
A D o c u m e n t s e r i e s b y V I E H G r o u p

Windows
Hacking
Getting into the window

This document is credited to Kevin Thomas (Copyright © 2022 My

Techno Talent), whose exceptional insights elevate its value. Their

contribution is deeply appreciated, underscoring their significant role in

its creation.

Our newsletter: Cyber Arjun

Scan QR:

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Disclaimer

Dear readers,

This document is provided by VIEH Group for educational purposes

only. While we strive for accuracy and reliability, we make no

warranties or representations regarding the completeness, accuracy, or

usefulness of the information presented herein. Any reliance you place

on this document is at your own risk. VIEH Group shall not be liable

for any damages arising from the use of or reliance on this document.

We acknowledge and appreciate the contribution of the source person.

also,

This document is not created by a professional content writer so any

mistake and error is a part of great design

Happy learning !!!

Forward
A long time ago there existed a time and space where the 6502
processor was everywhere. There was no internet, there was no cell
phone and the personal computer was that of a creation of pure
majesty which had a target market of a few enthusiasts.

On November 20, 1985, Microsoft introduced the Windows operating
environment which was nothing more than a graphical operating shell
for MS-DOS.

I will spare you the rest of the history as we know how this game
played out. Today, Windows is the most used desktop and laptop OS
having a 76% share followed by Apple’s macOS at 16% and the remaining
ChromeOS and other Linux variants.

Like it or not Windows is the major player and throughout the years I
have focused on teaching Reverse Engineering in the Linux environment
so that we could focus on a more thinner and efficient development
and communication with the processor.

Today we begin our journey into the Win32API. This book will take
you step-by-step writing very simple Win32API’s in both x86 and x64
platforms in C and then reversing them both very carefully using the
world’s most popular Hey Rays IDA Free tool which is a stripped down
version of the IDA Pro tool used in more professional Reverse
Engineering environments.

Let’s begin...

2

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Table Of Contents
Chapter 1: Hello World

Chapter 2: Debugging Hello World x86

Chapter 3: Hacking Hello World x86

Chapter 4: Debugging Hello World x64

Chapter 5: Hacking Hello World x64

Chapter 6: Directories

Chapter 7: Debugging Directories x86

Chapter 8: Hacking Directories x86

Chapter 9: Debugging Directories x64

Chapter 10: Hacking Directories x64

Chapter 11: CopyFile

Chapter 12: Debugging CopyFile x86

Chapter 13: Hacking CopyFile x86

Chapter 14: Debugging CopyFile x64

Chapter 15: Hacking CopyFile x64

Chapter 16: MoveFile

Chapter 17: Debugging MoveFile x86

Chapter 18: Hacking MoveFile x86

Chapter 19: Debugging MoveFile x64

Chapter 20: Hacking MoveFile x64

Chapter 21: CreateFile

Chapter 22: Debugging CreateFile x86

3

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 23: Hacking CreateFile x86

Chapter 24: Debugging CreateFile x64

Chapter 25: Hacking CreateFile x64

Chapter 26: WriteFile

Chapter 27: Debugging WriteFile x86

Chapter 28: Hacking WriteFile x86

Chapter 29: Debugging WriteFile x64

Chapter 30: Hacking WriteFile x64

Chapter 31: ReadFile

Chapter 32: Debugging ReadFile x86

Chapter 33: Hacking ReadFile x86

4

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 1: Hello World

Now let’s populate our main.asm file with the following.

Once installed, let’s create a new project and get started by following the
below steps.

We begin our journey with programming a very simple hello world
program in Windows Assembly language. We will ONLY write in pure
Assembly in this chapter as we will focus on development in C which
almost all Windows development occurs so you have a greater
understanding of how these applications are put together and THEN
reversing the entire app in Assembly Language both in x86 and x64.

Let’s first download Visual Studio which we will use as our
integrated development environment. Select the Visual Studio 2019
Community edition at the link below. Make SURE you select all of the
C++ and Windows options during the setup to ensure the build
environment has all the tools necessary. When in doubt, check the
box to include it during install.

https://visualstudio.microsoft.com/downloads

Create a new project
Empty Project
Next
Project name: 0x0001-hello_world-x86
CHECK Place solution and project in the same directory
Create

RT CLICK on the 0x0001-hello_world-x86 in Solutions Explorer
Add
New Item…
main.asm
RT CLICK 0x0001-hello_world-x86
Build Dependencies
Build Customizations
CHECK masm
OK

RT CLICK on main.asm
Properties
Configuration Properties
General
Item Type: Microsoft Macro Assembler
OK

.686

.model flat, stdcall

.stack 4096

5

Social Media: @viehgroup viehgroup.com support@viehgroup.com

extrn
extrn

.data
 msg_txt db"Hello World", 0
 msg_caption db"Hello World App", 0

ExitProcess@4: proc ;1 param 1x4
MessageBoxA@16: proc ;4 params 4x4

.code
 main:
 push0 ;UINT uType
 leaeax, msg_caption;LPCSTR lpCaption pusheax
 leaeax, msg_txt;LPCSTR lpText
 pusheax
 push0;HWND hWnd
 callMessageBoxA@16

push0;UINT uExitCode
 callExitProcess@4
 end main

Congratulations! You just created your first hello world code in x86 Windows
Assembly. Time for cake!

We are going to spend the majority of our time in the Win32API
documentation throughout this course.

Let’s take a moment and review. To begin we designate a .686 which means
enable the assembly of non-privileged instructions for the Pentium Pro+ style
architecture in 32-bit MASM.

Our first Win32API that we call is the MessageBoxA which provides a
Windows Message Box to appear. We then set up a flat memory model
which uses no combined segment or offset addressing. We also use the
stdcall Win32 calling convention which we push args in reverse order onto
the stack and then call the procedure. The calle clears the stack after the call.

Our second Win32API that we will call is the ExitProcess which simply exits
the application and frees up the operation to the Windows OS.

We see that the function is a void function which returns nothing and
has one param UINT uExitCode which simply retrieves the process’s
exit value.

(VISIT https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-
processthreadsapi-exitprocess)

(VISIT https://docs.microsoft.com/en-us/cpp/assembler/masm/dot-686?view=msvc-160)

6

Social Media: @viehgroup viehgroup.com support@viehgroup.com

You might have noticed a very strange @4 after the function. This is to
designate that the function has 1 param. We multiply each param by 4 to get
this designation.

Our next Win32API is the MessageBoxA function which simply displays a
modal dialog box with a title and a message.

We have 4 params here so we know we will have an @16 at the end of the
function.

The first param is HWND hWnd which is a handle to the owner of the window
of the message box to be created and in our case it is NULL meaning the
message box has no owner.

We then have the LPCSTR lpText which will display our text inside the
message box.

We then have the LPCSTR lpCaption which will be the caption text on the
message box.

Finally we have the UINT uType which is simply the combo of flags from the
table located in the docs. In our case it will be NULL.

Remember in stdcall we push the params in REVERSE order onto the stack
as you see in the code above.

At this point we can run our code by clicking on the green arrow next to the
Local Windows Debugger.

HOORAY our hello world modal dialog box pops up.

Let’s now create our x64 version of this code.

Create a new project
Empty Project
Next
Project name: 0x0001-hello_world-x64
CHECK Place solution and project in the same directory
Create

RT CLICK on the 0x0001-hello_world-x64 in Solutions Explorer
Add
New Item…
main.asm
RT CLICK 0x0001-hello_world-x64
Build Dependencies

(VISIT https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-
messageboxa)

7

Social Media: @viehgroup viehgroup.com support@viehgroup.com

(VISIT https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-
postquitmessage)

Build Customizations
CHECK masm
OK

RT CLICK on the 0x0001-hello_world-x64 in Solutions Explorer
Properties
Configuration Properties
Linker
Advanced
Entry Point: main
OK

Select x64 to the right of Debug and the left of Local Windows Debugger menu bar

Now let’s populate our main.asm file with the following.

We also see a call to PostQuitMessage which has an int nExitCode as a
param.

Congratulations! You just created your first hello world code in x64 Windows
Assembly. Time for cake, again!

Let’s take a moment and review. We first need to understand the x64 calling
convention.

end

.data

.code
main proc

sub

ret
main endp

mov
lea
lea
xor
call

extrn MessageBoxA: proc
extrn PostQuitMessage: proc

rsp, 20h

add rsp, 20h

r9, rax
r8, msg_caption
rdx, msg_txt
rcx, rcx
MessageBoxA

xorrcx, rcx
call PostQuitMessage

msg_txt db 'Hello World', 0
msg_caption db 'Hello World App', 0

;shadow stack

;int nExitCode

;UINT uType
;LPCSTR lpCaption
;LPCSTR lpText
;HWND hWnd

;restore shadow stack

8

Social Media: @viehgroup viehgroup.com support@viehgroup.com

(VISIT https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc- 160)

The Microsoft x64 calling convention, fastcall, is what we use in x64. What we
see here under the Parameter passing section is by default, the x64 calling
convention passes the first four arguments to a function in registers. The
registers used for these arguments depend on the position and type of the
argument. Remaining arguments get pushed on the stack in right-to-left
order. The caller cleans up the stack after the call.

Integer valued arguments in the leftmost four positions are passed in left-to-
right order in RCX, RDX, R8, and R9, respectively. The fifth and higher
arguments are passed on the stack as previously described. All integer
arguments in registers are right-justified, so the callee can ignore the upper
bits of the register and access only the portion of the register necessary.

Any floating-point and double-precision arguments in the first four
parameters are passed in XMM0 - XMM3, depending on position. Floating-
point values are only placed in the integer registers RCX, RDX, R8, and R9
when there are varargs arguments. For details, see Varargs. Similarly, the
XMM0 - XMM3 registers are ignored when the corresponding argument is an
integer or pointer type.

According to the x64 calling convention we need to provide a shadow stack
for memory cells for each QWORD and the stack has to be aligned to 16 bytes
for the next instruction.

The shadow space is the mandatory 32 bytes (4x8 bytes) which we must
reserve for the called procedure. We provide 32 bytes on the stack before
calling. This space can be left uninitialized.

In this calling convention, arguments after the 4th are pushed on the stack,
which are on top of this shadow space (pushed before the 32 bytes).

We then setup and call our MessageBoxA Win32API again. We do not need
to review the params as we have handled this earlier in our x86 example.

We then restore the shadow stack and then call ExitProcess.

At this point we can run our code by clicking on the green arrow next to the
Local Windows Debugger.

9

Social Media: @viehgroup viehgroup.com support@viehgroup.com

HOORAY our hello world modal dialog box pops up.

This will be the only example where we write in all Assembly as I
want to teach using the official Win32API which is natively in C
however I wanted to first show you EXACTLY what is going on under the
hood when it is in fact compiled.

10

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 2: Debugging Hello World x86

Here we see a clean disassembly of our source as we wrote it in
Assembly.

Let’s first examine what is inside msg_caption so the first step is
to double-click on the msg_caption text which will take us into the
.data section of the code.

Once installed let’s copy our 0x0001-hello_world-x86.exe, which is
inside the Debug folder within 0x0001-hello_world-x86 folder to a new
folder called 0x0001-hello_world-x86-debug.

After loading Ida Free, click Go Work on your own and drag-and-drop
the 0x0001-hello_world-x86.exe into it.
When the Load a new file modal pops up click OK.

When The input file was linked with debug information modal pops up
select Yes as we will use the symbols in our reversing as we learn
the Win32API.

Immediately it shows the disassembly and drops us into the _main
function.

Today we debug our Hello World x86 version within Ida Free. We first
need to download Ida Free which is the free version of the most
popular Ida Pro tool.

https://hex-rays.com/ida-free/#download

11

Social Media: @viehgroup viehgroup.com support@viehgroup.com

In the msg_text we also notice a strange db 48h at offset 4000 and another
at offset 4001 of db `ello World`,0.

The first 48h is ascii. Let’s load up an ascii table and do some simple
investigation.

Here we see 0x48 or 48h as H. This makes sense as our msg_caption begins
with a capital H.

We are currently in the IDA View-A tab. Let’s click on the 48h value and the
click on the Hex View-1 tab to the right of IDA View-A.

Here we see our string represented in hex ascii. If we refer back to
our table we can easily see how everything matches up. These
letters, each representing a byte in the .data section are in fact
the letters that will display in our msg_caption.

If we click back on the IDA View-A tab we can follow the same
procedure and as the above images indicate we can see our msg_txt
section as well following the same pattern.

Let’s his the esc button and go back to our _main function.

Let’s click on the first push 0 instruction and hit f2 to set a
breakpoint. You will notice a red box highlight that line.

https://www.asciitable.com

12

Social Media: @viehgroup viehgroup.com support@viehgroup.com

We see it load up our source code window which is quite handy as we can see
that it broke on the push 0 instruction.

Let’s ignore this window for now and click on the IDA View-EIP window to the
left.
Here we see a number of different windows. We see our Code window.

When we click on the green play button next to Local Windows Debugger it
will then begin the debugging session.

We immediately see a warning message as we are going to run the code
dynamically however we wrote it so we can then click Yes at the
bottom right.

13

Social Media: @viehgroup viehgroup.com support@viehgroup.com

We have our Threads window.

There is a General registers window.

We then have our Stack view window which the top of the stack is
highlighted in blue. Like all of the others it is scrollable.

We have our Hex View-1 window where if you type g within the window you
can seek to that given memory address within the hex.

This is only a partial view of the registers as you have to scroll
bars to work with. On the right hand side you see the values of the
eflags register as it displays each bit.

The next window is the Modules window which shows the application and
all of the respective .dll libs it is using. Like the registers
window you will need to scroll.

14

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Finally we have our Output window.

Let’s jump to 00aa101d and look at the Hex View-1.

Let’s step through the code. Let’s enable the debugger menu.

Let’s click on the first blue icon with the two arrows to single-
step. Let’s single-step twice.

We are now about to execute the first push eax instruction. We see
msg_caption moved into eax. Before we step take note of the Stack
view window as well.

View – Toolbars – Debugger commands

15

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Let’s step and stop right before the call.

At this point take careful note on the Stack view.

Now let’s step again. Let’s now examine the stack.

We see the msg_caption moved to the top of the stack as it was just pushed
from eax.

Take immediate note of the value in esp as that is the top of the stack.

16

Social Media: @viehgroup viehgroup.com support@viehgroup.com

It is CRITICAL that you take SPECIAL CARE to review the Code window
above and compare it to the Stack view window.

Notice that the top of the stack, in this case 0x006ffdc0 holds the
value of 0 which was the LAST, most recent value pushed to the stack.

Remember that the STACK GROWS DOWN in memory. The value of ebp which
is the stack base pointer is HIGHER in memory as compared to esp.
Please write this down.

As we push more items onto the stack esp will continue to grow
DOWNWARD in memory and therefore the gap between ebp and esp grows
larger as esp is growing downward toward the heap until either call
occurs which will collapse the stack frame (ebp to esp) OR a pop
operation will pop the value in esp into whatever you are popping it
into and therefore moving esp UPWARD in memory.

At the +4 offset we see msg_txt which was the 2nd to the last thing
pushed onto the stack.

At the +8 offset we see msg_caption was the 3rd to the last thing
pushed onto the stack.

Finally at +12 or +0xc we see 0 which was the 4th to the last thing
pushed onto the stack.

We can step over the call to _MessageBoxA@16 and it will load our
modal window.

We can then step over the call to _ExitProcess@4 and it will
terminate our binary.

If you single-step it will take you through the internal Win32API
functions if you wanted to get a greater appreciation of what exactly
is happening when these functions are in fact called.

When we continue execution we will see our program run and we now
have a complete idea of how this simple programs works as we did a
complete dynamic reversing analysis on this binary.

17

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 3: Hacking Hello World x86

Click on the Hex View-1 tab.

Double-click on msg_caption.

Today we hack our Hello World x86 version within Ida Free. Let’s fire up
our session in Ida Free and begin.

We start with our _main proc.

We noticed in the last chapter that 0x48 begins the string as we know in the
ascii table that 0x48 is in fact ‘H’.

https://www.asciitable.com

Click Edit – Patch program – Change byte …

18

Social Media: @viehgroup viehgroup.com support@viehgroup.com

48 65 6C 6C 6F 20 57 6F 72 6C 64 20 41 70 70 00

Let’s change the caption to ‘Hacky World’.

48 61 63 6B 79 20 57 6F 72 6C 64 20 41 70 70 00

Click OK.

Click Edit – Patch program – Apply patches to input file… Click

OK.

Click the green play button. We notice two warning windows which we can
ignore stating that the binary has changed.

We broke on our first break point. Let’s hit the play button again.

19

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Hooray! Time for cake! We saw that we were able to successfully hack our
msg_caption correctly.

You could also take it a step further and hack the actual msg_txt if you so
chose.

This is the first of many small hacks. The purpose of this book it to take
SMALL steps. Take very careful analysis on exactly what is happening at the
assembly level and understanding have to have absolute control over the
process.

20

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 4: Debugging Hello World x64

In the msg_text we also notice a strange db 48h at offset 4000 and
another at offset 4001 of db `ello World`,0.

Today we debug our Hello World x64 version within Ida Free.

Let’s copy our 0x0001-hello_world-x64.exe, which is inside the Debug
folder within 0x0001-hello_world-x64 folder to a new folder called
0x0001-hello_world-x64-debug.

After loading Ida Free, click Go Work on your own and drag-and-drop
the 0x0001-hello_world-x64.exe into it.
When the Load a new file modal pops up click OK.

When The input file was linked with debug information modal pops up
select Yes as we will use the symbols in our reversing as we learn
the Win32API.

Immediately it shows the disassembly and drops us into the main
function.

Take note and re-read Chapter 2. Unlike x86 where we push params to
the stack we are moving the params into rcx, rdx, r8, r9. This is
how x64 handles their function calls at the Assembly level.

Let’s first examine what is inside msg_caption so the first step is
to double-click on the msg_caption text which will take us into the
.data section of the code.

21

Social Media: @viehgroup viehgroup.com support@viehgroup.com

The first 48h is ascii. Let’s load up an ascii table and do some simple
investigation.

Here we see 0x48 or 48h as H. This makes sense as our msg_caption begins
with a capital H.

We are currently in the IDA View-A tab. Let’s click on the 48h value and the
click on the Hex View-1 tab to the right of IDA View-A.

Here we see our string represented in hex ascii. If we refer back to
our table we can easily see how everything matches up. These
letters, each representing a byte in the .data section are in fact
the letters that will display in our msg_caption.

If we click back on the IDA View-A tab we can follow the same
procedure and as the above images indicate we can see our msg_txt
section as well following the same pattern.

Let’s his the esc button and go back to our main function.

Let’s click on the mov r9, rax instruction and hit f2 to set a
breakpoint. You will notice a red box highlight that line.

When we click on the green play button next to Local Windows Debugger it
will then begin the debugging session.

We immediately see a warning message as we are going to run the code
dynamically however we wrote it so we can then click Yes at the bottom
right.

https://www.asciitable.com

22

Social Media: @viehgroup viehgroup.com support@viehgroup.com

We then load the effective address of msg_txt into rdx the second param
in reverse order after we step again.

We then load the effective address of msg_caption into r8 the third param
in reverse order after we step again.

Let’s click on the first blue icon with the two arrows to single- step. Let’s
single-step once.

We see the value of rax moved into r9 which holds the value of start. This is
the fourth param in reverse order.

This is likely a compiler optimization as we did not code this in Assembly.

We see it load up our source code window. As with the x86 version as we
wrote this in Assembly we can ignore and click on the IDA View-RIP tab.

Enable debugger menu.

View – Toolbars – Debugger commands

23

Social Media: @viehgroup viehgroup.com support@viehgroup.com

We then zero out or xor rcx, rcx to put a 0 in rcx.

We then called PostQuitMessage_0 and exit the program.

Finally we call MessageBoxA_0 and display our caption and message.

24

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 5: Hacking Hello World x64

Click on the Hex View-1 tab.

Double-click on msg_caption.

Today we hack our Hello World x64 version within Ida Free. Let’s fire up
our session in Ida Free and begin.

We start with our main proc.

We know from our prior chapters that 0x48 is ‘H’ and the other bytes are
the additional letters.

Click Edit – Patch program – Change byte …

25

Social Media: @viehgroup viehgroup.com support@viehgroup.com

48 65 6C 6C 6F 20 57 6F 72 6C 64 20 41 70 70 00

Let’s change the caption to ‘Hacky World’.

48 61 63 6B 79 20 57 6F 72 6C 64 20 41 70 70 00

Click OK.

Click Edit – Patch program – Apply patches to input file… Click

OK.

Click the green play button. We notice two warning windows which we can
ignore stating that the binary has changed.

We broke on our first break point. Let’s hit the play button again.

Hooray! As in the previous hacking chapter you can further hack
anything you wish. We are doing nothing more than taking small bite-
sized building blocks so you have a full understanding of the
Win32API.

26

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 6: Directories

Now let’s populate our main.c file with the following.

We continue with a simple app that handles Windows directory
manipulation by creating and removing a directory.

Let’s create a new project

Create a new project
Empty Project
Next
Project name: 0x0006-directories
CHECK Place solution and project in the same directory
Create

RT CLICK on the 0x0006-directories in Solutions Explorer
Add
New Item…
main.c
OK

int main(void)
{

BOOL bDir;

#include <stdio.h>
#include <Windows.h>

 bDir = CreateDirectory(
 L"C:\\mydir",
 NULL
);
 if (bDir == FALSE)
 {
 printf("CreateDirectory failed & error no %ul\n", GetLastError()); }
 else
 {
 printf("CreateDirectory Success!\n");
 }

 bDir = RemoveDirectory(
 L"C:\\mydir"
);
 if (bDir == FALSE)
 {
 printf("RemoveDirectory failed & error no %ul\n", GetLastError()); }
 else
 {
 printf("RemoveDirectory Success!\n");
 }

27

Social Media: @viehgroup viehgroup.com support@viehgroup.com

 return 0; }

CreateDirectory Success!
RemoveDirectory Success!

C:\Users\kevin\Documents\Hacking-Windows\0x0006-directories\0x0006-directories\Debug\0x0006-
directories.exe (process 10204) exited with code 0.
To automatically close the console when debugging stops, enable Tools->Options->Debugging-
>Automatically close the console when debugging stops.
Press any key to close this window . . .

Let’s review the CreateDirectoryW API below.

In our next chapter we will debug this program in x86.

We see we have one param lpPathName which is the path of the
directory to be created.

The return value is non-zero if the function succeeds otherwise it
will return 0 and any relevant error information inside GetLastError.

When we run the program it shows the following output.

REMEMBER if you hover over CreateDirectory it expands to
CreateDirectoryW in Visual Studio. This mean CreateDirectory is an
alias for CreateDirectoryW.

We see we have two params which are lpPathName which is the path of
the directory to be created and lpSecurityAttributes which is a
pointer to a SECURITY_ATTRIBUTES structure. In our case we are just
using NULL.

The return value is non-zero if the function succeeds otherwise it
will return the code ERROR_ALREADY_EXISTS or ERROR_PATH_NOT_FOUND.

Let’s review the RemoveDirectoryW API below.

(VISIT https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-
createdirectoryw)

(VISIT https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-
removedirectoryw)

28

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 7: Debugging Directories x86
We are going to debug the 32-bit version of our Directories program.

Since we have created a few projects together I assume you know what you
are doing in IDA at this point. If this process is unfamiliar to you please re-
read the prior chapters.

In the IDA View-A text view we first see our CreateDirectoryW function.

In our last chapter we reviewed the API in C. Here we first push the
lpSecurityAttributes param to the stack followed by the PathName
param and then we call the function.

Let’s set a breakpoint directly after the call and run the Local
Windows debugger.

NOTICE we see that our mydir folder has been created.

Let’s stop execution and delete our breakpoint.

We then see our RemoveDirectoryW function.

Here we see the first param of PathName and then the call.

Let’s set a breakpoint directly after the call and run the Local
Windows debugger.

NOTICE we see that our mydir folder has been deleted.

Let’s stop execution and delete our breakpoint.

The flow of this series now that we have a basic familiarity with IDA
will be a simple reversing of the binary such that we continue to
reinforce how each Windows API looks like in both 32-bit and 64-bit
Assembly as this will help us get a firm grasp on what is going on
under the hood with any Windows binary.

29

Social Media: @viehgroup viehgroup.com support@viehgroup.com

I won’t often keep repeating myself however I wanted to at this stage have
a small retrospective.

There are TONS of good reversing resources out there however my aim is to
take SMALL Win32 API’s and reverse them step-by-step so that in the real
world when you are dealing with obfuscated Windows binaries which might
have dynamic resolution based on a complicated hash you will recognize
patters that you may not have without going through these exercises.

Taking time and getting your hands dirty on these small but digestible
exercises will help you master the domain!

In our next chapter we will hack this program in x86.

30

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 8: Hacking Directories x86

Click Edit – Patch program – Change byte …

43 00 3A 00 5C 00 6D 00 79 00 64 00 69 00 72 00

Let’s change the path to ‘hacky’.

43 00 3A 00 5C 00 68 00 61 00 63 00 6b 00 79 00

Click OK.

Click Edit – Patch program – Apply patches to input file…

Click OK.

Let’s set a breakpoint on the next instruction after the call to printf
indicating the CreateDirectory Success! Message.

Here we see the PathName of “C:\\mydir”. Double-click to get to the
.rdata section.

We are going to hack the 32-bit version of our Directories program.

In this chapter we will hack the directory name this will continue to build
our experience on custom hacking binaries.

31

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Let’s look at the root of our hard drive.

Click the green play button. We see the terminal indicating our
CreateDirectory has been called successfully.

Hooray! We have hacked our simple program and altered the creation of
the directory name.

As I have said before these are small bite-sized lessons that help you to
code, debug and hack in addition to researching each of the Win32API
functions so we have a mastery of the process.

In our next chapter we will debug this program in x64.

32

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 9: Debugging Directories x64

Here we see the first param of PathName and then the call.

Let’s set a breakpoint directly after the call and run the Local Windows
debugger.

NOTICE we see that our mydir folder has been deleted.

Let’s stop execution and delete our breakpoint.

Bingo! Another debug victory!

In our next chapter we will hack this program in x64.

Here we are simply putting the security attribute into edx, which is
0 and then we load the effective address of PathName into rcx and
call our function.

Let’s set a breakpoint directly after the call and run the Local
Windows debugger.

NOTICE we see that our mydir folder has been created.

Let’s stop execution and delete our breakpoint.

We then see our RemoveDirectoryW function.

We are going to debug the 64-bit version of our Directories program.

Since we have created a few projects together I assume you know what you
are doing in IDA at this point. If this process is unfamiliar to you please re-
read the prior chapters.

In the IDA View-A text view we first see our CreateDirectoryW function.

33

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 10: Hacking Directories x64

Click Edit – Patch program – Change byte …

43 00 3A 00 5C 00 6D 00 79 00 64 00 69 00 72 00

Let’s change the path to ‘hacky’.

43 00 3A 00 5C 00 68 00 61 00 63 00 6b 00 79 00

Click OK.

Click Edit – Patch program – Apply patches to input file…

Click OK.

Let’s set a breakpoint on the next instruction after the call to printf
indicating the CreateDirectory Success! Message.

Here we see the PathName of “C:\\mydir”. Double-click to get to the
.rdata section.

We are going to debug the 64-bit version of our Directories program.

In this chapter we will hack the directory name in an x64
environment.

34

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Let’s look at the root of our hard drive.

Click the green play button. We see the terminal indicating our
CreateDirectory has been called successfully.

Hooray! We have hacked our simple program and altered the creation of
the directory name.

In our next chapter we discuss CopyFile.

35

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 11: CopyFile

Let’s review the CopyFileW API below.

Now let’s populate our main.c file with the following.

We continue with a simple app that handles the Windows CopyFile API
which simply copies the contents of one file into a new file.

Let’s create a new project

Create a new project
Empty Project
Next
Project name: 0x000b-copyfile
CHECK Place solution and project in the same directory
Create

RT CLICK on the 0x000b-copyfile in Solutions Explorer
Add
New Item…
main.c
OK

(VISIT https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-
copyfilew)

}

}

}
else
{

return 0;

int main(void)
{

BOOL bFile;

#include <stdio.h>
#include <Windows.h>

printf("CopyFile Success!\n");

bFile = CopyFile(
L"C:\\temp\\test1.txt",
L"C:\\temp\\test2.txt",
TRUE
);
if (bFile == FALSE)
{

printf("CopyFile failed & error no %ul\n", GetLastError());

36

Social Media: @viehgroup viehgroup.com support@viehgroup.com

In our next chapter we will debug this program in x86.

Here we see we have 3 parameters. The first, lpExistingFileName, is
simply the existing file we want to copy. The second, lpNewFileName,
is the name of the new file to which we will create and copy the
contents of the original file to. The third, bFailIfExists, is the
flag to indicate if the new file already exists and if it does fail
the operation if TRUE.

The return value is non-zero if the function succeeds otherwise it
will return 0 and any relevant error information inside GetLastError.

We need to manually create the file test1.txt within C:\temp so you
can use Notepad to do so now. Simply create the file and put any
contents you like inside.

When we run the program it shows the following input.

CopyFile Success!

C:\Users\kevin\Documents\Hacking-Windows\0x000b-copyfile\0x000b-copyfile\Debug\0x000b-
copyfile.exe (process 22464) exited with code 0.
To automatically close the console when debugging stops, enable Tools->Options->Debugging-
>Automatically close the console when debugging stops.
Press any key to close this window . . .

37

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 12: Debugging CopyFile x86
We are going to debug the 32-bit version of our CopyFile program. In

the IDA View-A text view we first see our CopyFileW function.

Here we are simply pushing the bFailIfExists onto the stack followed by the
lpNewFileName and finally the lpExistingFileName.

BEFORE we run make sure we delete the file test2.txt within C:\temp so we
can proceed as if this was being run the first time.

Let’s set a breakpoint directly after the call and run the Local Windows
debugger.

NOTICE we see that test2.text was created.

This was a very simple debug as I have to take the time again to clearly
state that our objective is to take SMALL steps so you can not get
overwhelmed and have a full appreciation for what is going on at every step
of these very popular Win32API calls.

In our next chapter we will hack this program in x86.

38

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 13: Hacking CopyFile x86

Click Edit – Patch program – Change byte …

Select the Hex View-1 tab. Click on the 32.

32 00 2E 00 74 00 78 00 74 00 00 00 00 00 00 00

Let’s change the file to ‘test3’.

33 00 2E 00 74 00 78 00 74 00 00 00 00 00 00 00

Click OK.

Click Edit – Patch program – Apply patches to input file…

Here we see the PathName of “C:\\temp\\test2.txt”. Double-click to get to
the .rdata section.

We are going to hack the 32-bit version of our CopyFile program.

In this chapter we will hack the directory name this will continue to build
our experience on custom hacking binaries.

39

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Let’s look at the root of our hard drive.

Click OK.

Back in the IDA View0A tab, let’s set a breakpoint on the next
instruction after the call to CopyFileW.

Hooray! We have hacked our simple program and altered the new file
name.

In our next chapter we will debug this program in x64.

40

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 14: Debugging CopyFile x64
We are going to debug the 64-bit version of our CopyFile program. In

the IDA View-A text view we first see our CopyFileW function.

Here we are simply putting the value of bFailIfExists into r8d
followed by the NewFileName into rdx and finally the ExistingFileName
into rcx.

BEFORE we run make sure we delete the file test2.txt within C:\temp
so we can proceed as if this was being run the first time.

Let’s set a breakpoint directly after the call and run the Local
Windows debugger.

NOTICE we see that test2.text was created.

This was a very simple debug as I have to take the time again to
clearly state that our objective is to take SMALL steps so you can
not get overwhelmed and have a full appreciation for what is going on
at every step of these very popular Win32API calls.

In our next chapter we will hack this program in x64.

41

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 15: Hacking CopyFile x64

Click Edit – Patch program – Change byte …

Select the Hex View-1 tab. Click on the 32.

32 00 2E 00 74 00 78 00 74 00 00 00 00 00 00 00

Let’s change the file to ‘test3’.

33 00 2E 00 74 00 78 00 74 00 00 00 00 00 00 00

Click OK.

Click Edit – Patch program – Apply patches to input file…

Here we see the PathName of “C:\\temp\\test2.txt”. Double-click to get to
the .rdata section.

We are going to hack the 64-bit version of our CopyFile program.

In this chapter we will hack the directory name this will continue to build
our experience on custom hacking binaries.

42

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Let’s look at the root of our hard drive.

Click OK.

Back in the IDA View0A tab, let’s set a breakpoint on the next
instruction after the call to CopyFileW.

Hooray! We have hacked our simple program and altered the new file
name.

In our next chapter we discuss MoveFile.

43

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 16: MoveFile

Let’s review the MoveFileW API below.

Now let’s populate our main.c file with the following.

We continue with a simple app that handles the Windows MoveFile API
which simply moves (renames) one file.

Let’s create a new project

Here we see we have 2 parameters. The first, lpExistingFileName, is simply
the existing file we want to copy. The second, lpNewFileName, is the name
of the new file to which we will move the contents of the

Create a new project
Empty Project
Next
Project name: 0x0010-movefile
CHECK Place solution and project in the same directory
Create

RT CLICK on the 0x0010-movefile in Solutions Explorer
Add
New Item…
main.c
OK

(VISIT https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-
movefilew)

}
}

}
else
{

int main(void)
{

BOOL bFile;

#include <stdio.h>
#include <Windows.h>

printf("MoveFile Success!");

bFile = MoveFile(
L"C:\\temp\\test1.txt",
L"C:\\temp\\test2.txt"
);
if (bFile == FALSE)
{

printf("MoveFile failed and error no %ul\n", GetLastError());

44

Social Media: @viehgroup viehgroup.com support@viehgroup.com

In our next chapter we will debug this program in x86.

original file to.

The return value is non-zero if the function succeeds otherwise it
will return 0 and any relevant error information inside GetLastError.

We need to manually create the file test1.txt within C:\temp so you
can use Notepad to do so now. Simply create the file and put any
contents you like inside.

When we run the program it shows the following input.

MoveFile Success!

C:\Users\kevin\Documents\Hacking-Windows\0x0010-movefile\Debug\0x0010-movefile.exe (process
10480) exited with code 0.
To automatically close the console when debugging stops, enable Tools->Options->Debugging-
>Automatically close the console when debugging stops.
Press any key to close this window . . .

45

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 17: Debugging MoveFile x86

Wait! What?

Let’s double-click and do more inspection.

We are going to debug the 32-bit version of our MoveFile program.

Since we have created a few projects together I assume you know what you
are doing in IDA at this point. If this process is unfamiliar to you please re-
read the prior chapters.

In the IDA View-A text view we first see a _KERNEL32_NULL_THUNK_DATA
function.

Here we do see this is actually calling MoveFileW as expected.

In our last chapter we reviewed the API in C. Here we first push the
lpNewFileName param to the stack followed by the lpExistingFileName
param and then we call the function.

Let’s set a breakpoint directly after the call and run the Local
Windows debugger.

NOTICE we see that our test2.txt file has been created.

In our next chapter we will hack this program in x86.

46

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 18: Hacking MoveFile x86

Click Edit – Patch program – Change byte …

Select the Hex View-1 tab. Click on the 32.

32 00 2E 00 74 00 78 00 74 00 00 00 00 00 00 00

Let’s change the file to ‘test3’.

33 00 2E 00 74 00 78 00 74 00 00 00 00 00 00 00

Click OK.

Click Edit – Patch program – Apply patches to input file…

Click OK.

Back in the IDA View0A tab, let’s set a breakpoint on the next
instruction after the call to _KERNEL32_NULL_THUNK_DATA.

We are going to hack the 32-bit version of our MoveFile program.

In this chapter we will hack the file name this will continue to build our
experience on custom hacking binaries.

Here we see the PathName of “C:\\temp\\test2.txt”. Double-click to get to
the .rdata section.

47

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Let’s look at the root of our hard drive.

Hooray! We have hacked our simple program and altered the new file
name.

In our next chapter we will debug this program in x64.

48

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 19: Debugging MoveFile x64
We are going to debug the 64-bit version of our MoveFile program. In

the IDA View-A text view we first see our MoveFileW function.

Here we are simply putting the value of NewFileName into rdx and the
ExistingFileName into rcx.

BEFORE we run make sure we rename the file test2.txt to test1.txt within
C:\temp so we can proceed as if this was being run the first time.

Let’s set a breakpoint directly after the call and run the Local Windows
debugger.

NOTICE we see that test2.txt was the final renamed file.

This was a very simple debug as I have to take the time again to clearly
state that our objective is to take SMALL steps so you can not get
overwhelmed and have a full appreciation for what is going on at every step
of these very popular Win32API calls.

In our next chapter we will hack this program in x64.

49

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 20: Hacking MoveFile x64

Click Edit – Patch program – Change byte …

Select the Hex View-1 tab. Click on the 32.

32 00 2E 00 74 00 78 00 74 00 00 00 00 00 00 00

Let’s change the file to ‘test3’.

33 00 2E 00 74 00 78 00 74 00 00 00 00 00 00 00

Click OK.

Click Edit – Patch program – Apply patches to input file…

We are going to hack the 64-bit version of our MoveFile program.

In this chapter we will hack the file name this will continue to build our
experience on custom hacking binaries.

Here we see the PathName of “C:\\temp\\test2.txt”. Double-click to get to
the .rdata section.

50

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Let’s look at the root of our hard drive.

Click OK.

Back in the IDA View0A tab, let’s set a breakpoint on the next
instruction after the call to CopyFileW.

Hooray! We have hacked our simple program and altered the new file
name.

In our next chapter we discuss CreateFile.

51

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 21: CreateFile

Let’s review the CreateFileW API below.

Now let’s populate our main.c file with the following.

We continue with a simple app that handles the Windows CreateFile API
which simply creates one file.

Let’s create a new project

Create a new project
Empty Project
Next
Project name: 0x0011-createfile
CHECK Place solution and project in the same directory
Create

RT CLICK on the 0x0011-createfile in Solutions Explorer
Add
New Item…
main.c
OK

#include <stdio.h>
#include <Windows.h>

int main(void)
{
HANDLE hFile;

 hFile = CreateFile(
 L"C:\\temp\\test.txt",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ,
 NULL,
 CREATE_NEW,
 FILE_ATTRIBUTE_NORMAL,
 NULL
);
 if (hFile == INVALID_HANDLE_VALUE)
 {
 printf("CreateFile failed and error no %ul\n", GetLastError());
 }
 else
 {
 printf("CreateFile Success!");
 }

 CloseHandle(hFile);
}

52

Social Media: @viehgroup viehgroup.com support@viehgroup.com

(VISIT https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-
createfilew)

In our next chapter we will debug this program in x86.

Here we see we have 7 parameters. The first, lpFileName, is simply
the file we want to create. The second, dwDesiredAccess, is the
requested access to the file or device which will be read, write,
zero or neither zero. The third, dwShareMode, is the requested
sharing mode of the file or device which is read, write, both,
delete, all of these or none. The fourth, lpSecurityAttributes, is a
pointer to a SECURITY_ATTRIBUTES structure that contains two separate
data members, this is an optional param. The fifth,
dwCreationDisposition, is an action to take on a file or device that
exists or does not exist. The sixth, dwFlagsAndAttributes, is the
file or device attributes and flags. The seventh, hTemplateFile, is
a valid handle to a template file with the GENERIC_READ access right.
This is optional.

The return value is an open handle to the specified file, device,
named pipe, or mail slot or if fails, the return value is
INVALID_HANDLE_VALUE which you can get with GetLastError.

When we run the program it shows the following input.

CreateFile Success!

C:\Users\kevin\Documents\Hacking-Windows\0x0011-createfile\0x0011-createfile\x64\Debug\0x0011-
createfile.exe (process 6488) exited with code 0.
To automatically close the console when debugging stops, enable Tools->Options->Debugging-
>Automatically close the console when debugging stops.
Press any key to close this window . . .

53

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 22: Debugging CreateFile x86

Here we do see this is actually calling CreateFileW as expected.

In our last chapter we reviewed the API in C. If you are not familiar with
the parameters please review the last chapter.

Let’s set a breakpoint directly after the call and run the Local Windows
debugger.

NOTICE we see that our test.txt file has been created.

In our next chapter we will hack this program in x86.

We are going to debug the 32-bit version of our CreateFile program.

Since we have created a few projects together I assume you know what you
are doing in IDA at this point. If this process is unfamiliar to you please re-
read the prior chapters.

In the IDA View-A text view we first see a __imp_CreateFileW@28 function.

54

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 23: Hacking CreateFile x86

Click Edit – Patch program – Change byte …

Select the Hex View-1 tab. Click on the second 74.

74 00 65 00 73 00 74 00 2E 00 74 00 78 00 74

Let’s change the file to ‘hest’.

68 00 65 00 73 00 74 00 2E 00 74 00 78 00 74

Click OK.

Click Edit – Patch program – Apply patches to input file… Click

OK.

We are going to hack the 32-bit version of our CreateFile program.

In this chapter we will hack the file name this will continue to
build our experience on custom hacking binaries.

Here we see the PathName of “C:\\temp\\test.txt”. Double-click to get to
the .rdata section.

55

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Let’s look at the root of our hard drive.

Back in the IDA View0A tab, let’s set a breakpoint on the next
instruction after the call to CreateFileW.

Hooray! We have hacked our simple program and altered the new file
name.

In our next chapter we will debug this program in x64.

56

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 24: Debugging CreateFile x64
We are going to debug the 64-bit version of our CreateFile program. In

the IDA View-A text view we first see our CreateFileW function.

Here we are putting the value of hTemplateFile, dwFlagsAndAttributes,
dwCreationDisposition onto the stack and the lpSecurityAttributes into r9,
dwShareMode into r8, dwDesireAccess into rdx and FileName into rcx.

BEFORE we run make sure we remove the file test.txt within C:\temp so we
can proceed as if this was being run the first time.

Let’s set a breakpoint directly after the call and run the Local Windows
debugger.

NOTICE we see that test.txt was created.

This was a very simple debug as I have to take the time again to clearly
state that our objective is to take SMALL steps so you can not get
overwhelmed and have a full appreciation for what is going on at every step
of these very popular Win32API calls.

In our next chapter we will hack this program in x64.

57

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 25: Hacking CreateFile x64

Click Edit – Patch program – Change byte …

Select the Hex View-1 tab. Click on the 2nd 74.

74 00 65 00 73 00 74 00 2E 00 74 00 78 00 74 00

Let’s change the file to ‘fest’.

74 00 65 00 73 00 66 00 2E 00 74 00 78 00 74 00

Click OK.

Click Edit – Patch program – Apply patches to input file…

We are going to hack the 64-bit version of our CreateFile program.

In this chapter we will hack the file name this will continue to
build our experience on custom hacking binaries.

Here we see the FileName of “C:\\temp\\test.txt”. Double-click to get to
the .rdata section.

58

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Let’s look at the root of our hard drive.

Click OK.

Back in the IDA View0A tab, let’s set a breakpoint on the next
instruction after the call to CreateFileW.

Hooray! We have hacked our simple program and altered the new file
name.

In our next chapter we discuss WriteFile.

59

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 26: WriteFile

Now let’s populate our main.c file with the following.

We continue with a simple app that handles the Windows WriteFile API
which simply populates data in one file.

Let’s create a new project

Create a new project
Empty Project
Next
Project name: 0x0012-writefile
CHECK Place solution and project in the same directory
Create

RT CLICK on the 0x0012-writefile in Solutions Explorer
Add
New Item…
main.c
OK

#include <stdio.h>
#include <Windows.h>

int main(void)
{
HANDLE hFile;
 BOOL bFile;
 char lpBuffer[] = "Reversing is my life!";
 DWORD nNumberOfBytesToWrite = strlen(lpBuffer);
 DWORD lpNumberOfBytesWritten = 0;

 hFile = CreateFile(
 L"C:\\temp\\test.txt",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ,
 NULL,
 CREATE_NEW,
 FILE_ATTRIBUTE_NORMAL,
 NULL
);
 if (hFile == INVALID_HANDLE_VALUE)
 {
 printf("CreateFile failed and error no %ul\n", GetLastError());
 }
 else
 {
 printf("CreateFile Success!\n");
 }

 bFile = WriteFile(
 hFile,

60

Social Media: @viehgroup viehgroup.com support@viehgroup.com

 lpBuffer,
 nNumberOfBytesToWrite,
 &lpNumberOfBytesWritten,
 NULL
);
 if (bFile == INVALID_HANDLE_VALUE)
 {
 printf("WriteFile failed and error no %ul\n", GetLastError()); }
 else
 {
 printf("WriteFile Success!");
 }

 CloseHandle(hFile);
}

Let’s review the WriteFile API below.

In our next chapter we will debug this program in x86.

Here we see we have 5 parameters. The first, hFile, is simply the
file we created. The second, lpBuffer, is a pointer to the buffer
containing the data to be written to the file or device. The third,
nNumberOfBytesToWrite, is the number of bytes to be written to the
file or device. The fourth, lpNumberOfBytesWritten, is a pointer to
the variable that receives the number of bytes written when using a
synchronous hFile param and WriteFile sets this value to zero before
doing any work or error checking and use NULL for this param if this
is an async operation to avoid erroneous results, this is an optional
param. The fifth, lpOverlapped, is a pointer to an OVERLAPPED
structure if the hFile param was opened with FILE_FLAG_OVERLAPPED
otherwise NULL. This is optional.

The return value is nonzero TRUE or if fails, the return value is
INVALID_HANDLE_VALUE which you can get with GetLastError.

When we run the program it shows the following input.

(VISIT https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-
writefile)

CreateFile Success!
WriteFile Success!

C:\Users\kevin\Documents\Hacking-Windows\0x0012-writefile\0x0012-writefile\Debug\0x0012-
writefile.exe (process 7964) exited with code 0.
To automatically close the console when debugging stops, enable Tools->Options->Debugging-
>Automatically close the console when debugging stops.
Press any key to close this window . . .

61

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 27: Debugging WriteFile x86
We are going to debug the 32-bit version of our WriteFile program.

In the IDA View-A text view we first see a __imp_WriteFile@20
function.

In our last chapter we reviewed the API in C. Here we first push the
lpOverlapped param to the stack followed by the
lpNumberOfBytesWritten param followed by the nNumberOfBytesToWrite
param followed by the lpBuffer param followed by the hFile param and
then we call the function.

Let’s set a breakpoint directly after the call and run the Local
Windows debugger.

NOTICE we see that our test.txt file has been created and populated
with, Reversing is my life!

In our next chapter we will hack this program in x86.

62

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 28: Hacking WriteFile x86

Click Edit – Patch program – Change byte …

Select the Hex View-1 tab. Click on the second 74.

74 00 65 00 6D 00 70 00 5C 00 74 00 65 00 73 00

Let’s change the file to ‘tesv’.

75 00 65 00 6D 00 70 00 5C 00 76 00 65 00 73 00

Click OK.

Click Edit – Patch program – Apply patches to input file…

Click OK.

Back in the IDA View0A tab, let’s set a breakpoint on the next
instruction after the call to __imp__WriteFileW@20.

We are going to hack the 32-bit version of our WriteFile program.

In this chapter we will hack the file name this will continue to build our
experience on custom hacking binaries.

Here we see the PathName of “C:\\temp\\test.txt”. Double-click to get to
the .rdata section.

63

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Let’s look at the root of our hard drive.

Hooray! We have hacked our simple program and altered the new file
name.

In our next chapter we will debug this program in x64.

64

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 29: Debugging WriteFile x64
We are going to debug the 64-bit version of our WriteFile program. In

the IDA View-A text view we first see our WriteFile function.

Here we first putting the lpOverlapped param to the stack, an offset of rsp +
1a0 + dwCreationDisposition followed by the lpNumberOfBytesWritten
param into r9 followed by the nNumberOfBytesToWrite param into r8
followed by the lpBuffer param into rdx followed by the hFile param into rcx
and then we call the function.

BEFORE we run make sure we remove the file test.txt within C:\temp so we
can proceed as if this was being run the first time.

Let’s set a breakpoint directly after the call and run the Local Windows
debugger.

NOTICE we see that test.txt was created.

In our next chapter we will hack this program in x64.

65

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Chapter 30: Hacking WriteFile x64

Click Edit – Patch program – Change byte …

Select the Hex View-1 tab. Click on the 2nd 74.

74 00 65 00 73 00 74 00 2E 00 74 00 78 00 74 00

Let’s change the file to ‘tesf’.

74 00 65 00 73 00 74 00 2E 00 66 00 78 00 74 00

Click OK.

Click Edit – Patch program – Apply patches to input file…

Click OK.

Back in the IDA View0A tab, let’s set a breakpoint on the next
instruction after the call to CreateFileW.

We are going to hack the 64-bit version of our WriteFile program.

In this chapter we will hack the file name this will continue to build our
experience on custom hacking binaries.

Here we see the FileName of “C:\\temp\\test.txt”. Double-click to get to
the .rdata section.

66

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Let’s look at the root of our hard drive.

Hooray! We have hacked our simple program and altered the new file
name.

I hope you have enjoyed this tutorial and have learned how to now take
any remaining Win32API function and reverse engineer it either in x86 or
x64.

Happy Hacking!

67

Social Media: @viehgroup viehgroup.com support@viehgroup.com

67

Social Media: @viehgroup viehgroup.com support@viehgroup.com

Thank you for taking the time to read through our publication. Your

continued support is invaluable.

Jai Hind!

