. These states include
the following:

172 | Chapter 6: Technical Kubernetes Topics

• Running: When a container is in the ‘Running’ state, it is actively executing its•
assigned tasks and is functioning as expected within the Pod. This is the desired
state for containers, indicating their health.

• Terminated: The ‘Terminated’ state is reached when a container has completed its•
tasks and exited successfully or when it encounters an error or issue that leads to
an unexpected termination. Containers in this state may require investigation to
determine the cause of termination.

• Waiting: The ‘Waiting’ state indicates that a container is not yet in the ‘Running’•
state and is currently waiting for specific conditions to be met, such as the
availability of required resources or dependencies. Containers in this state are in
a pending state, awaiting the transition to ‘Running.’

• ImagePullBackOff: When a container repeatedly fails to pull its required con‐•
tainer image, it enters the ‘ImagePullBackOff ’ state. This status suggests that
there may be issues with image availability or authentication, which need to be
resolved to enable the container to start successfully.

• CrashLoopBackOff: The ‘CrashLoopBackOff ’ status occurs when a container•
continuously crashes shortly after starting. It indicates a recurring problem
within the container, such as misconfigurations, unhandled errors, or insufficient
resources, requiring troubleshooting to resolve the underlying issue.

Bsically we can safely say that whenever something happens inside the cluster, it
produces an event object that provides visibility. However, Kubernetes events don’t
persist throughout the cluster life cycle, as there’s no mechanism for retention.
They’re short-lived, only available for one hour after the event is generated.

The simplest way to view event objects is using “kubectl events “

Figure 6-21. Example of a kubectl events

Kubernetes Observability and Performance
Kubernetes, with its dynamic nature and rapid scalability, presents unique challenges
when it comes to understanding what’s happening under the hood. Observability
should allow you to gain insights into your cluster’s behavior that help you detect and
diagnose issues effectively.

Kubernetes Observability and Performance | 173

Observability generally refers to the ability to gain insights into the behavior and
performance of applications and systems. It involces collecting system telemetry data
such as logs, metrics and traces. Let’s explore this concept in Kubernetes further:

• Logs: Logs are textual records which can be generated from applications, services•
and Kubernetes system components. In Kubernetes, collecting logs from contain‐
ers, and pods will help you for understanding the sequence of actions, debugging
issues, and tracing the flow of data and requests.

• Metrics: Metrics provide a quantitative data of the system’s performance, offering•
numerical data on aspects such as CPU usage, memory consumption, network
activity, and the health of individual components. Metrics are essential for track‐
ing trends, identifying anomalies, and optimizing resource allocation.

• Traces: Traces, particularly distributed traces, follow the flow of requests across•
different services allowing you to identify bottlenecks, service dependencies and
performance issues from a specific request as they traverse through various
microservices within the Kubernetes cluster.

Kubernetes clusters are multi-layered and dynamic (Pods and its containers can be
added or removed dynamically) and it does not expose logs, metrics and traces the
same way as conventional systems and achieving observability in Kubernetes involves
stitching different data sources.

174 | Chapter 6: Technical Kubernetes Topics

Figure 6-22. Observability sources in Kubernetes

Let’s see how it works :

Logs:
Containers within pods generate logs which are stored within the pods themselves.
When you need to access them, you have to interact directly with the pod using
kubectl for instance (Kubectl logs) and unlike traditional systems where logs are
generally centralized, Kubernetes distributes them across pods.

Kubernetes Observability and Performance | 175

Figure 6-23. Example showing how to get the logs from a container in a pod

In the example from Figure 6-23 the flow followed is:
1. We list all the pods running in the namespace called kube-system
Kube-system namespace is a namespace reserved for objects cre‐
ated by Kubernetes itself. In this specific namespace you will find
critical pods which are responsible for the cluster’s operation.
2.- We list the containers associated to the pod
coredns-5dd5756b68-8m7cn. This pod only contains one container
whose name is “coredns”
3.- We list the logs for the container coredns in the pod
coredns-5dd5756b68-8m7cn

Metrics:
Kubernetes exposes metrics throught the Kubelet but collecting and aggregating these
metrics across the entire cluster requires additional tools . Prometheus (collecting
metrics) and Grafana (visualizing the metrics) are commonly used for monitoring
Kubernetes metrics as Kubernetes natively exposes metrics in Prometheus format.

More detailed information:

https://kubernetes.io/docs/concepts/cluster-administration/system-metrics/

176 | Chapter 6: Technical Kubernetes Topics

Figure 6-24. Prometheus and Grafana Setup (Source https://www.cide
vops.com/2022/05/how-to-setup-monitoring-on-kubernetes.html#google_vignette

For the Horizontal and Vertical Pod Autoscaler based on CPU/memory metrics
metrics-server collects resource usage data from Kubelets and exposes this informa‐
tion through the Kubernetes API server via the Metrics API (we will cover it in the
following section as part of the Resource Metrics Pipeline)

More information:

https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/
#metrics-server

https://github.com/kubernetes-sigs/metrics-server

Traces:
Kubernetes doesnt provide natively tracing data so you will need to integrate addi‐
tional tools (such as Jaeger and Open Telemetry) to capture traces. OpenTelemetry
and Jaeger will let you implement a distributing tracing system.

Open Telemetry is focused on instrumenting your applications so you can capture
trace data from them and Jaeger complements Open Telemetry by providing power‐
ful trace analysis capabilities with a UI for analyzing the traces.

Kubernetes Observability and Performance | 177

Both are open-source projects under the CNCF umbrella where Jaeger is in graduated
stage and Open Telemetry is in incubation stage.

More information:

https://www.jaegertracing.io/

https://opentelemetry.io/

In summary , Kubernetes monitoring stack is not constrained by a single monitor‐
ing solution. Instead, it offers flexibility by accommodating different approaches to
gather monitoring statistics, including resource metrics pipeline and full metrics
pipeline, discussed below.

Resource Metrics Pipeline
The resource metrics pipeline (https://kubernetes.io/docs/tasks/debug/debug-cluster/
resource-metrics-pipeline/) offers a set of metrics related to cluster components,
including the Horizontal Pod Autoscaler controller, and facilitates monitoring
through tools like the kubectl top utility. These metrics are collected by the light‐
weight, short-term, in-memory metrics-server and are accessible via API.

178 | Chapter 6: Technical Kubernetes Topics

Figure 6-25. architecture of the resource metrics pipeline (source: https://kubernetes.io/
docs/tasks/debug/debug-cluster/resource-metrics-pipeline/

The metrics-server dynamically discovers all nodes in the cluster and queries each
node’s kubelet for real-time CPU and memory usage data. The kubelet, acting as
an intermediary between the Kubernetes master and the nodes, oversees the manage‐
ment of pods and containers on a given machine. It translates each pod into its
constituent containers and retrieves individual container usage statistics from the
container runtime through the container runtime interface. The component cAdvisor
is a daemon for collecting, aggregating and exposing container metrics included in
Kubelet.

The Kubelet subsequently exposes aggregated pod resource usage statistics through
the metrics-server Resource Metrics API, typically served at /metrics/resource/
v1beta1 .

Full Metrics Pipeline
For a more comprehensive monitoring approach, Kubernetes offers a full
metrics pipeline (https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-
monitoring/#full-metrics-pipeline) , which grants access to richer metrics data. These
metrics enable Kubernetes to respond dynamically by automatically scaling or adapt‐
ing the cluster based on its current state. This is achieved through mechanisms like
the Horizontal Pod Autoscaler. The monitoring pipeline retrieves metrics from the
kubelet and exposes them to Kubernetes through an adapter, often implementing
either the custom.metrics.k8s.io or external.metrics.k8s.io API

Note: Custom and External metrics
The custom.metrics.k8s.io API is an extension of the Kubernetes API which allows
you to define custom metrics for your workloads and is usually used for Horizontal
Pod Autoscaler purposes.

Kubernetes Observability and Performance | 179

Unlike custom.metrics.k8s.io the external.metrics.k8s.io API also provides customer
metrics but providing metrics that are external to the cluster usually coming from
third-party systems (database connections, API responde time, etc) and are used for
autoscaling or other requirements within your application.

To understand the differenc imagine you have an ecommerce website which interacts
with an external payment gateway. You ecommerce needs to scale some microservices
based on the response time of the payment gateway.

How could you do it? In this cases, you can expose this metric via the external.met‐
rics.k8s.io API and then configure HPA to use it for scaling.

https://kubernetes.io/docs/reference/external-api/custom-metrics.v1beta2/

Note: Kubernetes API
The Kubernetes API is a resource-based RESTful API that supports CRUD operations
via HTTP verbs (GET, POST, PUT, PATCH and DELETE). Kubernetes API terminol‐
ogy can be summarized as:

REsource Type: Name used in the URL (pod, namespace, service)

Kind: Every resource Type has its own schema that defines their properties. It’s
commonly called “kind”

Resource: A single instance of a resource tyep

Collection: A list of instances of a resource type. For some resource types, the API
includes one or more sub-resources, which are represented as URI paths below the
resource.

Kubernetes objects are the building blocks of your cluster. They represent various
aspects of the cluster’s state.

Representation in the API:

Kubernetes objects are persistent entities within the Kubernetes system.

They are represented in the Kubernetes API.

Examples include Pods, Services, ConfigMaps, and ReplicaSets (https://kuber
netes.io/docs/concepts/overview/working-with-objects/)

YAML Format:

You express Kubernetes objects using YAML format.

This format defines the desired state of an object.

The Kubernetes API ensures the actual state matches the desired state (https://kuber
netes.io/docs/concepts/overview/working-with-objects/)

180 | Chapter 6: Technical Kubernetes Topics

An examples of creating a Kubernetes object is when you create a Pod.

Pods

Figure 6-26. Example of creating a Pod object.

It is important to highlight that Kubernetes has been designed to seamlessly integrate
with OpenMetrics (https://openmetrics.io/) , a project within the CNCF Observability
and Analysis - Monitoring Projects category with the aim of extending the Prome‐
theus exposition format, ensuring compatibility while offering a rich set of metrics
transmission capabilities.

When exploring the CNCF Landscape (https://landscape.cncf.io/)you will encounter
a multitude of monitoring projects that can effectively work with Kubernetes, collect‐
ing metric data and assisting in cluster observation. The choice of monitoring tools
is vast, ranging from open-source solutions to paid software-as-a-service platforms
and commercial products. Selecting the most suitable monitoring platform depends
on a multitude of factors, including your specific requirements, budget constraints,
and available technical resources. Kubernetes refrains from endorsing any particular
metrics pipeline, recognizing the importance of tailoring the choice to align with your
infrastructure platform’s design and deployment.

Kubernetes Observability and Performance | 181

Kubernetes storage
Kubernetes not only excels in managing containers as we have presented in the
previous chapters but also offers robust solutions for handling storage in a platform
where applications scale out and in constantly. In this section, we’ll explore the world
of Kubernetes storage, from the fundamental concepts to advanced storage strategies,
ensuring your applications have access to reliable and scalable storage resources.

Let’s dive into the main concepts around Kubernetes storage.

Persistent Volumes (PVs) and Persistent Volume Claims (PVC)
Persistent Volumes (PVs) and Persistent Volume Claims (PVCs) (https://kuber
netes.io/docs/concepts/storage/persistent-volumes/) form the foundation of Kubernetes
storage. In a scenario where you need to ensure your application’s data persists even
if the underlying pod is rescheduled or deleted persistent volumes are the solution.
Basically they exist as separate entities at the cluster level (not tied to any specific
pod unlike regular volumes which exist at the pod level). PVC on the other hand is
another type of Kubernetes object that allows pods to request access to PVs i.e when a
pod needs persistent storage it creates a PVC.

When creating a PVC you need to specify the size, access mode and the storage class
(defines the underlying storage type: local storage, premium-storage, cloud-based
storage, etc).

Note: Access Mode
There are three access mode available for a PVC:

ReadWriteOnce(RWO): Allows read and write access by a single pod.

ReadOnlyMany(ROX): Allows read access by multiple pods

ReadWriteMany(RWX): Allows read and write access by multiple pods (only sup‐
ported in specific storage types such as CephFS and NFS)

A PVC cannot be created with more than one access mode property simultaneously
because when creating a PVC you specify the desired access mode (either RWO, ROX
or RWX)

Storage Classes
The concept of Storage Classes in Kubernetes refers to the capability to define differ‐
ent classes of storage with different performance and availability characteristics. You
can think of it as categorizing storage resources based on their quality of service
(QoS).

182 | Chapter 6: Technical Kubernetes Topics

Imagine you are running a web application with both critical and non-critical data.
By defining different Storage Classes, you can ensure that critical data gets high-
performance storage, while non-critical data can reside on lower-cost, slower storage,
optimizing cost-efficiency.

Volumes and Volume Types
Kubernetes offers a variety of volume types, each tailored to specific use cases.
Volumes serve as abstractions that allow pods to access storage. Most commonly used
volume types are:

• EmptyDir: This volume type is ephemeral and exists only for the pod’s lifetime.•
It’s useful for temporary storage.

• HostPath: It allows pods to use storage on the host node. This can be useful when•
dealing with node-specific data.

• NFS: Network File System (NFS) volumes enable sharing files across pods and•
nodes in a cluster. NFS volumes are commonly used for file-sharing scenarios.

StatefulSets
As presented in previous sections, StatefulSets is a specialized controller within
Kubernetes which, in the context of storage, enables data to survive the life cycle
of a Pod and persist even in the face of node disruptions.

In a scenario where you are running a distributed database where each node must
have a unique identifier and stable storage, StatefulSets ensure that pods receive pre‐
dictable names and persistent storage, allowing for seamless scaling and replacement.

Container Storage Interface (CSI)
As explained in previous section the Container Storage Interface (CSI) is an initia‐
tive supported by the CNCF which standardizes the integration between container
orchestrators and storage equipment defining how a storage system should make
data available to container orchestrators and how an orchestration platform should
establish connections with storage equipment.

CSI compliant storage providers can be used in Kubernetes and today there are
roughly a hundred providers compliant with the standard. We recommend always to
check the latest list at the following site:

Drivers - Kubernetes CSI Developer Documentation (kubernetes-csi.github.io)

Kubernetes storage | 183

Dynamic provisioning
Dynamic Provisioning is a game-changer in Kubernetes storage. It automates the
allocation of storage resources as needed, eliminating manual intervention.

Imagine a scenario where your application experiences varying storage demands.
With dynamic provisioning, Kubernetes can automatically create and attach storage
volumes to pods when the application requires more space. This ensures optimal
resource utilization and minimizes administrative overhead.

More information in the following link:

https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

Networking and service mesh
In the preceding sections, we have introduced a variety of Kubernetes concepts
and features that simplify application deployment and management. However, the
complexities of networking and the rise of service mesh technologies remain a source
of confusion for many. In this section we are aiming to simplify the complexities of
networking in Kubernetes and provide insights into the world of service meshes.

Let’s dive into the main concepts around networking.

Cluster Networking
Cluster networking forms the foundation of communication in Kubernetes. It’s essen‐
tial to understand how this communication happens to manage containerized appli‐
cations effectively:

• Container-to-Container Communication: Within a pod, containers often need to•
communicate with each other. As we presented in previous sections, Kubernetes
ensures that containers within a pod can communicate with each other over
localhost. This local communication is critical for applications that require tightly
coupled components, as it eliminates the need for external network calls and
boosts performance.

• Pod-to-Pod Communication: Beyond a single pod, applications often consist of•
multiple pods and Kubernetes orchestrates the deployment of pods across differ‐
ent nodes within a cluster. To enable pod-to-pod communication, Kubernetes
employs a combination of network plugins, routing, and IP addressing. One
configuration is having each pod get assigned a unique IP address within the
cluster, allowing it to communicate with other pods, regardless of their physical
location.

184 | Chapter 6: Technical Kubernetes Topics

Ingress Controllers
Managing external traffic and routing it to services within the Kubernetes cluster can
be challenging. Ingress controllers play a pivotal role in this process:

• Defining Routing Rules: Ingress controllers allow us to define routing rules for•
incoming traffic. These rules include Hostnames (which domain or subdomaing
the Ingress should handle), Paths (URL paths and how to map them to specific
services) and TLS Configuration for secure communication.

Figure 6-27. Ingress

Figure 6-28. Example of an Ingress Definition

Networking and service mesh | 185

Some of the most popular Ingress Controllers are Nginx, Traefik, HAProxy and
Contour.

More information: https://kubernetes.io/docs/concepts/services-networking/
ingress/

Network Plugin
In Kubernetes, network plugins are essential components that provide the underlying
infrastructure for networking within a cluster. They define how pod-to-pod commu‐
nication, both within the same node and across different nodes, is managed and
orchestrated. Network plugins are key to ensuring that containers and services can
interact seamlessly within a dynamic and distributed environment like a Kubernetes
cluster.

The main functions that are covered by a Network plugin are:

• Routing and Networking Rules: Network plugins are responsible for managing•
the routing and networking rules that govern how network traffic flows within
the cluster. They ensure that packets originating from one pod reach their
intended destination, whether it’s another pod on the same node or a pod located
on a different node within the cluster.

• IP Address Assignment: Network plugins are in charge of assigning unique IP•
addresses to each pod in the cluster. These IP addresses are used to identify
and route traffic to specific pods. Proper IP address management is crucial for
enabling pod-to-pod communication across nodes.

• Overlay Networks: Many network plugins employ overlay network technologies•
to create a virtual network layer on top of the physical infrastructure. This
overlay network abstracts the complexities of the underlying network and allows
pods to communicate as if they were on the same network segment, even if they
are physically distributed across different nodes.

Figure 6-29. Example of an Overlay Network using flannel (Source: https://devops
school.com/tutorial/kubernetes/kubernetes-cni-flannel-overlay-networking.html

186 | Chapter 6: Technical Kubernetes Topics

• Network Policies: Network plugins often support Kubernetes Network Policies,•
which define rules for controlling pod-to-pod communication. These policies
enable administrators to specify which pods can communicate with each other
and under what conditions. Network policies enhance security by segmenting
and isolating pods based on specific criteria.

Network plugins, such as Calico, Flannel, and Weave, manage the routing and net‐
working rules to ensure seamless communication across nodes.

https://www.tigera.io/project-calico/

https://github.com/flannel-io/flannel?tab=readme-ov-file

https://github.com/weaveworks/weave

Service Discovery
Service discovery is a fundamental aspect of managing applications within a dynamic
Kubernetes environment. It provides the ability to locate and interact with services
seamlessly, regardless of their underlying network details. In Kubernetes, this is made
possible primarily through the Kubernetes DNS service, discussed in detail below.

Kubernetes DNS Service
Kubernetes provides an internal DNS service that acts as a robust and automated
way to discover and connect to services within the cluster. This service assigns DNS
names to services, making them accessible to other components and applications
running in the same cluster. Each service created within Kubernetes automatically
receives a DNS entry in the cluster’s DNS namespace.

Service Naming Conventions . Kubernetes follows a specific naming convention for
services.

The DNS name of a service is typically formatted as [service-name].[name‐
space].svc.cluster.local, where:

• [service-name] is the name assigned to the Kubernetes service.•
• [namespace] is the Kubernetes namespace where the service resides.•
• svc.cluster.local is the DNS suffix representing services within the cluster.•

Service Discovery by Name . Applications running within Kubernetes can discover and
access services by their DNS names, abstracting away the need to know the underly‐
ing IP addresses or specific ports of those services. This decoupling simplifies service
interactions and makes it easier to adapt to changes in the cluster’s infrastructure.

Networking and service mesh | 187

Cross-Namespace Service Discovery . Kubernetes DNS also supports service discovery
across different namespaces. This means that applications in one namespace can
easily access services in other namespaces using the DNS name format mentioned
earlier.

External DNS Integration
In addition to internal service discovery, Kubernetes can integrate with external
DNS services. This enables seamless communication between services inside the
Kubernetes cluster and those outside, such as services running in on-premises data
centers or external cloud environments.

More information:

https://github.com/kubernetes-sigs/external-dns

Service Mesh
Service mesh has emerged as a transformative technology in the Kubernetes network‐
ing landscape and microservices architecture. It addresses several challenges related
to traffic management, security, observability, and reliability in distributed applica‐
tions.

In simple words a service mesh is a dedicated infrastructure layer that handles com‐
munication between microservices within a Kubernetes cluster. It provides a set of
tools and services for managing, securing, and monitoring the interactions between
these microservices. Service meshes are designed to abstract away the complexity
of network communication, making it easier for developers to build resilient and
efficient applications.

Service mesh builds on the service discovery mechanism by providing additional
features such as:

• Dynamic Routing and traffic control (can route request based on a variety of•
criteria like service version, latency or even custom rules).

• Mutual TLS for securing the communication•
• Distributed tracing and telemetry providing a comprehensive view of the system’s•

performance and behavior and can be integrated with external tools seen in the
observability section before like Prometheus, Grafana, or Jaeger

Main Service Mesh components
Here are the three main components of service mesh:

188 | Chapter 6: Technical Kubernetes Topics

• Proxy Sidecars: Service mesh implementations typically rely on lightweight,•
sidecar proxy containers deployed alongside each microservice. These proxies
intercept and manage all incoming and outgoing traffic, allowing for advanced
traffic control and policy enforcement.

• Control Plane: The control plane is the brain of the service mesh. It consists•
of various components responsible for configuring and managing the proxy
sidecars. These components include controllers, configuration servers, and policy
engines.

• Data Plane: The data plane encompasses the actual microservices and the sidecar•
proxies that handle traffic between them. It includes the application code and the
proxy sidecars that implement service mesh functionality.

Figure 6-30. Example of Istio Service Mesh

Networking and service mesh | 189

Advantages of using Service Mesh

Traffic COntrol . One of the primary benefits of a service mesh is its ability to control
and manage traffic between microservices. It includes routing, rate limiting and fault
injection and provides features such as:

Load Balancing
Service meshes can distribute incoming network traffic across multiple instances
(pods) of a service preventing overload, optimizing resource utilization and
improving availability.

The traffic can be evenly distributed across healthy instances based on predefined
rules (round-robin, least connections or even custom algorithms).

In a service mesh load balancing is usually handled by the sidecar proxies (such
as Envoy or Linkerd)

Traffic Shifting
Advanced service meshes allow for gradually transitioning traffic from one
version of a service to another (used often in Canary releases or gradual deploy‐
ments). The main difference between Traffic Shifting and Weighted Load Bal‐
ancer is that Traffic Shifting focus on transitioning between different versions
of a service and Weighted Load Balancer focus is distributing traffic based on
predefined weights.

Circuit Breaking
Service meshes can detect unhealthy microservices and prevent further traffic
from being sent to them, improving the overall stability of the application.

Security. Service meshes enhance security by implementing features like:

• Encryption: They can encrypt traffic between microservices, ensuring data con‐•
fidentiality and integrity.

• Authentication and Authorization: Service meshes can enforce authentication•
and authorization policies, ensuring that only authorized services can communi‐
cate with each other.

Observability. Monitoring and observability are critical in microservices architec‐
tures. Service meshes provide tools for:

• Metrics and Tracing: They offer detailed metrics and tracing capabilities, allow‐•
ing developers to gain insights into the behavior of their microservices.

• Logging: Service meshes can capture and centralize logs from all microservices,•
simplifying troubleshooting and debugging.

190 | Chapter 6: Technical Kubernetes Topics

Reliability. By managing traffic, enforcing policies, and offering tools for monitoring,
service meshes contribute to the reliability of microservices-based applications. They
help prevent cascading failures and improve overall application uptime.

Kubernetes networking offers a full set of capabilities and standards that allows you
to extend the cluster with specific functionality depending on the needs of your
application and the environment where they are running.

Under the umbrella of the CNCF there are two graduated projects in the Service
Mesh domain: Istio and Linkerd.

More information:

https://istio.io/latest/

https://linkerd.io/

Kubernetes security
As we have presented during the previous sections of this book, Kubernetes offers
advantages in terms of scalability, fault tolerance, and resource utilization in scenarios
where distributed systems architecture patterns are an advantage. That’s the essence
of Kubernetes: a distributed system managing containerized applications across mul‐
tiple nodes or machines in a cluster.

While this design offers multiple advantages it also presents challenges when it comes
to observability and security and it would require a whole book to deepen on all the
aspects related to this. See Learn Kubernetes Security [Book] (oreilly.com) for more
in depth coverage.

The goal for this book is to give you a high level picture about the different concepts
and projects under the CNCF umbrella. With that in mind, we’ll focus on broad
knowledge surrounding Kubernetes security that anyone working with Kubernetes
should know.

Container Image security strategies
The journey to increase the security in a Kubernetes environment begins with con‐
tainer images. Containers encapsulate application code and dependencies, making
them portable and efficient. However, if the container images used contain vulnera‐
bilities, they can become the entry point for attackers.

There are different strategies that can be adopted to minimize the risk of image
vulnerabilities. We discuss the principal ones below.

Kubernetes security | 191

Image Scanning
There are a good amount of tools (for example Harbor, Anchore, Docker Scout or
OpenScap) to automatically inspect container images for known vulnerabilities and
misconfigurations. These tools integrate with the container registry (whatever it is)
and can prevent vulnerable images from being deployed.

Under the umbrella of CNCF the most known project for Image Scanning is Har‐
bor https://goharbor.io/. Harbor provides static analysis of vulnerabilities in images
through the open source projects Trivy and Clair and can be connected to additional
scanners like Anchore for example.

Vulnerability patching
Adopt a proper process to regularly update the base images and application depen‐
dencies to patch known vulnerabilities. Implementing a patching strategy signifi‐
cantly reduces the probability of a security breach in the distributed environment.

Minimal Image build strategy
Follow the principle of least privilege when creating container images. Only include
absolutely necessary components, libraries, and dependencies, minimizing the attack
surface and reducing the potential for vulnerabilities.

Kubernetes cluster protection strategies
Whether a cluster is running in a dev environment or in production you should
always follow the same security principles along the life cycle. Having the same
policies applied from dev to prod will minimize the surface attack and reduce the
possibilities of being impacted by a threat.

API Server Security
The API server is the central point of interaction with the Kubernetes cluster. Imple‐
ment proper authentication and authorization mechanisms, enforce RBAC (Role-
Based Access Control) policies, and use network policies (https://kubernetes.io/docs/
concepts/services-networking/network-policies/) to restrict access to the API server

Note: Kubernetes RBAC
Kubernetes RBAC will allow you to ensure that cluster users and workloads have
only the necessary access to resources preventing unauthorized actions and privilege
escalation escenarios.

The main components of K8S RBAC are:

Roles: Which define permissions within a specific namespace

192 | Chapter 6: Technical Kubernetes Topics

ClusterRoles: Non-namespaced resource allowing you to define permissions cluster-
wide

RoleBinding and ClusterRoleBindings: It’s the roles/ClusterRole association with
users, groups or service accounts.

Service accounts are non-human account used by pods, system components and
other entities (inside or outside the cluster) to authenticate and control their access.
Every namespace automatically gets a default ServiceAccount at the creation time.

etcd Security
The etcd database stores critical cluster information. Encrypt etcd data at rest and
in transit. Maintain regular backups, and restrict access to the etcd endpoints to
authorized users and components.

More information:

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

Node Security (including runtime security)
Nodes are the worker machines in the cluster. Secure nodes by applying security
updates promptly, implementing container runtime security features like SELinux
or AppArmor, and using tools like PodSecurity Admission or OPA Gatekeeper to
enforce security policies.

Implement runtime security measures to detect and respond to suspicious activities
within your cluster. Tools like Falco or Sysdig can provide real-time monitoring and
alerting for unusual behavior.

More information:

https://kubernetes.io/docs/concepts/security/pod-security-admission/

https://falco.org/

Implement Network Policies: Controlling Communication
Kubernetes network policies define how pods can communicate with each other
and external resources. Employ network policies to control traffic flow and limit
pod-to-pod communication to only what’s necessary for your applications.

Secrets Management: Protecting Sensitive Data
Manage sensitive information like API tokens, passwords, and certificates using
Kubernetes Secrets. Encrypt secrets at rest and restrict access to them through RBAC
and pod service accounts.

Kubernetes security | 193

More information:

https://kubernetes.io/docs/concepts/configuration/secret/

In summary, Kubernetes security is a multifaceted endeavor that requires a holis‐
tic approach. By addressing image vulnerabilities, securing the Kubernetes cluster,
implementing network and pod security policies and managing secrets you can create
a robust security posture for the containerized applications.

Other Kubernetes related components
Helm:
Is the de facto package manager for Kubernetes and a graduated project in the
CNCF. . It simplifies the management of Kubernetes applications allowing you to
define, install and upgrade any type of applicacion through the helm charts.

The Helm Charts are packages of pre-configured Kubernetes resources (Deploy‐
ments, Services, ConfigMaps) that describe the applicaiont.

The ArtifactHub is the central repository not only for lookin for helm charts but also
for other types of artifacts such as plugins, Kubernetes Modules programmed in KCL
among others.

Figure 6-31. Installing a postgreSQL DB using helm

More information:

https://artifacthub.io/

194 | Chapter 6: Technical Kubernetes Topics

https://helm.sh/

Dapr
Dapr is a project under the CNF at incubation stage. Dapr stands for Distributed
Application Runtime which outperforms when designing and deploying a microser‐
vices Application.

An application architected and build for microservices uses to present a set of well
know challenges: Encryption, Message brokering, observability, service discovery…..
You now have a good understanding of these concepts.

And now imagine that not all the microservices which compose your application
are not developed in the same programming language ? Should you re-write the
“logic” or “patterns” for any of those languages? Each microservice is likely having its
own lifecyle and in larger applications, there will be many different teams working
each of them in a different microservice. How would you handle and test the cross
microservice calls?

Well that’s exactly the space that Dapr wants to cover abstracting the application logic
and programming to the underlaying services through a well defined set of Restful
API to call services through HTTP. Behind the scene Dapr runs as a sidecar process
or container alongside the application code, exposing its APIs via HTTP or gRPC
which enables easy integration with Dapr without having to modify the application
code.

Figure 6-32. Dapr High level overview

Other Kubernetes related components | 195

ConfigMap
ConfigMap is a kubernetes resource that allows you to store configuration data sepa‐
rately from your application code, providing a better way for configuration settings,
environment variable and other non-sensitive data.

Figure 6-33. Example for creating a ConfigMap and using it when creating a pod.

MiniKube
MiniKube is a tool that helps you to quickly set up a local Kubernetes cluster on
macOS, Linux, and Windows. It is the recommended tool for practicing when learn‐
ing and developing applications for Kubernetes.

For detailed instructions about minimum requirements and installation steps go to
the official site:

https://minikube.sigs.k8s.io/docs/start/

Main commands
The most common way to interact with a Kubernetes cluster, whether you are
an administrator, developer, or operator, is through the command-line tool called
kubectl.

kubectl is short for “Kubernetes Control,” and it is the official command-line interface
(CLI) for Kubernetes.

196 | Chapter 6: Technical Kubernetes Topics

Below are some of the essential kubectl commands that allow you to interact with and
manage resources within a Kubernetes cluster. There are many more commands and
options available, so we recommend you to explore the Kubernetes documentation
for in-depth information and usage examples.

kubectl version: Check the client and server versions of kubectl and the Kubernetes
cluster.

Figure 6-34. Version sample output

kubectl cluster-info: Display information about the Kubernetes cluster, including the
API server URL.

Figure 6-35. cluster-info

kubectl get: Retrieve information about various Kubernetes resources. Here are some
examples:

• kubectl get pods: List all pods in the current namespace.•
• kubectl get nodes: List all nodes in the cluster.•
• kubectl get services: List all services in the current namespace.•

Figure 6-36. kubectl get samples

Main commands | 197

kubectl describe: Get detailed information about a specific resource. Here are a
couple examples:

• kubectl describe pod <pod-name>: Display details about a specific pod.•
• kubectl describe node <node-name>: Display details about a specific node.•

Figure 6-37. Sample of pod description

kubectl create: Create resources from a YAML or JSON file. Here are a couple
examples:

• kubectl create -f pod.yaml: Create a pod defined in pod.yaml.•
• kubectl create deployment <deployment-name> --image=<image-name>: Create•

a deployment using a specified container image.

kubectl apply: Apply changes to resources from a YAML or JSON file. It can create or
update resources. Here’s an example:

• kubectl apply -f deployment.yaml: Apply changes defined in deployment.yaml.•

198 | Chapter 6: Technical Kubernetes Topics

Figure 6-38. Sample of kubectl apply creating a pod

kubectl delete: Delete resources. Here’s an example:

• kubectl delete pod <pod-name>: Delete a specific pod.•
• kubectl delete deployment <deployment-name>: Delete a deployment.•

kubectl exec: Execute a command in a running container. Here’s an example:

• kubectl exec -it <pod-name> -- /bin/bash: Open a shell in a specific pod.•

Figure 6-39. Kubectl exec sample

kubectl logs: View the logs of a specific container in a pod. Here’s a couple examples:

• kubectl logs <pod-name>: View logs for the primary container in a pod.•

Main commands | 199

• kubectl logs <pod-name> -c <container-name>: View logs for a specific con‐•
tainer in a pod.

kubectl events : View the events of a specific container in a pod. Here’s a couple
examples:

• kubectl events <pod-name>: View logs for the primary container in a pod.•
• kubectl logs <pod-name> -c <container-name>: View events for a specific con‐•

tainer in a pod.

Figure 6-40. Events sample

kubectl port-forward: Forward a local port to a port on a pod. Here’s an example:

• kubectl port-forward <pod-name> <local-port>:<pod-port>: Forward local port•
to a pod.

kubectl scale: Scale the number of replicas in a deployment. Here’s an example:

• kubectl scale deployment <deployment-name> --replicas=<desired-replicas>:•
Scale a deployment to the desired number of replicas.

kubectl rollout: Manage rollouts and updates to resources. Here’s a couple examples:

• kubectl rollout status deployment <deployment-name>: Check the status of a•
deployment rollout.

• kubectl rollout undo deployment <deployment-name>: Rollback a deployment•
to a previous version.

200 | Chapter 6: Technical Kubernetes Topics

Summary
This chapter has been a long journey exploring the fundamental concepts of Kuber‐
netes, demystifying its architecture and component. From the Basic building blocks
to a more sophisticated components like service mesh we hope you now have a good
understanding on what Cloud Native is, the relationship with the Cloud Native Com‐
puting Foundation and how Kuberentes plays an essential role moving forward the
industry towards an inter-operable system and a foundation of open standards that
will for sure accelerate technology adoption and will bring new waves of innovation.

You are now just one chapter left for finishing this journey and without any doubt
you are now at the beginning of a nurturing cloud native journey.

Summary | 201

CHAPTER 7

Final recommendations

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 7th chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at shunter@oreilly.com.

You are approaching the final step for getting your KCNA certification: Passing the
exam. Whatever the reason that brought you to prepare for the KCNA, the Cloud
Native ecosystem is an endless source of learning. Having a good set of reference
material that let you land key concepts and guide you through practical examples is
not and option but a requirement.

This chapter serves as a reference guide in the journey towards becoming a Kuber‐
netes and Cloud Native Associate including important references to material to not
only excel in the certification exam but also to thrive in your ongoing career as a
Kubernetes expert.

Throughout this book, you’ve gained in-depth knowledge and practical insights into
Kubernetes, its architecture, functionalities, and applications and the CNCF ecosys‐
tem in general. Remember, the journey of learning Kubernetes is continuous and
ever-evolving. As you prepare to validate your skills through certification, know that

203

this is just one milestone in a rewarding path of lifelong learning and professional
growth in the dynamic world of Kubernetes and distributed systems.

Additional information for exam preparation
The Kubernetes and Cloud Native Associate (KCNA) exam is a foundational step for
those embarking on their journey in Kubernetes and cloud-native technologies. This
exam is structured to assess the fundamental understanding of Kubernetes and is the
baseline for more advanced certifications and professional growth in the field.

It’s crucial as a candidate understanding the basics of the KCNA exam:

• Exam Format and Length: The KCNA is predominantly a multiple-choice test•
conducted online under proctored conditions. Typically, the exam duration is
around 90 minutes.

• Topics Covered: The exam’s curriculum is comprehensive, covering a range of•
topics related to Kubernetes and cloud-native technologies. This includes basic
principles of Kubernetes, understanding of cloud-native architecture, elementary
deployment and management of applications, and an overview of relevant tools
and projects in the ecosystem.
— Kubernetes Fundamentals: Covers 46% of the exam, including core Kuber‐—

netes concepts.
— Container Orchestration: 22% of the exam, focusing on managing containers.—
— Cloud Native Architecture: 16% of the exam, exploring cloud-native design—

patterns.
— Cloud Native Observability: 8% of the exam, emphasizing monitoring and—

observability.
— Cloud Native Application Delivery: 8% of the exam, addressing application—

deployment.
• Level of Difficulty: Designed with beginners in mind, the KCNA serves as an•

introductory certification setting the stage for further exploration and specializa‐
tion in Kubernetes and cloud-native technologies.

Kubernetes community experts to follow
Engaging with community experts and influencers in the Kubernetes and cloud-
native sphere enriches your pool of resources and insights available during your
preparation for the Kubernetes and Cloud Native Associate (KCNA) exam.

The learning path for projects in the cloud native realm generally requires more than
just studying books; it’s seeing how things play out in the real world that makes the

204 | Chapter 7: Final recommendations

difference and planting the seeds to master the technology and provide solutions to
real and complex challenges. The community experts are everywhere – blogs, Twitter,
YouTube,twitch,...– making it easy to grab some serious knowledge on the fly.

The community experts we discuss belowbring a wide variety of unique perspec‐
tives and expertise. Their contributions range from in-depth technical knowledge to
practical tips and industry trends. This makes them some of the best sources for
understanding both Kubernetes and the wider cloud-native landscape.

Here is the list of experts and community influencers which we recommend to
follow:

Kelsey Hightower: An influential advocate for Kubernetes, Kelsy is renowned for
making complex Kubernetes concepts easy to grasp. He shares practical advice and
step-by-step demonstrations in his “Twitter” and Github repositories. His ability to
simplify and demystify Kubernetes makes him a go-to resource for both beginners
and experienced practitioners.

Link to the GitHub Repository: https://github.com/kelseyhightower

Figure 7-1. Kelsey Hightower Github Repository

We strongly recommend forking the kubernetes-the-hard-way and building a Kuber‐
netes cluster from scratch with the step by step guide inside the repository. This is
without any doubt one of the best possible path to understand Kubernetes practically
and its components.

Brendan Burns: As one of the brains behind Kubernetes, Brendad has an unique
depth of knowledge about the system. He offers rich insights into the inner workings
and future trajectory of Kubernetes. His blog posts and conference presentations are
a goldmine for anyone seeking to understand Kubernetes at a deep structural level to
get a glimpse into its evolving landscape.

Kubernetes community experts to follow | 205

The link for his latest post is available here: https://cloudblogs.microsoft.com/open
source/author/brendan-burns/

Figure 7-2. Snippet of one of the Brendan Burns post during a Kubecon in 2019

We highly recommend to listen the following podcast where Brendan Burns talks
about the new Long term support strategy for Kubernetes:

https://www.youtube.com/watch?v=F5Wyj-pbG0M

Brendan Burn’s GItHub repository is an invaluable source of practical guidance
through labs that will help you to see complex technology behind the paradigm of
distributed systems working in the real world.

Link: https://github.com/brendandburns

206 | Chapter 7: Final recommendations

Figure 7-3. Brendan Burns GitHub repository

Joe Beda: Joe’s insights cover a wide range of topics from basic functionalities to
advanced features. His contributions often reflect forward-thinking perspectives on
Kubernetes development and emerging trends, making him a valuable source for
those looking to stay ahead in the field.

The following interview to Joe Beda talking about the community and how it was key
for Kubernetes adoption is a recommended read.

Link: https://increment.com/containers/joe-beda-interview/

Figure 7-4. Snippet of the Interview

Kubernetes community experts to follow | 207

Saad Ali: Ali stands out for his significant contributions in the area of Kubernetes
storage solutions. His expertise is essential for navigating the complexities of storage
in Kubernetes, offering clarity and solutions to some of the most challenging aspects
of storage management within Kubernetes environments.

The following podcast is just one of the recommended listening to learn more about
Kubernetes storage: https://kubernetespodcast.com/episode/103-csi-kubernetes-storage/

Figure 7-5. Snippet of the CSI: Storage podcast

Liz Rice: A leading voice in container and Kubernetes security her expertise is crucial
for understanding how to secure cloud-native environments effectively. Through her
talks and writings, she provides essential insights into security best practices, making
complex security concepts more accessible and understandable.

Her own web page contains links to all the content created by her, with special
mention to the eBPF and Kubernetes security content.

Link: https://www.lizrice.com/

208 | Chapter 7: Final recommendations

Figure 7-6. Liz’s home page

Tania Allard: As a senior developer advocate, Allard is a key source of knowledge
on developing and deploying applications in Kubernetes. She actively engages with
the community through social media, GitHub, and her speaking engagements at tech
conferences, offering practical advice and insights into the latest Kubernetes trends
and best practices.

Link: https://www.trallard.dev/

Figure 7-7. Tania’s presentation on her web.

Kubernetes community experts to follow | 209

Alex Ellis: As the founder of OpenFaaS, Alex is a well-known figure in serverless
architectures and Kubernetes. He regularly blogs and posts on social media about
the intersections of Kubernetes with cloud-native applications and serverless technol‐
ogies, offering valuable insights for those interested in modern, scalable application
development.

Link: https://github.com/alexellis

Figure 7-8. Alex’s GitHub repository

James Spurin: James Spurin is a respected and influential figure in the Kubernetes
and DevOps communities. His educational efforts, public speaking, and active partic‐
ipation in the community contribute significantly to the understanding and advance‐
ment of Kubernetes and related practices.

Link: https://www.diveinto.com/p/home

210 | Chapter 7: Final recommendations

Figure 7-9. KCNA related courses

KCNA-related communities
When preparing for the Kubernetes and Cloud Native Associate (KCNA) exam,
becoming involved in related communities can be incredibly beneficial. These com‐
munities provide resources, support, and networking opportunities that can enhance
your learning experience. Here are some active KCNA-related communities:

Kubernetes Community (kubernetes.io/community):

This is the central hub for the Kubernetes project and the place for Special Interest
Groups (SIGs), working groups, and committees. It’s an excellent place for beginners
to learn directly from experienced contributors, participate in discussions, and stay
updated on Kubernetes developments.

Figure 7-10. Kubernetes Community manifesto.

Kubernetes Slack Channels (slack.k8s.io): These channels are great for real-time
communication with Kubernetes professionals and enthusiasts. It’s a platform for

KCNA-related communities | 211

asking questions, sharing experiences, and getting tips and advice from community
members.

GitHub Kubernetes Community (github.com/kubernetes): GitHub hosts the source
code and documentation for Kubernetes. Contributing to Kubernetes on GitHub or
even just following the repositories can provide deep insights into how the project
evolves.

Figure 7-11. Kubernetes GitHub repository home page

Kubernetes Forums (discuss.kubernetes.io): The Kubernetes forums are an official
place for discussions about Kubernetes. The community here is welcoming to ques‐
tions from beginners and is a good place for detailed discussions.

212 | Chapter 7: Final recommendations

Figure 7-12. K8S Community Forums home page

Reddit Kubernetes Community (reddit.com/r/kubernetes): The Kubernetes sub‐
reddit is a place for news, articles, and discussions related to Kubernetes. It’s a more
informal setting where members share news, tips, and ask for advice.

Figure 7-13. Example of a question posted in the Reddit K8S Community

Useful Github repositories
For students preparing for the Kubernetes and Cloud Native Associate (KCNA)
exam, GitHub hosts a variety of repositories that are useful for study and practice.
Here’s a list of some repositories that could provide support during your learning
journey:

Useful Github repositories | 213

kubernetes/kubernetes (github.com/kubernetes/kubernetes): This is the repository
for the Kubernetes source code. Exploring this repository helps in understanding
how Kubernetes is built and works under the hood.

kubernetes/examples (github.com/kubernetes/examples): This repository contains
a set of examples and use cases for Kubernetes. It’s great for seeing how to deploy and
manage applications in a Kubernetes environment.

Figure 7-14. Maintend Examples in the repository

kubernetes-sigs (github.com/kubernetes-sigs): The Kubernetes SIGs (Special Inter‐
est Groups) have their repositories under this organization. These repositories con‐
tain projects and tools related to specific areas within Kubernetes.

214 | Chapter 7: Final recommendations

Figure 7-15. Kubernetes SIG GItHub Home Page

Artifact Hub (https://artifacthub.io/): is a web-based platform for discovering,
installing, and sharing packages and configurations related to CNCF (Cloud Native
Computing Foundation) projects.

These offerings encompass a wide range of items, including Helm charts, Falco
configurations, Open Policy Agent (OPA) and Gatekeeper policies, OLM (Operator
Lifecycle Manager) operators, Tinkerbell actions, kubectl plugins, Tekton tasks and
pipelines, KEDA scalers, CoreDNS plugins, Keptn integrations, container images,
Kubewarden policies, Kyverno policies, the Knative client, Backstage plugins, Argo
templates, KubeArmor policies, KCL (Kubernetes Client Library) modules, and the
Headlamp plugin.

Useful Github repositories | 215

Figure 7-16. Artifact Hub Home page

kubernetes/minikube (github.com/kubernetes/minikube): Minikube is an essential
tool for local Kubernetes development and testing. This repository contains the
source code and documentation for setting up a local Kubernetes cluster.

Figure 7-17. Minikube project Home Page

kelseyhightower/kubernetes-the-hard-way (github.com/kelseyhight‐
ower/kubernetes-the-hard-way): Created by Kelsey Hightower (discussed above),

216 | Chapter 7: Final recommendations

this repository provides a set of exercises to set up Kubernetes from scratch. It’s one
of the best ways to deeply understand how the components of Kubernetes fit together
and deploy every building block and stitch them together.

Figure 7-18. - Summary of the topics to practice

cncf/landscape (https://landscape.cncf.io/): The Cloud Native Computing Founda‐
tion’s landscape offers a comprehensive overview of the cloud-native landscape,
including tools, services, and technologies associated with Kubernetes.

Figure 7-19. CNCF Landscape Snippet

Potential career options for KCNA certified
Earning a Kubernetes and Cloud Native Associate (KCNA) certification opens up
a range of career opportunities in the rapidly growing field of cloud-native tech.

Potential career options for KCNA certified | 217

This certification is an attestation that you received a foundational understanding
of Kubernetes and its ecosystem. It positions you for various roles in organizations
adopting modern, scalable, and efficient software practices.

Here is an incomplete list of some of the applicable roles for those with the KCNA
certification:

• DevOps Engineer: This role specializes in automating, improving, and optimiz‐•
ing development and deployment processes. DevOps Engineers with Kubernetes
knowledge are in high demand to manage containerized applications and cloud-
native solutions.

• Cloud Engineer: This role focuses on designing, implementing, and maintaining•
cloud-based applications and infrastructure. A KCNA certifies an understanding
of how Kubernetes operates within cloud environments, making it a valuable
credential for this role.

• Site Reliability Engineer (SRE): This role ensures high availability and reliability•
of services. SREs with Kubernetes expertise can efficiently manage containerized
applications, implement scalable architectures, and maintain system health in
cloud-native environments.

• Kubernetes Administrator: People in this role directly manage Kubernetes clus‐•
ters and their lifecycle. This role involves configuring and maintaining Kuber‐
netes environments, ensuring their optimal performance and security.

• Systems Administrator: This role focusess on managing and operating Kuber‐•
netes clusters in addition to traditional systems administration duties. The
KCNA certification provides a solid foundation for integrating Kubernetes into
broader system management practices.

• Technical Support Engineer: This role provides support for Kubernetes-based•
applications and infrastructure. The understanding of Kubernetes fundamentals
from a KCNA certification is beneficial for diagnosing and resolving issues in
cloud-native environments.

• Product Manager/Technical Sales in Cloud Technologies: People in this role•
assist in the design, promotion, and selling of cloud-native solutions. A KCNA
certification equips individuals with the necessary Kubernetes knowledge to
effectively communicate the benefits of cloud-native technologies to clients or
internal teams.

• Training and Education: In the context of teaching and education roles, you•
could develop educational materials related to Kubernetes and cloud-native tech‐
nologies. This role suits those who enjoy mentoring and guiding others in their
learning journey.

218 | Chapter 7: Final recommendations

• Consultant or Freelancer: This role provides expert advice and services to organ‐•
izations adopting Kubernetes and cloud-native technologies. This career path
offers flexibility and a variety of projects, appealing to those with entrepreneurial
spirits.

Having a KCNA certification demonstrates foundational knowledge and a commit‐
ment to professional development in Kubernetes and cloud-native technologies,
making these individuals valuable assets in various roles within tech-forward organi‐
zations. As the demand for cloud-native skills continues to grow, these career paths
offer promising opportunities for professional growth and specialization.

Other Kubernetes certifications
In addition to the Kubernetes and Cloud Native Associate (KCNA) certification, there
are several other Kubernetes certifications offered by the Cloud Native Computing
Foundation (CNCF) in partnership with the Linux Foundation. These certifications
are designed for different levels of expertise and career paths in the Kubernetes
ecosystem. Here’s an overview of these key Kubernetes certifications:

Certified Kubernetes Administrator (CKA)
• Target Audience: The CKA certification is aimed at professionals responsible for•

the administration of Kubernetes clusters.
• Focus: It covers the skills required to install, configure, and manage Kubernetes•

clusters, including networking, storage, security, maintenance, logging, and mon‐
itoring.

• Suitability: Ideal for system administrators, DevOps engineers, and IT professio‐•
nals who work with Kubernetes on a regular basis.

Certified Kubernetes Application Developer (CKAD)
• Target Audience: This certification is designed for software developers who wish•

to demonstrate their skills in designing, building, and deploying applications on
Kubernetes.

• Focus: The CKAD focuses on the practical aspects of defining application•
resources, using core primitives to build, monitor, and troubleshoot scalable
applications and tools in Kubernetes.

• Suitability: Best suited for software developers who want to specialize in building•
Kubernetes-native applications.

Other Kubernetes certifications | 219

Certified Kubernetes Security Specialist (CKS)
• Target Audience: The CKS is tailored for Kubernetes administrators, engineers,•

and security professionals.
• Focus: It emphasizes Kubernetes security, covering cluster setup, system harden‐•

ing, minimizing vulnerabilities, and ongoing security maintenance.
• Prerequisites: Candidates must have passed the CKA exam before attempting the•

CKS.
• Suitability: Ideal for individuals focused on the security aspect of Kubernetes•

clusters.

Each of these certifications requires passing a performance-based exam, which tests
hands-on skills in real-world scenarios. These exams are:

• Highly Recognized: These certifications are widely recognized in the industry•
and are often considered benchmarks of expertise in their respective areas.

• Practical and Hands-on: Unlike many traditional certifications, these exams are•
practical, requiring candidates to perform tasks on live systems.

• Career-Enhancing: Earning these certifications can significantly boost career•
prospects, as there is a growing demand for skilled Kubernetes professionals.

These certifications not only validate your skills and knowledge in Kubernetes but
also help in specializing in specific areas, whether it’s administration, application
development, or security. As Kubernetes continues to be a leading platform in the
cloud-native ecosystem, these certifications provide significant value to IT professio‐
nals looking to advance in their careers.

Relevant books
O’Reilly Media publishes a range of comprehensive and highly regarded books that
are relevant for those interested in Kubernetes, cloud-native technologies, and related
subjects. Here’s a list of some notable O’Reilly titles that would be particularly benefi‐
cial for those studying for Kubernetes certifications like the KCNA, CKA, CKAD, or
CKS:

• Kubernetes Up & Running: Dive into the Future of Infrastructure” by Kelsey•
Hightower, Brendan Burns, and Joe Beda:
Link: https://www.oreilly.com/library/view/kubernetes-up-and/9781492046523/

220 | Chapter 7: Final recommendations

Figure 7-20. Kubernetes Up & Running book cover

This foundational book provides a practical guide to Kubernetes, authored by key
Kubernetes creators. It’s great for understanding the architecture and operation of
Kubernetes.

Relevant books | 221

• “Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable•
Services” by Brendan Burns: Authored by one of the co-founders of Kubernetes,
this book offers insights into designing and building scalable and reliable dis‐
tributed systems, which is a key aspect of cloud-native applications.
Link: https://www.oreilly.com/library/view/designing-distributed-systems/
9781491983638/

222 | Chapter 7: Final recommendations

Figure 7-21. Designing Distributed Systems Book Cover

• “Kubernetes Patterns: Reusable Elements for Designing Cloud-Native Applica‐•
tions” by Bilgin Ibryam and Roland Huß: This book delves into Kubernetes-

Relevant books | 223

specific patterns for application development, offering a detailed guide for
architecting cloud-native applications effectively.
LInk: https://www.oreilly.com/library/view/kubernetes-patterns/9781492050278/

Figure 7-22. Book Cover

224 | Chapter 7: Final recommendations

• “Cloud Native DevOps with Kubernetes: Building, Deploying, and Scaling•
Modern Applications in the Cloud” by John Arundel and Justin Domingus: Cov‐
ering the DevOps side of Kubernetes, this book addresses continuous integration,
continuous delivery, and infrastructure as code in Kubernetes environments.
Link: https://www.oreilly.com/library/view/cloud-native-devops/9781492040750/
#:~:text=Cloud%20Native%20DevOps%20with%20Kubernetes%201%201.%20Rev
olution,Clusters%20Cluster%20Sizing%20and%20Scaling%20Capacity%20Plan
ning%20

Relevant books | 225

Figure 7-23. Book Cover

• “Managing Kubernetes: Operating Kubernetes Clusters in the Real World” by•
Brendan Burns and Craig Tracey: Targeted at Kubernetes administrators, this

226 | Chapter 7: Final recommendations

book discusses the challenges and solutions for managing Kubernetes in produc‐
tion settings.
LInk: https://www.oreilly.com/library/view/managing-kubernetes/9781492033905/

Figure 7-24. Book Cover

Relevant books | 227

• “Container Security” by Liz Rice Essential for those focusing on Kubernetes•
security, it discusses best practices and strategies for securing containers and
clusters.

Figure 7-25. Figure7-24 book cover

228 | Chapter 7: Final recommendations

Summary
Congratulations! You have completed the Study Guide for KCNA.Remember, this
isn’t just about passing an exam; it’s about mastering a transformative technology.
A s you conquer KCNA, consider leveling up. The Certified Kubernetes Adminis‐
trator (CKA), Certified Kubernetes Application Developer (CKAD), and Certified
Kubernetes Security Specialist (CKS) certifications await. These advanced badges will
propel your career skyward.

Remember this: The journey may be challenging, but the view from the summit is
worth every step.

Keep pushing forward!

Summary | 229

	Cover
	Copyright
	Table of Contents
	Chapter 1. Introduction
	The Book Structure
	Intended Book Audience
	What To Expect From This Study Guide
	Why Cloud Native and Why Now
	Inspirational Success Stories

	Self-questionnaire for New Cloud Native Practitioners
	Test 1 - The CNCF Ecosystem
	Test 2 - General Cloud Native Concepts
	Test 3 - Kubernetes Topics
	Test 4 - Kubernetes Commands
	Test 5 - Linux Fundamentals
	Test 6 - Other Related Projects

	PLACEHOLDER Expert Insights 1 - Walid Shaari
	PLACEHOLDER EXPERT INSIGHTS
	PLACEHOLDER CONCLUSION - Chapter 1

	Chapter 2. The KCNA Exam as the Starting Point
	The KCNA Certification by Linux Foundation and CNCF
	Why the KCNA matters and Why to Get Certified
	Exam Description and Curriculum
	Part 1 - Kubernetes Fundamentals
	Part 2 - Container Orchestration
	Part 3 - Cloud Native Architecture
	Part 4 - Cloud Native Observability
	Part 5 - Cloud Native Application Delivery

	Additional Areas of Knowledge (outside of the official curriculum)
	Part 6 - Kubernetes 101 Hands-on
	Part 7 - Linux Fundamentals
	Part 8 - API-enabled Development
	Part 9 - Telematics
	Part 10 - Web Development
	Part 11 - Applied Usage

	Exam Study Plan
	Step 1 - Determine your Current Level of Knowledge
	Step 2 - Prepare and Adopt an Study Schedule
	Step 3 - Focus on the Right Material

	Exam Logistics and What to Expect
	Step 1 - Schedule Your Exam
	Step 2 - Exam Day Preparation
	Step 3 - Post-Exam Logistics

	Potential Certification Paths
	PLACEHOLDER CONCLUSION - Chapter 2

	Chapter 3. CNCF and the New Era of Cloud Native
	The CNCF Origins
	Timeline of The Cloud Native Industry
	Community dynamics and governance
	Key CNCF resources
	CNCF projects and Maturity Levels
	Related initiatives and work groups

	Chapter 4. Essential Concepts for Cloud Native Practitioners
	General Cloud Computing
	Commercialization of Cloud Computing
	IaaS, Infrastructure-as-a-Service
	PaaS, Platform-as-a-Service
	SaaS, Software-as-a-Service
	CaaS, Container-as-a-Service
	FaaS, Function-as-a-Service

	Cloud Computing Infrastructure
	Public Cloud
	Private Cloud
	Hybrid Cloud
	Multi Cloud

	The Virtualization, Containerization, and Orchestration Trifecta
	Virtualization
	Containerization
	Orchestration

	Relationship between Cloud Computing and Cloud Native
	Building Cloud Native Applications
	Other Relevant Cloud Native Topics
	DevOps and CI/CD
	GitOps and Infra as Code (IaC)
	Declarative vs Imperative
	Stateful vs Stateless
	Egress and Ingress
	Serverless

	Chapter 5. The Key Role of Kubernetes
	An introduction to containers and orchestration technologies
	Containers
	Container orchestration

	Containers ecosystem and standards
	Linux Container
	Then, What do the Container standards provide?
	Container Solutions

	What is Kubernetes?
	And Why is Kubernetes so important and why should you learn it?

	Current Industry trends
	Artificial Intelligence
	Vector Databases
	Edge Computing
	Platform Engineering

	Alternatives for Kubernetes in the Orchestration
	Apache Mesos and Marathon
	Openshift

	Benefits of Containerization for Businesses
	Business Agility
	Innovation Acceleration
	Collaboration
	Resiliency and Business Continuity
	Talent Attraction and retention
	Customer Satisfaction

	Summary

	Chapter 6. Technical Kubernetes Topics
	Kubernetes Basic Concepts: from Containers to Clusters
	Kubernetes Cluster
	Components of the Control Plane
	Components of the Data Plane

	Inside Kubernetes Architecture
	Kubernetes Single Container Pod and Multi Container Pod
	Container Runtimes in Kubernetes
	Container Network Interface
	Container storage Interface

	Navigating Kubernetes states
	Stateless Applications
	Stateful Applications
	Deployments: Orchestrating Stateless Scalability
	StatefulSets: The custodian of stateful applications
	ReplicaSets: Safeguarding Replication and Reliability
	DaemonSet Controller
	Job and CronJob Controllers

	Workload Auto-scaling, Kubernetes Events and Pod lifecycle
	Horizontal Pod Autoscaler (HPA):
	Vertical Pod Autoscaler (VPA):
	Cluster Proportional Autoscaler (CPA):
	Autoscaling based on Events
	Cluster Autoscaler
	Pending Phase
	Scheduled Phase
	Running Phase
	Succeeded or Failed Phase
	Termination

	Kubernetes Observability and Performance
	Logs:
	Metrics:
	Traces:
	Resource Metrics Pipeline
	Full Metrics Pipeline

	Kubernetes storage
	Persistent Volumes (PVs) and Persistent Volume Claims (PVC)
	Storage Classes
	Volumes and Volume Types
	StatefulSets
	Container Storage Interface (CSI)
	Dynamic provisioning

	Networking and service mesh
	Cluster Networking
	Ingress Controllers
	Network Plugin
	Service Discovery
	Service Mesh

	Kubernetes security
	Container Image security strategies
	Kubernetes cluster protection strategies

	Other Kubernetes related components
	Helm:
	Dapr
	ConfigMap
	MiniKube

	Main commands
	Summary

	Chapter 7. Final recommendations
	Additional information for exam preparation
	Kubernetes community experts to follow
	KCNA-related communities
	Useful Github repositories
	Potential career options for KCNA certified
	Other Kubernetes certifications
	Certified Kubernetes Administrator (CKA)
	Certified Kubernetes Application Developer (CKAD)
	Certified Kubernetes Security Specialist (CKS)

	Relevant books
	Summary

