
How to Design a Secure
Serverless Architecture

Updated 2023 Version

2 © Copyright 2023, Cloud Security Alliance. All rights reserved.

The permanent and official location for Cloud Security Alliance Serverless Computing research is
https://cloudsecurityalliance.org/research/working-groups/serverless/

© 2023 Cloud Security Alliance – All Rights Reserved. You may download, store, display on your
computer, view, print, and link to the Cloud Security Alliance at https://cloudsecurityalliance.org
subject to the following: (a) the draft may be used solely for your personal, informational, non-
commercial use; (b) the draft may not be modified or altered in any way; (c) the draft may not be
redistributed; and (d) the trademark, copyright or other notices may not be removed. You may quote
portions of the draft as permitted by the Fair Use provisions of the United States Copyright Act,
provided that you attribute the portions to the Cloud Security Alliance.

https://cloudsecurityalliance.org/research/working-groups/serverless/
https://cloudsecurityalliance.org

3 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Team Leaders/Authors:
Wayne Anderson
Marina Bregkou
Aradhna Chetal
Ricardo Ferreira
David Hadas
Vishwas Manral
Vani Murthy
Elisabeth Vasquez
John Wrobel

Key Contributors:
Amit Bendor
Peter Campbell
Madhav Chablani
John Kinsella
Namrata Kulkarni
Akshay Mahajan
Eric Matlock
Shobhit Mehta
Vrettos Moulos
Raja Rajenderan
Abhishek Vyas
Brad Woodward

Reviewers:
Arun Dhanaraj
Rajat Dubey
Satish Govindappa
Adeel Javaid
Anil Karmel
Alex Rebo
Bhuvaneswari Selvadurai
David Souto Rial

CSA Global Staff:
Marina Bregkou
Claire Lehnert (Design)
Stephen Smith (Design)
AnnMarie Ulskey (Cover, Design)

Acknowledgments
The 2023 update starts from section 6.2 until the beginning of section 7.

4 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Table of Contents
Acknowledgments ..3

Table of Contents ..4

Executive Summary...6

1. Introduction ..6

Purpose and Scope ...6

Audience ...7

2. What is Serverless ...8

3. Why Serverless .. 13

3.1 Advantages and Benefits of Serverless Architecture ... 13

3.2 Shared Responsibility Model for Serverless ...14

3.3 When is Serverless Appropriate... 15

4. Use Cases and Examples ...16

5. Security Threat Model of Serverless ..18

5.1 Serverless - A Whole New Security Ballgame? ...18

5.2 Serverless Threat Landscape ... 19

5.2.1 Key Threat Areas .. 19

5.2.2 Application Owner Setup Phase Threats ..20

5.2.3 Application Owner Deployment Phase Threats .. 21

5.2.4 Service Provider’s Conduct Threats ..22

5.3 Threat Model - 25 Serverless Threats for Application Owners ...22

5.4 The Uniqueness of Serverless Threats ..29

5.4.1 Application Owner Setup Phase Threat (Ref: 5.3 (A)) ...29

5.4.2 Application Owner Deployment Phase Threats (Ref 5.3 (B)) ..30

5.4.3 Service Provider’s Deployment Threats (Ref.: 5.3 (C))...34

6. Security design, controls and best practices ... 35

6.1 Design Considerations for Serverless ..37

6.1.1 Serverless Platform Design Impacts on the Serverless Microservices Security.38

6.2 Controls for FaaS ...43

6.3 CI-CD Pipelines, Function Code, Code Scans and Policy Enforcement for Functions and

Containers ..45

6.4 Delta/Additional Controls for Container Image based Serverless ..49

6.4.1 Securing API Access to Container Image-based Serverless Services50

6.4.2 Container Image-based Serverless Configuration and Policy Enforcement50

6.4.3 Base Image Mgmt and Hardening ..52

5 © Copyright 2023, Cloud Security Alliance. All rights reserved.

6.4.4 Kubernetes Configurations and Service Mesh Policies Enforcement54

6.4.5 Access Management Controls ...56

6.4.6 Kubernetes Risks & Controls .. 57

6.4.7 Additional Security ...60

6.4.7.1 Threat Modeling ..60

6.4.7.2 Kubernetes Security Best Practices ... 61

6.4.7.3 API Security (OWASP top 10) ... 64

6.4.7.4 Kubernetes Policy .. 64

6.5 Compliance and Governance ...65

6.5.1 Asset Management for Serverless ..66

6.5.2 Serverless Governance ...67

6.5.3 Compliance ..68

6.6 Serverless Best Practices ..68

6.6.1 Regular Risk Evaluation Cycles ...69

6.6.2 Use Vendor “Well Architected” Reference Documentation69

6.6.3 Inspect Upstream Identity Providers ..69

6.6.4 Minimize Durable Assumptions and Authorizations ..69

6.6.5 Use Managed Identities and/or Keys ..70

6.6.6 Use Appropriate Data Protection Practices ..70

6.6.7 Protect Logs for Serverless Applications ..70

6.6.8 Secure Communication Channels .. 71

6.6.9 Continuous Security Testing and Remediation ... 71

6.6.10 Serverless Incident Response Plan ... 71

6.6.11 Secure Serverless Supply Chain ..72

6.6.12 Serverless Application Performance Monitoring ..73

6.6.13 Continuous Security Testing and Remediation ...73

7. Futuristic Vision for Serverless Security ...74

7.1 The Road for the Future of Serverless ..74

7.1.1 Movement Towards Serverless Container Image-based Serverless74

7.1.2 Virtualization Changes .. 75

7.1.3 Faas Evolution ... 75

7.2 Serverless Security ..76

7.3 Serverless Advances for Data Privacy ..79

8. Conclusions ..80

9. References...81

Appendix 1: Acronyms ..83

Appendix 2: Glossary ... 84

6 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Executive Summary
Serverless platforms enable developers to develop and deploy faster, allowing an easy way to move
to Cloud-native services without managing infrastructures like container clusters or virtual machines.
As businesses work to bring technology value to market faster, serverless platforms are gaining
adoption with developers.

Like any solution, Serverless brings with it a variety of cyber risks. This paper covers security for
serverless applications, focusing on best practices and recommendations. It offers an extensive
overview of the different threats focusing more on the Application Owner risks that Serverless
platforms are exposed to and suggest the appropriate security controls.

From a deployment perspective, organizations adopting serverless architectures can focus on core
product functionality without being bothered by managing and controlling the platform or the
compute resources with their respective load balancing, monitoring, availability, redundancy, and
security aspects. Serverless solutions are inherently scalable and offer an abundance of optimized
compute resources for the “Pay as you go” paradigm.

Further, from a software development perspective, organizations adopting serverless architectures
are offered deployment models under which the organization is no longer required to manage and
control the underlying operating system, application server, or software runtime environment. As
a result, such organizations can deploy services with less time to market and lower their overall
operational costs.

This paper›s recommendations and best practices were developed through extensive collaboration
among a diverse group with extensive knowledge and practical experience in information security,
cloud operations, application containers, and microservices. The information is intended for a wide
variety of audiences who may have some responsibility in Serverless environments.

1. Introduction
Purpose and Scope
The purpose of this document is to present best practices and recommendations for implementing a
secure serverless solution.

Two players are involved in a Serverless service:

• The Service/Platform Provider - the provider of the serverless platform on which serverless
applications are built

• The Application Owner - the user of the serverless solution whose applications run on
the platform

7 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Under a serverless solution, a service provider offers compute resources that are elastically auto-
allocated to serve the needs of different executables without the service users controlling the
resources required to serve each executable. The scope of this document is limited to users from
one administration implementing their workloads on top of Serverless solutions offered by other
administrations acting as platform providers. Implementations of Serverless include both the
Container Image-based Serverless, also called Container-as-a-Service (Serverless Containers), and
Function-based Serverless, also called Function-as-a-Service (FaaS).

In this document, we focus more on the Application Owner and consider the threats to the
Application while using a Serverless service. We then make specific recommendations for the
security best practices and list the recommended controls to be adopted by Application Owners.

As a lot of the details of securing different cloud services are covered in other documents, this
document will focus only on the aspects that change due to moving to Serverless services and avoid
detailing with more generic cloud-related security aspects.

The primary goals of this paper are to present and promote serverless as a secure cloud-computing
execution model. The aim is also to help guide Application Owners looking to adopt the serverless
architecture.

Audience
The intended audience of this document is application developers, application architects, Security
Professionals, Chief Information Security Officers (CISOs), risk management professionals, system
and security administrators, security program managers, information system security officers, and
anyone else interested in the security of serverless computing.

The document assumes that the readers have some knowledge of coding practices, security and
networking expertise, and application containers, microservices, functions, and agile application
development. Owing to the constantly changing nature of technologies in the serverless space,
readers are encouraged to take advantage of the other resources, including those listed in this
document, for current and more detailed information.

The audience is encouraged to follow industry-standard practices related to secure software design,
development,and deployment.

8 © Copyright 2023, Cloud Security Alliance. All rights reserved.

2. What is Serverless
a. Definition of Serverless

Serverless computing is a cloud-computing execution model in which the cloud provider is
responsible for allocating compute and infrastructure resources needed to serve Application
Owners› workloads. An Application Owner is no longer required to determine and control how many
compute resources (and at what size) are allocated to serve their workload at any given time. It can
rely on an abundance of compute resources that will be available to serve the workload on-demand.
Therefore, serverless computing is offered under a “Pay as you go” paradigm where payment is
generally made on actual physical resources like central processing unit (CPU) usage time.

Application Owners using Serverless provide the Service Provider with a “Callable Unit” that needs
to be executed (called, triggered) and a set of “Events” under which the Callable Unit needs to be
executed (called, triggered). Application Owners can also provide supporting code to run along with
the callable unit. The supporting code can be provided as libraries called “layers” that can run in the
context of the running function (as part of the same process), as well as “extensions” or supporting
threads/ processes that can run in the same environment (different process from the callable unit).
The “layers” and “extensions” share the same resources allocated to the function and run in the
same context.

Note that the name “serverless” applies only to the behavior experienced by the Application Owner
who is using the service. Under the hood, some «servers» still exist that execute the code but are
abstracted away from the Application Owner.

b. The Callable Unit

Different Serverless solutions offer a range of options for providing the Callable Unit. One common
service option enables Application Owners to provide function code under one of the runtimes
supported by the Service Provider (JavaScript, Python, Java, etc.). Such services are known in the
industry as “Function as a Service” or FaaS in short. Under FaaS, the function code provided by the
Application Owner is typically embedded in a container image owned and provided by the Service
Provider. An extension of FaaS may include extending the Service Provider’s image by installing
additional libraries and injecting data to the container before the image is spun on and the function is
executed.

A second common option enables Application Owners to provide container images of their control
to serve as the Callable Unit. This extension of FaaS is well distinguished from non-serverless
services in which container images are provided by Application Owners to be executed on top of
managed or unmanaged container services. The following table highlights this distinction. Under
Image-based Serverless, the service provider is responsible for implementing the correct number of
instances of the Callable Unit in response to Events at any given time.

9 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Serverless
(discussed in this document)

Microservices
Non-Serverless

(not discussed here)

Name Function based
Serverless

Container
Image based
Serverless

Managed
Container
Services

Kubernetes
Services

Callable Unit delivered
by Application Owner

A Function
w/wo
dependencies

A Container Image

Dependency Programming
language-
specific

Can run applications independent of the code’s
language, as all binary and dependencies are
packaged.

Control over scaling,
load balancing,
redundancy, instance
monitoring of the
executables

Service Provider Application Owner

Control over
availability,
redundancy of
instances

Service provider has control over
the availability and redundancy of
instances

Application Owner

Life cycle and scaling
of the underlying
servers

Service provider has control over
the availability and redundancy of
instances

Application Owner

Execution Time Typically short (seconds or less).
Generally limited to a few minutes.

Typically long-lasting and
unlimited.

State Stateless and ephemeral - all
states primarily maintained
outside of the Callable Unit

Mostly stateless by common
practices for microservices but can
maintain state in mounted volumes

Scaling compute Service Provider responsibility Application Owner responsibility

Payment model Pay as you go Pay for resources Allocated

Runtime responsibility Service Provider Application Owner

Examples AWS Lambda
Azure Function
Google Cloud
Functions
IBM Cloud
Functions

AWS Fargate
Google Cloud
Run
IBM Code
Engine

AWS ECS
Red Hat
Openshift (on
AWS/Azure/..)

AWS EKS
Google GKE
Azure AKS
IBM IKS

10 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Under Function-based Serverless (Also known as “Serverless Functions”), the image is owned and
controlled by the Service Provider, which leaves the responsibility for the security of the Image to
the Service Provider. As a result, the Service Provider must have the proper controls to mitigate any
risks to the Application Owner workload from the image (see “Service Provider conduct’s Threats” in
section 5.3).

Under Container Image-based Serverless (Also known as “Serverless Containers”), the image is
owned and controlled by the Application Owner, which leaves the responsibility for the security
of the image to the Application Owner. As a result, the Application Owner is the one that will
be required to have the proper controls to mitigate the risks from the image to his workload (see
“Application Owner Setup Phase Threats” in section 5.3).

c. The Events

Events are conditions in the serverless environment that may cause a particular function to be
triggered - it could include new additional data, a new packet received, or just the expiration of
different periods. Apart from the Callable Unit, the Application Owner for event-driven applications
can provide the Service Provider with a set of Events and thus defines when an instance of the
Callable Unit needs to be executed to process the event. The Service Provider takes responsibility
for queuing events, initiating sufficient models of the Callable Unit, and handling each event to be
processed by a Callable Unit within some limited time based on the Service Level Agreement offered
by the Service Provider. The actual processing time of the events is accumulated for billing purposes.

Events may vary based on the source of the Events and the type of each Event. Examples of events
include a timer event, an event triggered by a web request, an event triggered by changes in the
data stored on storage or in a database, an event triggered by some interaction between services
occurring in the cloud account or between a user and service in the cloud account, event from an
event service, a monitoring service or a logging service in the cloud account, etc.

d. Serverless Security Overview

Serverless security brings in a new paradigm of security where the Application Owner is only
responsible for the protection of the application in addition to securing the data. All aspects
of managing the server or its security, including bringing up, patching the machine operating
system (OS), updating, and bringing down, are managed by the Serverless platform provider, thus
enabling the Application Owner to focus on the application itself instead of also focusing on the
infrastructure. However, as will be detailed later in this document when discussing the threats
Application Owners need to consider, Serverless introduces its own Security challenges.

To better explain the shared responsibility between the Platform Provider and Application Owner for
the different models, we created the diagram below.

11 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Detailed diagram of Serverless responsibility model:

Comparative Shared responsibility model

Function based Serverless (FaaS) shared responsibility model

Application Container Service Provider

Microservices

Application Code

Container Image

Container Compute
Resource Mng.

Cluster Management

Host Operating
System

Virtualization

Server Hardware
and Network

Image based
Serverless

Application Code

Container Image

Container Compute
Resource Mng.

Cluster Management

Host Operating
System

Virtualization

Server Hardware
and Network

Function based
Serverless

Application Code

Container Image

Container Compute
Resource Mng.

Cluster Management

Host Operating
System

Virtualization

Server Hardware
and Network

Application Code Library Dependencies

IAM Configuration Cloud Services Configuration

Cloud Services
Dependencies

Event System Container Image Compute Resource

Servers Cluster Management Image Management

Data Center Network Storage

Application Owner's
Security Team

Virtualization Containerization

Service Provider's
Security Team

12 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Image based Serverless shared responsibility model

As Function-based Serverless can be specific to an operating/ runtime environment, the
platform provider takes up the responsibility of maintaining and updating different versions and
programming languages.

e. Hybrid serverless architecture (private & public)

There are many serverless architectures. Some common infrastructures examples are (not
comprehensive):

• Amazon: Lambda, Fargate, AWS Batch
• Google: Cloud Functions, Knative, Cloud Run
• Azure: Azure Functions, Azure Container Instances
• Nimbella: OpenWhisk
• IBM: Knative (Code Engine), OpenWhisk (Cloud Functions)
• RedHat: Knative (part of OpenShift)

Application Owner's
Security Team

Service Provider's
Security Team

Application Code Library Dependencies Cloud Services
Dependencies

Event System

Servers Cluster Management Image Management

Data Center Network Storage

Virtualization Containerization

IAM Configuration Container Image Cloud Services
Configuration

Compute Resource Management

13 © Copyright 2023, Cloud Security Alliance. All rights reserved.

3. Why Serverless
Serverless computing offers several advantages over traditional cloud-based or server-centric
infrastructure.

In Serverless Computing, Application Owners generally do not need to be concerned with the
infrastructure hosting their application, including the maintenance and patching of the operating
system the application runs on or scaling out the infrastructure. This helps significantly reduce
Operations overhead. [Manral, 2021]

Additionally, application code is hosted and run on a dynamic platform: A particular code may run on
one of many physical machines. However, Application Owners have little to no visibility into where
their code is physically resident.

Serverless platforms usually have dynamic scaling capabilities.

3.1 Advantages and Benefits of Serverless Architecture
The areas of benefit of serverless architecture are described in the table below for the readers’
facilitation.

Serverless offers
advangates for the:

Serverless
(discussed in this document)

Speed of deployment Serverless enables Application Owners to develop business
applications without being concerned about the application’s
infrastructure, enabling the business to build and deploy applications
at a fast pace. It is, therefore, a good tool for experimentation and
bringing new value to the marketplace faster.

Cost Infrastructure Cost:
• Priced (usually) on a per-event basis, which means you do

not need to pay when you’re not using the infrastructure
• Very cost-effective on burst workloads - you do not have to

maintain servers when they are not required and can provide
very fine granularity and control of the resources used.

Operational Cost:
• Not having an infrastructure to manage can cut operating

costs and time spent on maintaining it. [Manral, 2021]

14 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Application Owner
experience

Easy to deploy:
• Serverless services can be easily deployed with minimal

configuration with CLI tools, from source control or a simple
Application Programming Interface (API).

Easy to monitor:
• Most cloud providers offer out-of-the-box logging and

monitoring solutions bundled with their serverless
offerings. The platform is API-driven, which is critical for the
app owner’s productivity.

No server management overhead:
• Serverless services abstract all server management tasks

such as patching, provisioning, capacity management,
operation system maintenance.

Scale Scalable by nature:
• Serverless auto-scales on fine granularity based on usage

by just configuring infrastructure without having to set up
the infrastructure

• It is not necessary to configure policies for scaling up or
down the workload.

• When working on-premise, scaling is limited to the available
infrastructure.

3.2 Shared Responsibility Model for Serverless
In a shared responsibility model, the developer is responsible for securing their code and the tools
used to deliver applications to the cloud. In this shared responsibility model, each party maintains
complete control over those assets, processes, and functions they own.

Service Application Owner Serverless Platform
Provider

Platform patching Image and Function-based
Serverless.

Platform configuration Application and platform
configuration related to the
application.

Exposing minimal configuration
to the Application Owner.

Image patching Container Image-based
Serverless.

Function-based Serverless.

Secure coding practices Image and Function-based
Serverless.

15 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Supply Chain security Application and components-
based supply chain.

Platform supply chain.

Network security
monitoring

Image and Function-based
Serverless.

Application security
monitoring

Image and Function-based
Serverless.

CI/CD Pipeline
Configuration

Image and Function-based
Serverless.

3.3 When is Serverless Appropriate
The serverless model is most appropriate when there is a relatively large application or set of
applications and a mature software development and operations (DevOps) team, process, and
products available to support them.

In such a case, the application(s) can be broken down into smaller components called Microservices
(see Best Practices in Implementing a Secure Microservices Architecture). Each is supported by
one or more teams and runs in a serverless environment. This allows for more effective use of
development resources by focusing on a specific piece of functionality. This model also allows for
more agile development of each microservice when compared to a monolithic application because
functionality for each part of the application can be moved into production without as much concern
for full integration and regression testing with the other application features.

With relatively small applications or teams, a serverless model can sometimes be less cost-effective
than having a traditional infrastructure to support the application (such as Infrastructure as a
Service (IaaS) or Platform as a Service (PaaS) services). There is typically less complexity with a
smaller application, and the benefits of breaking the application down into microservices are lost.
In such a case, microservices can be so tightly coupled with other services that some benefits of
microservices, such as reusability, are lost. Insufficient resources to support many microservices may
cause teams to stop working on one microservice in order to support another.

It is also important to note that serverless architectures will simplify the deployment process in
almost all cases. deployment consists of simply uploading a container image or set of code without
as much concern for resource provisioning and network architecture as with traditional application
deployment. Organizations need to perform a business impact analysis and cost/benefit analysis
when deciding on using serverless architectures to choose the most technically efficient, cost-
effective, and appropriate solution for their business needs.

https://cloudsecurityalliance.org/artifacts/best-practices-in-implementing-a-secure-microservices-architecture/

16 © Copyright 2023, Cloud Security Alliance. All rights reserved.

4. Use Cases and Examples
The key role of serverless computing is to give cloud programmers the necessary tools that
can diminish the complexity of cloud-oriented architectures by removing the need to consider
infrastructures and enabling direct use of programming languages. However, many concerns need
to be addressed in advance, including load balancing, request routing to efficiently utilize resources,
system upgrades such as security patching, migration to newly available instances, and geographic
distribution of redundant copies to preserve the service in case of disaster.

One use-case for the embrace of serverless architectures is bringing immense scale without broad
technical expertise in operating and scaling the infrastructure. Building, deploying, managing, and
scaling a serverless application is possible without maintaining hardware, operating systems, or
supporting software. This enables the Application Owners to focus on business logic instead of non-
essential capabilities. The Application Owner’s cost is highly granular, allowing prices to scale linearly
with use, resulting in consistent economic viability. The total cost may, however, depend on the scale
of an operation. A customer/user will have to decide the platform based on their needs.

Some business use cases for serverless are: (Note: this is not intended to be a comprehensive repository
of use cases but just providing some examples for providing context for security professionals)

1. Web Applications: where a user needs to access an existing service and view or make minor
updates. After that activity is complete, the function may be deleted—basically, traditional
request and response workloads. Serverless functions can be used, but security threats
such as improper authentication and non-repudiation will still need to be addressed.

2. Data processing activities are event-driven, and after the data processing request is
complete the service may be deleted. For example, a trigger is initiated to pull a report of all
account debits or stocks purchased in a day for a customer through a brokerage account.

3. Data integrity, confidentiality, and security issues still need to be addressed as part of the
serverless functions in addition to authentication and authorization.

4. Batch processing use-cases where a series of triggers can be set up and a workflow built
to extract, manipulate and process data. For example, pull a list of automobiles who failed
the carbon emission test and send the owners an email with state requirements and
standards and a deadline to meet those. Security concerns will be low privilege access, the
confidentiality of data, and the users’ privacy.

5. Event ingestion and integration: gathering all events from an analytics application and
feeding them to Database for indexing and filing the events and with specific triggers initiate
a reporting function or publishing to a dashboard/web interface. Access management and
non-repudiation concerns have to be addressed in such cases from a security perspective
and ensuring there are logs generated with the metadata needed for detection.

6. Serverless is already used for security detection and auto-response in the industry, heavily
for alerting misconfigurations and taking subsequent actions.

7. Serverless can be used for image recognition and processing. Examples include Google Vision
and Amazon Rekognition services, then indexing those pictures based on the identification.

8. Alternatively, serverless can be used with apps that allow customers to upload their credit
card information and then extract attributes to process the transaction.

17 © Copyright 2023, Cloud Security Alliance. All rights reserved.

9. Data security, privacy,identity, and access management concerns must be addressed for
such use cases.

10. There are use cases where triggers can be generated to pipe events to SaaS providers to
process.

11. CI-CD pipelines need the capability to iterate through software development quickly.
Serverless can automate many of these processes. Code checkings can trigger builds and
automatic redeploys, or change requests can trigger running automated tests to ensure
code is well-tested before human review. Anywhere where automation is needed, there
is potential to simplify or accelerate it with Serverless Applications and make it easy to
eliminate manual tasks from the workflow.

12. In an industrial environment where IoT sensors input messages, there is a need to process
those messages based on the triggers that can be set then use serverless functions to
respond to messages and scale in response. The impact of insecure functions can be severe
in some cases. Hence authentication, data protection, and detection are vital controls which
need to be addressed in these scenarios in addition to failures.

13. If there is an application that requires specific steps to be taken based on business logic: the
orchestration of microservice workloads that execute a series of steps can be implemented
using serverless functions. There are several security concerns in using serverless from
an orchestration perspective, data/metadata passed by the triggering event from an
auditability perspective, failures/availability, and non-repudiation issues in addition to
authentication and authorization.

14. Customer service use-cases during holiday season respond to customer queries viz. Chat-
bots, serverless, provide capabilities to automatically scale for peak demands and remove
functions after the chat is over.

15. User authentication and data protection/privacy are still concerns from a security
perspective that need to be addressed.

16. Other prevalent use cases for serverless in the industry are infrastructure automation tasks
such as backups at scheduled times etc.

A significant issue in enterprises from a security team’s perspective is that they may not know
where all Serverless functions are used in their platforms --Considering some of these functions can
be short-lived, it makes it difficult. The following chapters provide detailed recommendations for
building controls that will help with visibility and asset tracking for serverless in an Enterprise.

As discussed above, security teams can use serverless functions to trigger and use serverless
functions in automating security tasks. Detection and response use cases are already prevalent in the
industry, but other tasks where Security teams can use serverless are automated scans and enforcing
breaking builds if they have vulnerabilities in CI-CD pipelines.

Serverless functions can trigger on-demand scans of the infrastructure and report the results or
automated enforcement thereof.

Serverless functions can also be used for enforcing other security controls. For example, any time a
user uploads a data element, a function will check if the data has been tagged or labeled. If not, it will
generate an alert or email to the user that the uploaded file is not tagged. It will then be isolated until
labeled to ensure appropriate DLP or other compliance policies can be enforced.

18 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Serverless functions can be used for enforcing security policies viz. E.g., while validating the access
to a service, a function checks that the assurance of authentication can be implemented. A step up
authentication may be required, so a failed level of assurance of authentication can be a trigger for
another function to request a step up authentication. And similarly, there could be other functions
used in enforcing security policies.

Similarly, use of serverless in security is being explored, and there is much potential to simplify and
automate security tasks using serverless. At the same time, it is pertinent that security teams and
developers understand the threat landscape and security controls critical for serverless technologies,
which are discussed at length in the following chapters.

5. Security Threat Model of Serverless
While using serverless technologies, there are many threats application developers have to consider.
This section discusses how and why the use of serverless services changes the threat landscape
for the application services. A detailed threat model with unique threats and how they manifest in
Serverless technologies and discuss special security attention and tools for Serverless. Serverless
mitigations, architecture design, and mitigating security controls will follow in Chapter 6.

5.1 Serverless - A whole new Security ballgame?
Cloud service providers’ introduction of serverless services brings new security challenges to
application/service developers and owners. Serverless, as an event-driven architecture, breaks
workloads into a multiplicity of seamlessly isolated execution environments. Each carries a
specific task and handles an individual event, running separately in time and space, with its own
dependencies, code, image, privilege requirements, configuration, and lifespan. This is a significant
break from the traditional security threat model and the cloud threat model in the non-serverless
microservices environments. Application Owners utilizing Serverless are required to re-evaluate the
evolved threat landscape and reconsider the appropriate security controls needed.

Serverless may include flows crossing trust boundaries, such as getting data from a public location,
inputting data into customer premises, calling functions in other locations, etc. The existing network
boundaries fade away. This fragmentation may lead to a need to drastically increase the volume of
the security raw data to be collected, processed, and analyzed to detect attacks.

Serverless is yet another step of immersing the workload deep into the cloud while moving even
more functionality that used to be owned and controlled by the workload developers to the
Cloud Service Provider (CSP). For example, what was previously implemented as a function-call
in traditional code and potentially became a Rest API in microservices, now moves to be an event
submitted, queued, and handled by the CSP. The CSP will see this through until the actual data
handling is complete with a function -- sometime after the requester asked to have this data handed.
Much control is released by the Application Owner and handed to the Service Provider -- a process
that again reframes what can and should be done by service consumers to ensure the security of the
serverless microservices/applications and by whom.

19 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Serverless - A whole new Security ballgame

5.2 Serverless Threat Landscape

5.2.1 Key threat areas

Threats to the Application Owner workload when using Serverless can be divided between

1. Application Owner Setup Phase Threats
2. Application Owner Deployment Phase Threats
3. Service Provider’s conduct Threats

In the below diagram, we summarize key threat areas to Application Owners under Serverless.

Tr
ad

iti
on

al

Func 1 Func 2

My Service
M

irc
os

er
vi

ce
s

Se
rv

er
le

ss

Func 1

Func 1 Func 2

Rest API

My Kubernetes/Container Services

Microservices 6

Func 2

Microservices 7

20 © Copyright 2023, Cloud Security Alliance. All rights reserved.

The Threat Landscape

5.2.2 Application Owner Setup Phase Threats

We name the bundle of threats related to the Application Owner preparation of workload assets,
for deployment including all necessary code, images, CI/CD work, provisioning and configuration
of cloud resources, etc. - the Application Owner Setup Phase Threats. These include both a set of
threats that are unique to Serverless and a set of threats that exist in systems such as Microservices
but aggravate with the use of Serverless to the expected number of different code fragments running
or starting up in the system over the course of time:

Application Owner Setup Phase Threats that are unique to serverless include threats resulting from
access permission or misconfiguration:

• Broad and generic permissions
• Broad and generic access to Events
• Broad user privileges over serverless control
• Weak Configuration

Application Owner Setup Phase Threats that aggravate with the move to serverless include:

Setup Phase

Conduct Threats

Deployment Phase

Financial And Resource Exhaustion

Resource Abundance

Insecure Logging/monitoring

Sensitive Logging/monitoring

Data Injection

Multiple Service Provider Threats

Global Context Leaks

Improper Error And Exception Handling

Broken Or Insecure Authentication

Insecure Management Of Secrets

Insufficient And Insecure Logging/
Monitoring

Broad And Generic Permissions

Broad And Generic Access To Events

Broad User Privileges Over
Serverless Control

Insider
Threats

External
Threats

Vulnerable Dependencies

Vulnerable Base Images

Weak Configuration

Misconfiguration/vulnerabilities Of
Associated Cloud Services

Exploited Code Repositories And Base
Image Registries

Attacks Against/through Build/
Deployment Tools

21 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Delivery Pipeline related threats either in the CI/CD pipeline or the dependencies:

• Exploitable repositories and base image registries
• Attacks against/through build/deployment tools
• Vulnerable dependencies
• Vulnerable base images

Service setup related threats resulting from misconfiguration:

• Misconfiguration or vulnerabilities of associated cloud services

5.2.3 Application Owner Deployment Phase Threats

We name the bundle of threats related to the Application Owner deployment of workloads assets,
including all serverless associated cloud and off-cloud assets, the Application Owner Deployment
Phase Threats. Again we divide between threats that are unique to Serverless and those which
aggravate with the use of Serverless:

Application Owner Deployment Phase Threats that are unique to serverless include:

Runtime related threats contributed by the design and implementation of the Callable Units:

• Data Injection
• Global Context Leaks
• Improper Error & Exception Handling
• Broken or insecure Authentication

Threats related to the Pay as go you nature of Serverless:

• Financial and resource exhaustion (if limits on resources have been set)
• Resource Abundance and unintended expenses.

Application Owner Deployment Phase Threats that aggravate with the use of Serverless include:

• Insecure management of secrets
• Insecure logging/monitoring
• Sensitive data in logs and metadata
• Insufficient and insecure logging/monitoring

22 © Copyright 2023, Cloud Security Alliance. All rights reserved.

5.2.4 Service Provider’s conduct Threats

We name the bundle of threats related to the Service Provider services that the Application Owner
consumes, including the entire stack used by the Service Provider and any dependencies, personal
and other assets used to form the Serverless or associated services. The Service Provider conduct’s
Threats. These threats are unique to Serverless but have parallels in other services:

• Vulnerable/malicious service base image
• Vulnerable service runtime
• Leak between Callable Unit invocations
• Leak between different Callable Units
• Serverless service correctness
• API/Portal/console vulnerabilities

5.3 Threat Model - 25 Serverless Threats for
Application Owners
The various threats for Serverless are provided in the table below.

Sr.
No

Threat Summary Threat Description Mitigations
(Security
Controls)

Application Owner Setup Phase Threats (A)

Unique to Serverless

1 Broad and generic
permissions
Not maintaining the least
privilege principle for
Callable Units.

Application Owners may define the set
of privileges that each Serverless Callable
Unit will have while running. Excessive
permissions can be taken advantage of as
part of an attack.

See section 6,
6.4.5, 6.4.7.1,
6.4.7.2. etc.

2 Broad and generic access
to Events
Not maintaining the least
privilege principle for
the initiation of events
triggering the Callable Unit.

Application Owners may define who may
initiate Events that will trigger the Callable
Units. Broader access greatly simplifies
the execution of attacks. Especially in
event-driven serverless architectures, this
has an impact on the attack surface.

See section 6,
6.4.5, 6.4.7.1,
6.4.7.2. etc.

3 Broad user privileges over
serverless control
Not maintaining the least
privilege principle for the
DevOpsteam.

Application Owners may define who
may have access to set up the Serverless
service, image store, etc.
Broader access adds additional potential
paths for attackers and increases risks
from insiders.

See section 6,
6.4.5, 6.4.7.1,
6.4.7.2. etc.

23 © Copyright 2023, Cloud Security Alliance. All rights reserved.

4 Weak Configuration
Mismanagement of
Serverless configurations
and configuration drift
can leave the platform
and resident applications
vulnerable.

Many services for hosting serverless
applications are configured insecurely.
Specific configuration parameters have
critical implications for the overall security
posture of applications and should be
given attention -- for example, who can
assume a Role to execute a function,
and what can you achieve based on that
assumed role?

See section 6,
6.4.7.2.
6.4.2
6.4.3
6.4.4, etc.

Aggravate with Serverless

5 Misconfiguration or
vulnerabilities of associated
cloud services
Additional cloud services
that work in concert with
the Serverless service to
construct the workload
may be misconfigured or
vulnerable.

Often the security of the Callable Units
depends on the security of the associated
cloud services being used. For example, a
Callable Unit may depend on the security
of a secret service or the security of an
Identity and Access Management system,
etc. A Callable Unit may also rely on
services owned by third parties as part of
a supply chain. Hence the dependencies
on other services and misconfigurations
in those services being used as resources
as part of the serverless application
can impact the integrity of serverless
functions.

See section
6, 6.4.7.1,
6.4.7.2, 6.4.3,
etc.

6 Exploitable repositories
and base image registries
Vulnerability in the
repositories and registries
used to store the library
dependencies and base
images.

An attacker may attempt to incorporate
malicious code by identifying
vulnerabilities in shared (public or private)
code repositories and image registries.
This threat increases in Serverless due
to the potential drastic increase in the
number of independent Callable Units.

See section 6,
6.4.3, etc.

7 Attacks against/through
build/deployment tools
Vulnerabilities and
misconfiguration of CI/CD
automation tools used to
build and deploy Callable
Units and Events.

As part of CI/CD practices, automated
tools are often used to construct the
Callable Unit and deploy it (including
the Events that will trigger it). Such
automation requires providing the tools
with elevated permissions to store
Callable Units and set up Serverless
cloud services. Attackers may use these
elevated permissions to incorporate
malicious code into a target application
or as a way to cause a denial of service
concerning serverless application updates.

See section 6,
6.4.7.1, etc.

24 © Copyright 2023, Cloud Security Alliance. All rights reserved.

8 Vulnerable dependencies
Vulnerabilities or malicious
code in any 3rd party library
the Callable Unit may result
in a supply chain attack.

Application Owners Callable Units
often use multiple 3rd Party Library
dependencies. Such libraries may
include existing or newly discovered
vulnerabilities. Further, a malicious
contributor may embed malware in such
libraries --This applies to all applications
and services, including Serverless
microservices.

See section 6,
6.1, 6.2,
6.4.7.1,
6.4.7.2, etc.

9 Vulnerable base images
Vulnerabilities in base
images used to form
Images for an image-based
Serverless service.

Base images used by Application
Owners to construct images under
Image-based Serverless are susceptible
to many types of existing or newly
discovered vulnerabilities in pre-installed
dependencies and may also include pre-
installed malware.

See section 6,
6.4.3, etc.

Application Owner Deployment Phase Threats (B)

Unique to Serverless

1 Data Injection
Serverless Callable Units
receive inputs during
activation from various
events - each such event
represents a potential
threat for data injection.

Injection flaws occur when untrusted
input is passed directly to an interpreter
or is executed before being properly
vetted and validated. Such flaws are often
part of an attack. AnyMost serverless
architectures provide a multitude of event
sources as a potential vector for a data
injection attack. Event data injections can
also break the orchestration of functions
to execute a business function and cause
a Denial of service.

See section 6,
6.4.7.2 , etc.

2 Global Context Leaks
Serverless global context
may allow, for example,
to maintain tokens across
invocations of the Callable
Unit (e.g., saving the need
to re-authenticate against
Identity Management per
invocation). The global
context may leak sensitive
data between requests.

Since different invocations of the Callable
Unit are often used to serve data owned
by other users of the workload, data
leak between additional requests of the
Callable Unit is a threat. Sensitive data
may be left behind in the container and
might be exposed during subsequent
invocations of the function. Malicious data
may be left purposely behind to attack
future invocations of the function.

See section 6,
6.4.7.2, etc.

25 © Copyright 2023, Cloud Security Alliance. All rights reserved.

3 Improper Error & Exception
Handling
Cloud-native debugging
options for serverless-
based applications are
limited (and more complex)
when compared to
debugging capabilities for
standard applications.

Improper error handling can create
vulnerabilities and allow malicious actions
such as buffer overflow attacks and
denial of service attacks. Verbose error
messages could result in unintended
disclosure of information to attackers
--This is true for all applications and
serverless as well in terms of exposure of
metadata and resources.

See section 6,
6.4.7.2, etc.

4 Broken or insecure
Authentication
Improper authentication of
the identity of the source
of the event and/or the
identity of the user/process
initiating such event.

Often, Callable Units are required to affirm
the identity of the entity behind the event
being sent. An attacker will seek to exploit
any vulnerability in the authentication
mechanism used.

See section 6,
6.4.7.2,
6.4.5, etc.

5 Financial and resource
exhaustion
Serverless as a mechanism
for an offender to cause
significant unplanned
expenses

An attacker may take advantage of the
fact that Serverless is a “Pay as you Go”
service and may force the Application
Owner to pay significant unplanned
expenses by creating many fake Events
that invoke the Application Owner
Callable Units and/or by initiating Events
that result in long processing times (e.g.,
by exposing some other weakness in the
code or a dependency).

See section 6,
6.4.6, etc.

6 Resource Abundance
Serverless as a mechanism
for an offender to tap into
an endless pool of compute
resources

An attacker may take advantage of the fact
that Serverless is offered as an unlimited
pool of resources.Given the vulnerabilities,
the attacker may also be incentivized
to exploit the abundance of computers
available for the Callable Unit and utilize it
for his gain, e.g., through crypto-mining or
to initiate an attack on some third party.

See section
6, 6.4.7.1,
6.4.7.2, 6.4.3,
etc.

Aggravate with Serverless

7 Insufficient and insecure
logging/monitoring
Insufficient situational
awareness for security
incidents and the inability
to investigate security
breaches.

Insufficient logging will hamper an
organization’s ability to respond promptly
to attacks/breaches and make it difficult
or impossible to perform forensic analysis.

See section
6, 6.4.7.1,
6.4.7.2, 6.4.3,
etc.

26 © Copyright 2023, Cloud Security Alliance. All rights reserved.

8 Insecure management of
secrets
A leak of secrets used by
the Callable Unit that could
lead to unintentional access
to portions of the system or
enable privilege escalation.

Often, Callable Units are required
to access specific cloud or external
resources when triggered. To be able to
do so, Callable Units may need to obtain
secrets. An attacker can take advantage
of situations such as when secrets are
insecurely stored or when a standard
set of credentials are used. Like any
other application in serverless functions,
credentials and secret leaks can lead to
impersonated identity and data leaks.

See section
6, 6.4.7.1,
6.4.7.2, etc.
(see #3.
Excessive
Data
Exposure)

9 Insecure logging/
monitoring
Exposing logging data to
an attacker or allowing an
attacker to remove logs.

Insecure logging could enable an
attacker to troubleshoot their attacks or
delete traces of their actions preventing
discovery and forensics. At the same time,
the function owner may not detect any
security issues and may not respond to
them, thus impacting the overall integrity
of the serverless applications.

See section
6, 6.4.7.1,
6.4.7.2, 6.4.3,
etc.

10 Sensitive logging/
monitoring
Logging sensitive
information with security
and privacy implications

Callable Units and Events may expose
sensitive data via logging and monitoring
systems, including secrets, PIIs, user data,
etc.

See section
6, 6.4.7.1,
6.4.7.2, 6.4.3,
etc.

Service Provider Conduct’s Threats (C)

Unique to Serverless

1 Vulnerable/malicious
service base image
Under Function-based
Serverless, the base image
chosen by the Service
Provider may include
vulnerabilities/malware.

Images used by Service Providers include
multiple 3rd Party dependencies. Such
images are susceptible to existing or
newly discovered vulnerabilities and may
include pre-installed malware. Considering
that service providers manage the
underlying stack of the platform, this can
impact the security posture of serverless
applications.

See section 6,
6.4.3

27 © Copyright 2023, Cloud Security Alliance. All rights reserved.

2 Vulnerable service runtime
Under Function-based
Serverless, the runtime
is configured and often
augmented by Service
Provider code, which
may result in a vulnerable
runtime.

Under Function-based Serverless, the base
image is often augmented with additional
code to form services and monitor the
Service Provider. When deployed, the
configuration of the executing containers
is set by the Service provider--This may
result in potential vulnerabilities such as
open ports or other management facilities
integrated into the runtime environment.
Hence it is pertinent that serverless
application security controls are evaluated
in full context.

See section
6, 6.4.6
(Kubernetes
risks &
controls :
deep dive)
6.4.7.1, etc

3 Leak between Callable Unit
invocations
Vulnerabilities in the
Serverless service
via isolation between
invocations of a given
Callable Unit are broken
outside of the defined
Serverless service contract.

Since different invocations of the Callable
Unit often serve data owned by multiple
workload users, data leak between
invocations is a significant threat.

For example, a Callable Unit reused to
serve a different end-user or session
context may leak a prior user-sensitive
data left behind. Alternatively, malicious
data/state left purposely behind may
harm subsequent users.

See section 6,
6.4.7.2, etc.

4 Leak between Different
Callable Units
Vulnerabilities in the
Serverless service via
isolation between Callable
Units executed on top
of the same runtime
environment instance in-
sequence are broken.

E.g., Function 1 ends, and
Function 2 is loaded under
FaaS on top of the same
runtime environment
without proper cleanups.

Since other Callable Units have different
cloud and data access privileges, maintain
different identities and secrets, have
various exploitable vulnerabilities, and
so forth, leak between different Callable
Units is a significant threat.

For example, if a serverless execution
environment is reused to serve one
Callable Unit and then another (of the
same/different Application Owner),
sensitive data may be left behind, or
malicious data/state may intentionally
be left behind to harm subsequent users,
utilize subsequent privileges, identities
and secrets or exploit the vulnerabilities of
subsequent Callabler Units.

See section 6,
6.4.7.1, etc

28 © Copyright 2023, Cloud Security Alliance. All rights reserved.

5 Serverless service
correctness
Under Serverless, the
workload is combined from
fragments of Application
Owner code glued by
the Service Provider.
The correctness of the
Serverless core service,
therefore, directly affects
that of the workload.

Unlike with non-serverless, microservice
cloud services, the security of the
Workload is dependent on the correctness
of the Service Provider events system,
image management, and access control
to the running instances of the Callable
Units. The threat is for these systems to
fail under certain conditions opening a
door for attackers. E.g., send the wrong
event, initiate the improper function or
component, provide the wrong privileges,
etc. Hence in addition to authentication
and Authz, orchestration of functions and
validation of key events before execution
is essential.

See section 6,
6.4.2, 6.4.4,
6.4.7.1, etc

6 API/Portal/console
vulnerabilities
Vulnerable APIs allowing
users to remotely configure
and manage the Serverless
platform, either using web
APIs, throw CLI or throw a
web interface.

In the case of a management portal or
console could result in unauthorized
access to the platform on multiple levels,
resulting in the ability to modify (and
weaken) configurations and perform
reconnaissance activities on the
environment. Other applications thru APIs
may call serverless applications. As part
of the serverless functions, a call may be
made to additional resources and services;
thus, secure APIs, their input outputs, and
context are critical to the overall security
of Serverless functions.

See section 6,
6.4.6, 6.4.1,
6.4.7.1, etc.

29 © Copyright 2023, Cloud Security Alliance. All rights reserved.

5.4 The Uniqueness of Serverless Threats
(This section further explains the above threats in the context of serverless applications)

In this section, we discuss aspects of Serverless compared to other IT environments and how
Serverless affects threats identified in the previous sections. We do so to elaborate and highlight
the significance of specific threats as relevant to the serverless environment. As we contrast the
manifestations of these threats in Serverless compared to other IT environments, clarity about the
uniqueness of Serverless Security begins to emerge.

All the threats mentioned in this section are labeled in bold and described in the previous sections.

5.4.1 Application Owner Setup Phase Threat (Ref: 5.3 (A))

In this subsection, we detail the differences between Serverless and other environments related to Setup
Phase Threats and identify the aspects where Security officers and practitioners need special attention.

Aspects of fragmentation

Maintaining the Least Privilege principle is especially hard in an environment where the sheer amount
of configurable entities and parameters is vast. When using Serverless services, the workload is
fragmented into small Callable Units, each with a set of parameters that govern its security. These
include users’ credentials and access rights, systems allowed to modify and set up the Callable
Unit, credentials and access rights used by the Callable Unit when executed, control over logging,
monitoring, usage, and other notifications related to the Callable Unit. This introduces new challenges
to Application Owners seeking to protect against threats due to “Broad and generic permissions,”
“Broad and generic access to Events” and “Broad user privileges over serverless control.”

Further, creating and later maintaining a secure configuration of multiple fragments is also a
challenge. The number of fragments complicates handling the identified threats above, such as
“Weak Configuration” and “Misconfiguration or vulnerabilities of associated cloud services.”

Even when the Application Owner ensures secure configuration for all components, and uses a well-
restricted set of privileges during initial deployment to production, the configuration and privilege-
sets may drift as the application matures due to the new components/services, dependencies, and
requirements for broader access, etc.

At the same time, Serverless offers a more opinionated, well-structured environment in which to
deploy. The service provider first processes inbound traffic before being propagated to the Callable
Units. In general, Serverless is a less flexible environment than microservices or VMs and reduces
threats due to “Weak Configuration.” Examples of the reduced threats include CSP ensuring that no
inbound traffic will reach Callable Units outside of the Events declared per Callable Unit or that the
latest recommended version of TLS is always used. The CSP opinionated environment, therefore,
may reduce the attack surface and the opportunities for misconfiguration.

30 © Copyright 2023, Cloud Security Alliance. All rights reserved.

As the number of fragments grows, so are the challenges from supply chain vulnerabilities. Without
proper handling, each fragment may potentially use a different set of dependencies. Each may
use other repositories and build/deployment tools. When using Image-based Serverless, each
may potentially depend on a different base image. As a result, the attack surface of the workload
increases, with the increased number of various dependencies comes an increase in the number
of potential vulnerabilities. These threats were identified above as: “Vulnerable dependencies,”
“Vulnerable base images,” “Exploitable repositories and base image registries,” “Attacks against/
through build/deployment tools.”

5.4.2 Application Owner Deployment Phase Threats
(Ref 5.3 (B))
In this subsection, we highlight the novelty of Serverless as it relates to Deployment Phase Threats.

Aspects of Data Injection

Serverless takes advantage of a vast scope of events from various sources that Callable Units can
process. Each type of event used, regardless of its source, is a potential Data Injection threat.
Though the Service Provider may provide specific protection by controlling that the right type of
events come from the correct source (and even given the proper basic event format), such protection
does not prevent an attacker from exploiting injection flaws. Any information that an offender may
control (e.g., using another vulnerability or misconfiguration or after obtaining false credentials) and
is passed to the Callable Unit as part of the event should be considered a threat.

For example, an event to a Callable Unit may be sourced from a notification about an object loaded
to object-store. This event may include information about the loaded object - information that may
be under an offender’s control. Similarly, an event to a Callable Unit may also be sourced from a web
request that may be under an offender’s control. Suppose Callable Unit uses the information carried
by the Event directly (without proper screening) as part of a database access request. In that case, an
offender may use well-crafted information to modify the database or read confidential information.

Aspects of Global Context

Multi-tenancy is supposedly handled “by design” in Serverless. Each invocation of a Callable Unit
handles a specific event and hence can be attributed to a specific tenant (ignoring for a minute cases
where the event is service-wide and not associated with a specific tenant). This “by design” multi-
tenancy support holds as long as the information does not leak between Callable Unit invocations.
Since CSPs may use the same Serverless instance to process multiple events in sequence,
Application Owner coders need therefore ensure that information from one invocation due to one
event does not leak to subsequent invocations due to subsequent events.

When a Callable Unit/function instantiates, it may need to initialize to authenticate, obtain secrets/
tokens and establish connections and context to supporting services. Such initialization only needs
to be performed once for the sequence of invocations handling a series of events. TheCallable Unit
requires a global context to maintain (cache) the tokens, secrets, open connections, etc. Such global

31 © Copyright 2023, Cloud Security Alliance. All rights reserved.

context is required for a Callable Unit to be efficient; otherwise, it will need to authenticate and
connect with other systems with every event, even when a high rate of events arrive in sequence.
This will prove to be a tremendous overhead for the Callable Unit’s actual function, which is typically
somewhat limited and short in time.

Introducing a global context brings about the “Global Context Leaks” threat as identified above,
where information from one invocation may leak to subsequent invocations.

Aspects of losing control over the assignment of compute resources (The “Pay as
you go” hazard)

Unlike other options such as using VMs and Microservices, Serverless does not curb the amount of
compute resources used by an Application Owner to some limit defined during setup. The Application
Owner loses control over the number of resources used at any given time and is required to retake
such control by setting up budgets and forecasts and processing billing notifications from the Service
Provider. One security aspect of this novelty is that an Application Owner faces the “Financial and
resource exhaustion” threat described above without proper monitoring and processing.

One example of this threat is that an attacker can cause an Induced Denial of Service to an
Application Owner by continuously imposing a load of events on the Application Owner’s workload.
Even assuming sufficient resources are made available by the Service Provider -- in order to process
both legitimate and non-legitimate Events, a continuous high load of non-legitimate Events will
introduce unexpected expenditure on the Application Owner -- potentially to a level that forces the
Application Owner to turn the service off or to limit it which could be out of line with their business
intentions and needs. For example, Induced Denial of Service may materialize as part of a distributed
attack by an offender seeking to force the Application Owner to take financial damage, either
directly by increasing his cloud costs or indirectly by turning off his workload.

Induced Denial of Service through Direct Financial Damage

Continue to endure
Financial Damage Stop the Service

Func

Service Provider

Application Owner

Illegitimate
Events

Legitimate
Events

32 © Copyright 2023, Cloud Security Alliance. All rights reserved.

An Induced Denial of Service can also result as an outcome to the “Resource Abundance” threat
materializing via which an offender identifies a way to take advantage of the Callable Unit to
further his cause. For example, consider an offender able to get the Callable Unit to send traffic to a
destination under his control.he unlimited resources can then be used as part of a Denial of Service
attack on a third party. Note that Serverless does not limit Callable Units from initiating outbound
traffic. An attack like this cannot be prevented by processing periodical billing notifications from
the service provider as it requires an immediate response by the Application Owner. Once such an
offense has started, the Application Owner is immediately required to stop it, hopefully before the
entity is attacked, pinpointing the attack source to the Application Owner’s Callable Units. Stopping
the now offensive behavior of the Callable Units may require shutting the service down, thus forcing
an Induced Denial of Service.

Induced Denial of Service through Damage to Reputation

In a third example, if the offender can get the Callable Unit to execute their code (e.g., through a
supply chain attack or by exploiting code or dependency vulnerability), the Callable Units may offer
a conveniently abundant crypto-mining resource. This threat is challenging to detect if the offender
keeps the usage level within the boundaries of the legitimate workload. Executing their code will also
allow offenders to utilize the Callable Unit as a general-purpose botnet where activity is triggered
by an event that lasts for the Callable Unit time limit. The abundance of resources allows keeping
the botnet away from being detected. A Callable Unit may further persist the botnet before being
terminated by triggering one or more other instances of the Callable Unit. Such a botnet may use
a client-server command and control architecture as outbound traffic is available under serverless.
Such a botnet may also use a modified peer-to-peer command and control by repurposing the Events
associated with the Callable Unit. Note that once the Callable Unit code is under the offender’s
control, existing Events may offer the necessary communication channel between bots.

Continue to endure
Financial Damage Stop the Service

Func

Service Provider

Application Owner

Malicious
Events

33 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Therefore, the Resource Abundance is a significant threat to Application Owners of Serverless and
needs to be appropriately dealt with to avoid being exploited by offenders.

Aspects of complexity resulted due to fragmentation

Serverless architectures promote a fragmented system design. Applications built for such
architectures may contain dozens (or even hundreds) of distinct serverless functions, each with
a specific purpose. These functions are weaved together and orchestrated to form the overall
system logic. Some serverless functions may expose functionality via public web APIs, while
others may serve as an “internal glue” between processes or other functions. Some functions may
consume events of different source types, such as cloud storage events, NoSQL database events,
IoT device telemetry signals, or even SMS notifications. These create significant complexities and,
therefore, can be potential “threat” opportunities for offenders. These are all vectors for potential
authentication-related vulnerabilities identified above as “Broken or insecure Authentication” and
“Insecure management of secrets.”

Another example related to the resulting complexity of the system is the threat that the
Application Owner faces of losing any ability for situational awareness. A complex and
fragmented workload where parts of the control and data path are under a Service Provider’s
control (i.e.,Event System) and others are under the control of the Application Owner (Event
Processing) may lead to a complete loss of situational awareness indicated above as “Insufficient
and insecure logging/monitoring.”

Aspects of code robustness and correctness

Serverless is unlike Microservices and VMs, where developers can completely replicate the execution
environment locally. Since a serverless-based workload offloads portions of the data and control
path to the Service Provider, more development and testing need to be done on-cloud than
alternative compute options. Cloud-native debugging options for serverless-based applications are
limited (and more complex) when compared to debugging capabilities for standard applications.
This reality is especially true when a serverless function utilizes cloud-based services that are not
available when debugging the code locally. This threat is identified above as “Improper Error &
Exception Handling,” which may manifest as information disclosure through unnecessarily verbose
error messages or hidden vulnerabilities. There are best practices and standard error message
templates; it is pertinent for serverless deployments to be thorough from a security perspective
testing of the serverless applications is done and error messages validated to be generic and that
they don’t leak any data or metadata.

34 © Copyright 2023, Cloud Security Alliance. All rights reserved.

5.4.3 Service Provider’s Deployment Threats
(Ref.: 5.3 (C))
In this last subsection, we consider threats originating from the Service Provider and explain those
aspects concerning Serverless.

Aspects of isolation

As with any service, a prime security concern for Service Providers is establishing unbreakable
isolation between cloud tenants. Serverless introduces many new challenges when it comes to the
isolation provided to cloud users. Both the Event system and the Compute system are attack surfaces
for a malicious tenant. Potential vulnerabilities in these systems, together with many other potential
hazards related to the core serverless services, were identified above as ‘Cloud service vulnerabilities”.

With Serverless, unlike VMs or Microservices, new isolations need to be established by the Service
Provider. As Serverless Callable Units get started and terminated frequently (and since cloud
users pay only on actual compute time consumed), it is in the interest of the Service Provider to
aggressively reduce the overhead due to spinning up and down of instances. Service Providers are
therefore reusing Callable Units which are already spun to serve multiple Events. Since different
Events can be associated with varying tenants of the Application Owner workload, isolation between
invocations of the Callable Unit is required and expected by the Application Owner. This introduces a
unique threat to Serverless identified above as “Leak between Callable Unit invocations.”

A second threat identified as “Leak between Different Callable Units” considers isolation issues
between Callable Units that may be executed in the same runtime environment. Depending on the
Service Provider, when a function under FaaS completes execution, a subsequent function may also
be implemented in the same runtime environment --This introduces a sizeable potential attack-
surface for offenders to collect the residual data left behind from previous Callable Units and modify
the runtime environment to potentially exploit a vulnerability in a subsequent Callable Unit.

Aspects of shared responsibility

Any use of services from a Service Provider results in a shared responsibility for the workload
security. However, Serverless takes that shared responsibility to the extreme. Under VMs and
Microservices, the responsibility-divide between the Application Owner and the Service Provider is
well defined, at the boundary of the container or VM, and the execution of the workload is entirely
under the control of the Application Owner (unlike data store, network, etc. where the responsibility
lay at the Service Provider side). When it comes to Serverless, the boundary is vague at best.

Under Function-based Serverless, the Application Owner code runs within a runtime controlled
by the Service Provider. Security can be determined by the design of the code, the security of the
runtime, and the interaction between the two. The Application Owner’s code may rely and be tested
on a particular image with a pre-installed set of libraries. Once that image gets updated by the CSP,
the interaction between the code and the new image may introduce Callable Unit vulnerabilities.
Further, under Serverless workload, functionality is formed by Application Owner code fragments

35 © Copyright 2023, Cloud Security Alliance. All rights reserved.

joined by Events handled by the Service Provider. Again, security can be determined not only by the
design of the code or the security of the Event System but also by the interaction between the two.
For example, when the Application Owner code uses the Event System in a certain way.

These examples aim to clarify that aspects of shared responsibility in Serverless are more complex
when compared to VMs and Microservices. This threat is identified under “Serverless service
correctness” discussed in the previous sections.

6. Security Design, Controls,
and Best Practices
Microservices are independently released and deployable services that support a business domain. A
service may encapsulate functionality and make it accessible to other services via APIs. For example,
one service might conduct accounting, another account management transactions, and yet another
reporting, but together they might constitute an entire account management banking system.

The service-oriented architecture is flexible and does not specify how service boundaries should be
drawn as long as they are independently deployable. Being technology agnostic is one of the key
advantages of microservices. Some key features of Microservices are:

1. Independent deployability
2. Modeled Around a business domain
3. Owning their state
4. Size and flexibility

Based on domain driven architectures (Martin Fowler), there has been much debate on Event
driven microservices - Synchronous and Asynchronous event driven microservices. Synchronous
services have drawbacks like dependent scaling, point-to-point coupling, API dependencies, failure
management, data access dependencies, and management challenges. Event-driven asynchronous
Microservices have gained popularity due to flexibility, technology independence, business
requirements flexibility, Loose coupling, continuous delivery models, etc.

While the industry is still evolving, there will also be hybrid architectures where some services are
monolithic, and some are event-driven functions-based microservices.

Some Architectural best practices for Event-Driven Microservices, which essentially use FaaS
services, are described below:

Interfaces - API & Contracts

• Automatic retries
• Concurrency
• Scale requirements
• Message & payloads
• User and Service/session Identity
• How to handle failures, Timeouts, retries etc., Rate limits

https://martinfowler.com/tags/domain%20driven%20design.html

36 © Copyright 2023, Cloud Security Alliance. All rights reserved.

 A serverless environment brings many architectural changes that force the evolution of security
controls. Here are some examples:

• Events
• Under Serverless, Callable Units communicate via Events. These events travel

between the administrative domains. A Callable Unit, therefore, may send data to
other Callable Units while potentially crossing untrusted boundaries.

• The number of Callable Units being triggered increases due to the workload
fragmentation, Callable Units’ short lifespan, and the nature of event-driven
architectures, e.g., every time a file changes, several functions might be used.

• Chained functions are being used, some of which pull data from several trusted or
untrusted sources.

• The Network
• The network construct is under the control of the Service Provider, which is now the

only entity with access to network logs.
• Networking chokepoints (e.g., serverless platform performance issues) are under the

control of the Service Provider.
• The new Perimeter, any network security controls need to be reinvented or replaced

with a Zero Trust model and identity control.
• In transit network security is primarily the responsibility of the Service Provider.

Consumers must configure application transit security.
• Lifecycle

• Lifecycle is quite different; functions can have a duration of milliseconds before they
get destroyed (limited lifecycle), which may affect security monitoring systems.

• The short lifespan may affect IAM and Secret Management systems as Callable Units
are spun on and off.

• The sheer number of functions/images to control and handle affects the controls
needed to ensure integrity.

• Attack Surface (as Discussed in detail in Chapter 5)
• The traditional attack surface is decreasing due to the infrastructure abstraction

offered by Serverless.
• The number of cloud service instances is significantly increased, and with it the

opportunity for misconfiguration, the complexity of setting proper IAM roles,
and setting up proper security processes for all workloads in the application
development lifecycle.

• Monitoring
• Aspects like logging and monitoring that have been traditionally coupled inside the

application (e.g., Nginx/Apache) are now abstracted from the user. This requires
redesign and/or new requirements on developers to add proper logging and
monitoring events along with the code.

• Security Controls
• Traditional security controls like firewalls, IDS/IPS, and SIEM’s do not efficiently deal

with this new paradigm of increased connectivity and integration. As such, it requires
a more distributed security architecture to secure the serverless components.

• New approaches to serverless security are emerging and need to be considered
by Application Owners. We expand more on this topic in the “Futuristic Vision for
serverless security” chapter of this paper.

37 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Below we have a diagram on the serverless architecture where the de-perimeterization is quite evident:

Serverless Security view-point

The image above depicts a collection of services (loosely coupled) that might compose an
application without necessarily having the traditional security trust boundaries, such as a static
firewall, etc.

The serverless paradigm uses functions that, when correctly coupled with third-party services
(e.g., hosting), allow an organization to run end-to-end applications without needing to care about
traditional infrastructure management and other aspects of traditional security.

Appropriate security patterns are still emerging for Serverless, requiring a more thoughtful security
approach for the Application Owner. Those patterns will take time to mature, with this and other
papers in the area.

6.1 Design Considerations for Serverless

Application Architects have to be cognizant of both inherent weaknesses present in Serverless
technology vs. weaknesses they can introduce in their design. Understanding these weaknesses will
give them a better grasp of the security controls required to be implemented (these are explained in
the next chapter).

Serverless architecture has many benefits, even from a security perspective, that are weighed as part
of Secure microservices design considerations. Some of those benefits include:

Cloud Provider Other Locations

38 © Copyright 2023, Cloud Security Alliance. All rights reserved.

1. Stateless and Ephemeral: Short-lived serverless functions are processing unencrypted
data in memory for a short period of time. Serverless functions do not write to a local disk.
Hence, functions that need to persist state rely on external data stores, thus reducing the
likelihood of exploits by attacks designed for long-lived targets.

2. Each serverless function requires only a subset of data to perform its micro-focused
service. So as long as this function has the correct permission to access only the data it
requires, then a successful exploit of a function should be more focused on what data it can
potentially exfiltrate.

3. Serverless applications run within containers managed by a CSP or within self-managed
containers. Hence, they have some inherent security benefits of containers that run on
immutable container images. Containers that do not require long-lived servers can easily
be assigned continuously to patch container images and compute instances. Lessening
concerns of running on Vulnerable or Unpatched underlying infrastructure

Some other considerations the architects and developers may want to consider are:

Vendor Lock-in: Functions may be using other Cloud services that may not be compatible with other
service provider environments as integrations might be across various services and dependencies in
a CSP environment. E.g., backend databases may be in RDS or MS SQL Azure and so on.

Deployment Tools Limitations and Execution Environment Limitations: Based on the application’s
need, it is pertinent to understand the tools and execution environment necessary and select the
provider based on those needs. It is also important to explore potential limitations that may impact
the overall functionality of the services.

6.1.1 Serverless Platform Design Impacts on the Serverless
Microservices Security.

As introduced earlier, function/ Application Owners have a greater responsibility to manage and
control applications. They are less concerned with the platform’s infrastructure and security, which
falls under the service provider’s responsibility. With this shift of responsibility, the function/
Application Owner inherently loses some visibility and responsibility for the infrastructure. Now,
from the function owner side, questions emerge like:

• Where are the functions running?
• What is the actual network exposure of the functions?
• Are the functions executed in an idle container already initialized by a previous execution as

a “warm start” or a newly instantiated container as a “cold start”?
• Is any of the previous data still available in cached memory?

Let’s start by understanding some of the inherent design characteristics needed during the design
process for Serverless microservices.

39 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Functions inherently have public-facing egress access.

In a serverless world, CSPs has more responsibility for security when compared to cloud customers.
Cloud customers (CSC) have limited responsibility. For example, CSC is responsible for security within
their application, for the secure configuration of Serverless components and services. The security
provided by default by the CSP may not meet or address all the security requirements as required by
all the customers (for example, due to compliance). API Gateways provided by the CSP are accessible
anywhere on the public internet with access controlled via API keys. Customers would be responsible
for setting up any supporting controls (transport-based access controls) based on their business needs.

Design for enhanced security using the following controls to limit exposure of data to the internet.

i. Apply network policies to limit the endpoints that are reachable from that FaaS by using the
Virtual Private Cloud (VPC) network policy configurations that are made available by the
various CSPs.

ii. Apply service or resource policies that allow you to limit the endpoints that can access your
data stores/services Therefore, you can reduce the exfiltration paths for your data.

Examples include AWS VPC endpoints, Azure VNet Service endpoints, and Google VPC Service Controls.

By design, large applications when broken into microservices, make it difficult to have complete
visibility into the serverless microservice deployed architecture.

Serverless Applications are built upon microservices architecture, allowing you to build many
logically focused functions to run concurrently and scale out your processing.

However, as you continue to grow the number of available functions, whether for a single application
or as distributed APIs for larger functional microservices, challenges arise amid creating full visibility
of how that function is executed. For example, some questions that would be helpful to consider are:

1. Are all those functions executed within a VPC, especially if the criticality of the data requires
that you minimize any public exposure?

2. Are all the roles you created for each function tuned to allow the minimum required privilege?
3. Did developers reuse pre-existing roles, so the functions that need to read data only use the

same role as those that need to process and update your data values?
4. Suppose an application redesign now specifies the function will be launched by an event

queue instead of an HTTP event. Has the HTTP event trigger been removed as part of the
deployment options?

5. Are all the functions that can be triggered by an HTTP event behind an API gateway?

Some of the specific concerns regarding Serverless environments are -

A. Inadequate Function logging & monitoring
B. Insecure serverless deployment configuration
C. Insecurely storing Application Secrets
D. Insecure management of third party dependencies

40 © Copyright 2023, Cloud Security Alliance. All rights reserved.

A. Inadequate function logging and monitoring: Controls to get detailed visibility into the execution
environment of event-driven microservices/Functions are:

i. Inadequate function Logging: Logging provides a record of activities carried out by entities in
a given period of time. It provides insight into the system/application and provides the ability
to debug, assess and replay in case of an incident. A best practice for logging in Serverless
is to structure the logged values. Structured logs are easier to parse. Another best practice
is determining the desired log level or verbosity so the logs will provide value when needed.
Logs should be leveraged to monitor anomalous patterns or conditions to alert and notify
operations to take corrective actions. Ensure that you are using integrated logging that you
can centralize to facilitate your overall application performance and security monitoring.
Platform Provider logging will help collect statistics on the quantity, duration, and memory
usage of your function’s executions. Visibility of application errors is within your control by
adding logging statements as needed within your serverless functions. For instance, does
your error-logging enable you to identify if the failure occurred within a process you defined
or from unexpected data input, or a result of a third-party functional process?

ii. Inadequate function Monitoring: Use application and security monitoring tools to help
surface visibility for how often a function is executed, and the logical execution path.
One should monitor and discover all the APIs or endpoints that you expose and all your
downstream or dependent APIs. You should monitor and discover which events and roles
are executing your functions and any unexpected execution paths or methods.

B. Insecure serverless deployment configuration: Default Platform Provider configurations can
impact the level of security needed for a particular microservice use case:

Serverless provides customization and configuration settings for any specific need or task (network
policies, command-line interface).

Serverless security depends on the configurations of the functions and several of the upstream and
downstream services that integrate with your Serverless microservice. You must understand the
configurations of those PaaS services and all of your security hardening options. The probability of
misconfiguring critical configuration settings can have a huge impact.

For instance, if using PaaS data services (examples: Amazon S3, EMR, or RedShift), one is still using
any default configurations, and that configuration is still potentially exposing the data publicly. Are
you using default Platform Provider IAM roles that allow your function to read and write data when
your function only needs to read and process that data.

Suggested best practices:

i. Security settings and policies must be defined based on the Microservice use case, and reliance
on minimized default platform provider configurations. Determine how to securely configure
each service based on the microservice and data security requirements and risk posture.

ii. Serverless provides customization and configuration settings for any specific need, task
(network policies, command-line interface). The probability of misconfiguring critical
configuration settings can have a significant impact on serverless. Therefore, security
testing should be performed for the microservices to ensure that your configurations meet

41 © Copyright 2023, Cloud Security Alliance. All rights reserved.

all of your security requirements. The security testing should help you validate the methods
and roles that can access your functions or data. More importantly, application security
testing will help reveal that your application logic or input validation is still exploitable by
injection attacks and any other configuration weaknesses that still exist.

C. Insecurely storing Application Secrets

As applications are growing in scale and complexity, the need for storing and maintaining Application
Secrets (API keys, encryption keys, etc.) becomes critical.

Out-of-the-box CSP offerings do not address the security needs of all tenants. Tenants should
determine their level of security (PII data, sensitive data, regulatory compliance requirements, etc.)
and upgrade security on top of the default CSP offerings. Some questions that a tenant could consider
are - Are you designing a Serverless Application that will access and process confidential data or highly
regulated data? If so, then the security requirements for how that data is protected increase, and you
have to consider not only data exfiltration by external attackers but also malicious insiders.

Platform Providers are executing Serverless applications on compute instances not encrypted
by default. Furthermore, Serverless applications most likely rely on PaaS data services offered by
Platform Providers that are not encrypted by default. Out-of-the-box CSP offerings do not address the
security needs of all tenants. Tenants should determine their level of security (PII data, sensitive data,
regulatory compliance requirements, etc.) and upgrade security on top of the default CSP offering.

Suggested best practices:

i. Ascertain if your Platform Provider offers the option of deploying your Serverless code
to be executed on a confidential compute instance [IEEE Spectrum, 2020]. This may
help you decide between the use of Functions or other compute options to implement
compensatory security controls to adequately meet application and data security
requirements and risk posture.

ii. Ascertain the default or managed encryption options for each PaaS Data Service
incorporated in your Serverless application andhold that confidential or highly regulated
data. Ensure that your use of and configuration of the PaaS Data Service will meet your
application and data security requirements. If not, then implement Application layer
encryption as compensatory control.
Again Confidential compute is expensive and still evolving design decisions must weigh
against the feasibility of the solution and the performance impacts that confidential
compute will add to the execution of the services.

D. Insecure management of third-party dependencies: Serverless application reliance on
third-party libraries

At times, the serverless function will depend on third-party software packages, open-source libraries
and even consume third-party remote web services through API calls. Serverless application code
and deployment vulnerability scanning have limited visibility of dependent third-party libraries.
Especially concerning are any vulnerabilities introduced into those third-party libraries managed
outside of your source code repository. It is wise to look at third-party dependencies as they could
have vulnerabilities that could, in turn, expose serverless applications to attacks.

https://spectrum.ieee.org/computing/hardware/what-is-confidential-computing

42 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Suggested best practices:

i. Incorporate Source Composition Analysis of any third-party libraries into your deployments.
This allows you to discover not only how extensive your dependencies are but if you are
introducing risk with already known vulnerable components.

ii. Use Security monitoring solutions to identify vulnerable third-party libraries at run time and
identify included libraries not being used. Remove redundant libraries to reduce the risk of
unnecessarily including vulnerabilities.

In this section, we will briefly talk about security controls and best practices for securing Serverless.

Cloud services follow a shared responsibility model between the CSP and the CSC -- this is no
different for Serverless. As serverless becomes adopted by various organizations, it is essential
to understand platform service provider responsibility vs. customer responsibility in the Function
and Image-based models. In the serverless architecture, CSP takes on the security responsibility of
the cloud (securing the servers & operating system) leaving the tenants the security responsibility
in the cloud with security controls such as IAAA (AuthN, AuthZ, audit logs), SDLC (code review,
static analysis, build, test, release, deploy), data protection (at rest, in motion), policy enforcement
(example: code review must be conducted by two peers, code should be release only after a clean
vulnerability scan), etc.

Static Analysic

Dev

Code Plan

Build Test

Release Deploy

Monitor Operate

Sec OpsCode
Review

Penetration
Testing

Recover

Detect

Monitor

Audit1

Logging

Threat
intelligence

(SANS, CERT)

43 © Copyright 2023, Cloud Security Alliance. All rights reserved.

6.2 Controls for FaaS
Note: All Controls that apply to FaaS are also applicable to Container Image-based serverless, as FaaS
is a higher layer that can be built on top of Container Image-based Serverless. This section mainly
describes controls to be implemented if an Enterprise chooses to build their own Private FaaS.

Secure by Design is a fundamental approach that places security at the forefront of every stage
of development. To achieve a secure by design mindset, it’s essential to integrate security
considerations into the very DNA of the project, products, and processes. The emphasis is on the
importance of early security requirements, threat modeling, cybersecurity risk assessments, and
their interplay in building a resilient security posture.

When moving into a Function as a Service (FaaS) model, there are several open versions of FaaS.
Security owners of Application teams can now add extensions (Lambda Extensions, Knative, etc.) and
agents into containers running the functions. The best place to catch business logic-level issues is in
the functions themselves.

The controls can be looked at in various ways:

a. Platform configuration audits (code review, SAST, DAST, policy enforcement, Runtime
Application Self Protection (RASP), interactive application security testing (IAST),
dependency management, serverless specific security tools) are carried out as part of the
CI/CD pipelines.

b. Platform components and vulnerabilities Cloud providers don’t always assume
responsibility for most of the security on serverless platforms as it is considered shared
responsibility. This shared responsibility includes elements like VizHost operating system,
containers, orchestration service, service mesh, and so on, along with network policy
violation detection, platform layer threat detection and management. This means, if an
enterprise decides to implement a Private FaaS, they must independently establish and build
all the layers of security controls1.

c. Function configuration audit (code review, SAST, DAST, policy enforcement) can be
bucketed again under CI/CD and runtime controls.

d. Function components and vulnerabilities (most serverless vulnerabilities) are related to
programming: injection attacks, broken authentication, misuse of access roles, deployment
with known vulnerabilities or insecure storage of secrets, insecure deployment settings,
improper exception handling, and insufficient logging and monitoring that can be bucketed
under OWASP secure coding best practices. Additional important considerations in the
context of security vulnerabilities in a FaaS model are: weak encryption keys, inadequate
access controls, third-party dependencies, and cross function attacks.

e. Identity and Access Management (this involves user and application identity management,
federation, SAML 2.0, access control, multifactor authentication)

f. Function workload security - It encompasses a range of measures, including system
integrity monitoring, app allow listing, app hardening, anti-malware, exploit prevention, and
detection and response.

1 Enterprises using those cloud platforms still need to implement most of the security measures
for Data Security, User Identity and Access Management, Application Security Configurations and
Encryption as part of shared responsibility.

44 © Copyright 2023, Cloud Security Alliance. All rights reserved.

If needed to define FaaS control categories, they can be categorized into high-level categories as
follows:

a. Platform Service Provider API and management controls and integrations
b. CI/CD Pipeline security controls include components, configuration, vulnerabilities scans,

etc.
c. Identity and access management
d. Detection at Platform layer and runtime detection controls for policy violations, failed

functions or triggers, etc.

API Gateway design and gateway access logs can be used as a potential mechanism for controls for
FaaS. API Gateways act as a central entry point for all incoming requests and can help implement
controls to protect the underlying FaaS functions.

Security, reliability, and performance of FaaS applications can be improved by implementing some
recommendations and best practices regarding the controls using the API Gateway2 design and
access logs.

• Implementation of Access Logging: Access logging is a critical feature of an API Gateway
that helps track and analyze API calls and responses. Access logs can provide valuable
information for troubleshooting errors and ensuring security by logging who has accessed
the API and how the caller accessed the API.

• Authentication and Authorization: Implement strong authentication mechanisms to ensure
that only authorized users or applications can access the FaaS functions through the API
Gateway. Use API keys, OAuth tokens, or other identity providers to authenticate users and
validate their permissions before allowing access.

• Logging and Monitoring: Enabling detailed logging of API requests and responses in the
access logs, helps in identifying potential security incidents, analyzing traffic patterns, and
monitoring system performance.

• Rate Limiting: Enforcement of rate limits on API requests can prevent abuse and protect the
FaaS infrastructure from excessive traffic. API Gateway can track the number of requests per
user or IP address and throttle requests that exceed predefined limits.

• Input Validation and Sanitization: Validation and sanitization of incoming API requests can
prevent injection attacks and other security vulnerabilities. This is especially important in
FaaS environments, where functions process user input directly.

• Cross-Origin Resource Sharing (CORS): Configure the API Gateway to enforce CORS
policies to control which external domains can access the FaaS functions. This prevents
unauthorized cross-origin requests.

2 When dealing with public APIs, the use of an API gateway may not always be the most
straightforward or security-enhancing approach, especially when dealing with User-to-Machine
(U2M) flows in which users interact directly with the API : It’s important to consider the specific use
case and requirements when deciding whether to use an API gateway for public APIs. For Machine-
to-Machine (M2M) or domain delegation scenarios, where control and security are paramount, using
an API gateway may be more justified. While for U2M flows where end-users interact directly with
the API, introducing an API gateway can sometimes result in additional steps or friction in the user
experience, which may not be optimal.

45 © Copyright 2023, Cloud Security Alliance. All rights reserved.

• Unified Logging: Unified logging is a feature of an API Gateway that provides a single
location for all API logs. This can help simplify troubleshooting and analysis of API calls.

• IP Whitelisting/Blacklisting: Depending on your security requirements, IP whitelisting or
blacklisting helps allow or deny access to specific IP addresses or ranges.

• API Key Rotation and Management: Periodically rotate API keys and manage them securely
to minimize the risk of unauthorized access.

• Transport Layer Security (TLS): Enforce the use of TL or SSL to encrypt data in transit and
ensure secure communication between the clients and the API Gateway.

• Error Handling and Reporting: Implementation of proper error handling and reporting
mechanisms to provide meaningful error messages to clients while not exposing sensitive
information about the underlying FaaS infrastructure.

• API Documentation: Provide comprehensive API documentation to developers, including
details about authentication, rate limits, and error codes.

Specific mechanisms and controls will vary based on the FaaS provider and the chosen API Gateway
solution. It is also recommended to always follow the best security practices recommended by the
chosen cloud provider and regularly update the security measures to stay ahead of potential threats.

6.3 CI-CD Pipelines, Function Code, Code Scans and
Policy Enforcement for Functions and Containers

Planning

• Insecure untended
data caching

• Secure design
• Incorporate AuthN,

AuthZ via API
gateways

Planning

• Data injection
• OWASP top 10
• Improper exception

handling

Planning

• Insecure/weak
configuration

• API OWASP top 10

Planning

• Included 3rd Party
• Library

dependencies

Planning

• Insecure/weak
configuration

• API OWASP top 10
• Attacks against

automated
deployment work

• Exploited image
repositories

Planning

• Broad & generic
permissions

• Broken authentication
• Insecure management

of secrets, traffic (at
rest, in motion)

Planning

• Vulnerable images
• Broad & generic

permissions
• Broken

authentication API
OWASP top 10

• Portal vulnerabilities

Planning

• System design
• Business process
• Policy, procedure
• Minimum viable

product (MVP)
• Risk assessment
• Requirements

gathering

• Application
devleopment

• Source code
repository to store
code, configuration,
policy, YAML

• Unit test
• Code Review
• Static analysis/SAST

Secure coding

• Container images
• Private registry
• Build managment
• CI/CD management
• Configuration

• Integration testing
• Dynamic analysis

security testing
(DAST)

• Acceptance test
• Penetration test

• Generate checksum
digital signature for
the release package

• Binaries, base
container image,
configuration, scripts

• MVP baselines
• CI/CD orchestrator
• Artifact repository

• Virtualization engine
• K8s platform

lifecycle
• Service mesh
• Identity and access

management
• Platform data
• Deployment policies
• Configuration
• ETCD

• Cluster management
• Load balancing
• System scaling
• Rate limiting
• Backup management
• Operation dashboard
• Container isolation
• Application access

and data
• Observability
• Container image

scanning

• Logging events for
user, network,
application and data

• Log analysis auditing
• Operations

monitoring
• Alerting and

notification
• Log aggregation &

archival

• Insufficient logging
and monitoring

• Embedded malware

Security
Controls

Vulnerabilities

Create metadata at
the completion of:
1. Authorship &

provenance verified
2. SHA1 verified
3. Code (peer)

reviewed

Create metadata at
the completion of:
1. SHA256, verified
2. Vulnerabilities scan

results
3. Successful SQA

testing & sign-off

Does my release
meet all mandatory
policies?
(Verify attestations)

Metadata
Repository

GitSource

Developer

CI/CD SDLC pipeline K8s control plane

Control plane/ Master node

Container runtime

etcd

Validating-webhook

Example: undeploy
images w.

vulnerabilities

Mutating webhook

Example: add a
sidecar

Authorization
(RBAC, policy)

Admission Controller

kube_apiserver

Scheduler Controller

Deployment of
configured pods

Resource
Management

Mutating
admission

Object
schema

validation

Validating
admission

Saves state

Meta-data repo &
cryptographic attestations

SQA

SHA256 SHA256

Upstream

Peer reviewer
signs off

SQA testing
signs off

Managed build system
(MBS) Image Repository

Does not meet mandatory policy
missing mandatory attestations

Attestation
Crypto signed
container image

Attestation
Crypto signed
container imagePeer reviewer

signs off -
attestation

SQA signs off -
attestation

Container

Container

Container

Container

Container

Container

Tenant #1
namespace

pod pod

kube proxy kube proxy OPA

Pod

sidecar

OPA

Pod

sidecar
Tenant #n

namespace

46 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Before being included in a release, all code changes undergo a comprehensive evaluation process.
This includes peer review, which involves manual examination by other developers, as well as
automated code review through Static Analysis tools. These combined efforts ensure robust code
quality and security. Once a change has been reviewed, it is merged into the master branch, tested,
and subsequently deployed to production.

Static scanning

As applications are developed and deployed faster, an automated method of scanning “Function or
Container code” before they deploy is critical. Static analysis tools play a critical role in scrutinizing
source code for potential vulnerabilities, security weaknesses, and coding errors. These tools are
seamlessly integrated into the CI/CD pipeline to identify issues early in the development process.
Incorporating gates that specifically target common vulnerabilities and security risks is of utmost
importance. These gates act as a preventive measure, blocking the propagation of certain issue
types and ensuring the integrity of the software.

For scanning to be successful, the following are needed:

• Deep and clear visibility across environments – simple, easy and intuitive discovery and
controls of assets to be scanned.

• This would mean the ability to do code scannings, not for the complete code base
but just the affected and changed code as soon as code is checked in.

• Empowering the ability to analyze all code-dependent libraries, binaries, and
the modifications within libraries across various code versions is essential. This
encompasses scrutinizing third-party libraries and internal components that the code
relies on.

• Conducting thorough scans of deployment manifests for both Function-based and
Container Image-based Serverless architectures is pivotal. These scans identify
configuration-related vulnerabilities and potential misconfigurations that could
compromise the system’s security.

• Results accuracy – IntelliJ accuracy: Maintaining results accuracy holds significant
implications for security and development workflows. The capacity to manage False
Positives and False Negatives is essential, as it ensures that identified issues align with real
vulnerabilities, minimizing unnecessary alerts and false alarms.

• Timeout validation – Functions have a limited time span and will be stopped if they exceed
a time frame, which can cause issues for them.. Static scanning controls should identify and
rectify issues in code, like code portions that may prevent the code from being preempted
abruptly.

• Easy integration with development environments and IDEs (e.g.,Visual Studio, Eclipse,
IntelliJ.) – Developers use the tools to develop functions, while easy integration provides
developers with early warnings of issues in their code to fix them.

• Supporting early scanning and periodic or on-demand rescanning in case new issues are
found. This is essential as new vulnerabilities in components of code are found regularly.

• Open Source Issues – Open source components and an inventory of all open source libraries
in accounts need to be done in code scanning. This will help fix issues when needed.

47 © Copyright 2023, Cloud Security Alliance. All rights reserved.

• Enabling extensive programming language support, encompassing both compiled and
interpreted languages, while offering multifaceted advantages. Catering to developers’
language preferences enhances their productivity, while supporting different language
bindings is crucial for effective static scanning.

• Access to source code and binaries with source code tools like git, svn, GitHub, and
Bitbucket.

• Simplicity of integration in SDLC and CI/CD pipelines with tools like Jenkins, TeamCity,
Bamboo Maven, Ant, and so on. This is the best place to check for dynamic bindings in
software.

• Seamless integration with popular development environments and IDEs, such as Visual
Studio, Eclipse, and IntelliJ, significantly enhances developer workflows. This integration
empowers developers to identify and address security issues early in the development
process, contributing to both efficiency and code quality.

• Ability to control the checks the tools perform; buffer overflow, SQL Injection flaws,
Insecure deserialization, and so on.

Config Template scans

When functions are deployed, it is not done automatically but through Infrastructure-as-Code (IaC)
templates. These templates, like CloudFormation and Terraform, can be scanned to make sure the
functions are securely deployed without configuration issues which results in a compromise in security.

The templates can also look at the input and output of the functions, the way the functions are stitched,
and the ports open, and compare this against known bad behavior and help remediate the issues. When
the input is open to the internet, strict checks need to be applied to the code and risks highlighted.

Policy enforcement

Scanning code templates is critical for Serverless security. Code scanning and the related policies can
be enforced at different stages. When this happens, there are two workflows:

• Forcing policies in the CI/CD pipeline will be successful with easy enablement of developers
to use functional code scanning tools. This helps developers uncover and fix issues faster;
however, security teams in many cases do not know of CI/CD pipelines and pipelines cannot
be found and can control which is a good first step but does not guarantee that all functions
deployed are scanned.

• Deployment controllers: are CloudFormation controllers, Knative controllers, and Terraform
controllers. All code that needs to get pushed goes through these controllers. Security
teams can enforce policies in this place. Where all functions can be checked independently
of where the CI/CD pipelines run.

Policies can be in enforce mode (e.g. a policy that disallows any user from accessing a function),
where they prevent anything that does not meet the policy from being deployed. Monitoring mode is
where alerts are raised but the functions can still be run. This could lead to incidents being raised and
resulting in tickets in CI/CD tools like Jira.

48 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Different policies are necessary for various environments like development, testing, pre-production,
and production environments. The production environments may have stricter controls compared to
other environments and clear segregation from other environments.

Identity and access management controls for the functions and services that access the functions
may be applied.

As Serverless functions may limit the control of security teams, one of the critical aspects of
Serverless security is the comprehension and management of Identity and Access Management
(IAM) permissions, which consist of two parts:

1. IAM related to the User or Service/role responsible for creating, deploying, and deleting
functions,

2. IAM role and permissions of the deployed Function/container service itself.

Managing IAM permissions is hard in very dynamic and fast-changing environments in which new
functions are created, deleted, and deployed. The following should be performed:

a. The first step to security for FaaS is the visibility of the IAM roles and permissions (due to
rapid speed of change) that each function has and the permissions needed to deploy the
function. You cannot control what you cannot see. Functions need to use the least privilege
model for security.

b. The next step is to create a guardrail of IAM permissions, the set of permissions allowed
within an environment for a function. Any function deployed should be set up with that
permission. Any function with an IAM permission higher than that should be prevented, and
is taken through an exception path.

As defined above in the Policy Enforcement section, functionality can be achieved by putting controls
in deployment pipelines as business logic is deployed or in the controller deploying the functions.

Gateway and Interface controls

External interfaces (APIs) in code increase the attack surface. All-access to the FaaS and Container
Image-based Serverless environments externally is through Gateways. This makes the gateway
critical for the security of the environment.

To protect external access, the gateway should support controls and remediation for the “OWASP
Top 10” risks. See Section 6.4.7.2 API Security (OWASP top 10) for details.

Data protection and integration with encryption/KMS services to protect data at rest and in transit.

With the data protection regulations, especially in highly regulated industries (GDPR), FaaS can
leverage encryption and KMS to protect the data at rest and in transit. If we look at the shared
responsibility model, data and its accountability is a customer’s responsibility.

49 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Function orchestration controls and validation

• ‘Step functions’ help orchestrate function chaining. Security controls are needed to ensure
that if one step fails, the whole chain fails.

Detection and response

• Failure detection
• Policy violation detection
• Threat/Compromise detection
• Automate response
• Runtime detection and policy enforcement

The CSP’s capabilities vary significantly, with some third-party vendors providing serverless failure
detection. One good practice would be to assess the CSP native capabilities and see what else would
bring added value from the third-party world.

6.4 Delta/Additional Controls for Container Image-
Based Serverless
Cloud-native computation, while intricate and ever-evolving, hinges upon core components
that enable efficient compute resource utilization. These components are not only instrumental
for operational efficiency but also play a crucial role in safeguarding the security of workloads.
Considering that containers make it easy for developers to get the most use out of servers by
enabling them to deploy multi-tenant applications on a shared host, spinning up and shutting down
individual containers as per the need. To be able to support these needs, the developers need the
right environment for running containers.

Given that containers rely on software-based virtualization, opting for a container-specific operating
system is pivotal. Such an OS, characterized by its read-only nature and disabled extraneous services,
significantly reduces the attack surface, contributing to heightened security. This also provides
isolation and resource confinement that enable developers to run sandboxed applications on a
shared host kernel.

In the Container Image-based Serverless platforms where tenants are provided the choice to bring
their own OS images, or private Container Image-based Serverless platforms, it is pertinent to ensure
the operating system is secure, follows security configurations, uses minimalistic OS configurations,
and secures system calls from abuse by using Seccomp.

Secure computing (Seccomp) mode has been a feature of the Linux kernel since version 2.6.12. It can
be used to sandbox the privileges of a process, restricting the calls it is able to make from user space
into the kernel. Orchestration engines let the user automatically apply seccomp profiles loaded onto
a Node to respective Pods and containers. Similarly, on Windows, it is important to sandbox syscall
and filter kernel isolation in Windows per-process, limit and blacklist targets in Win32k per-process
and apply Windows file system filters.

50 © Copyright 2023, Cloud Security Alliance. All rights reserved.

6.4.1 Securing API Access to Container Image-based Serverless
Services

Kubernetes, an open-source orchestrator for deploying containerized applications, relies entirely
on its API-driven architecture. Thus, establishing rigorous control and limitations over who can
access the cluster and the actions they can perform through this API serves as the foundational
pillar of defense in ensuring its security. A Kubernetes cluster provides an orchestration API that
enables applications to be defined and deployed with simple declarative syntax. The Kubernetes
API introduces essential concepts such as deployments, simplifying zero-downtime software
updates, and service load balancers, which facilitate efficient traffic distribution across multiple
service replicas. These concepts streamline critical aspects of application management. Additionally,
Kubernetes provides tools for naming and discovery of services so that you can build loosely coupled
microservice architectures. All API communication must by default be TLS-encrypted, according to
Kubernetes. All API clients must be authenticated, even those that are part of the infrastructure like
nodes, proxies, the scheduler, and volume plugins. These clients are typically service accounts or use
x509 client certificates, and they are created automatically at cluster startup or are set up as part of
the cluster installation. Once authenticated, every API call is also expected to pass an authorization
check.

Kubernetes Control plane components description can be found in the Kubernetes.io website.

6.4.2 Container Image-based Serverless Configuration and Policy
Enforcement

Kubernetes Control Plane:

The main components of the control plane include the Kubernetes API server, which provides a REST
API for controlling Kubernetes. A user with full permissions on this API has equal root access on
every machine in the cluster. The kubectl, which is a command-line/client for this API, can be used to
make requests of the API server to manage resources and workloads. A User who has write-access to
this Kubernetes API can control the cluster as a root user. Any ports on which the APIs server listens
for requests must be closed, and appropriate authentication and authorization of users should be in
place. See details in section 6.4.5 Access Management. Kubernetes role-based access controls are
used for configuration of flexible authorization policies for managing permissions around Kubernetes
resources.

The Kubernetes API endpoint should not be exposed to the internet. The endpoint should only be
accessible within the network that the Kubernetes cluster is deployed on. The Kubernetes API server
should be configured to scale based on the number of requests to ensure that the cluster can handle
large spikes in traffic.

The Kubelet is the agent on each cluster node responsible for interacting with the container runtime
to launch pods, report node and pod status, as well as collect metrics. Kubelets in the cluster also
have an API; where other components integrate and provide instructions, such as start and stop
pods, and so on. Suppose unauthorized users get access to this API on any node to execute code

https://kubernetes.io/docs/concepts/overview/components/

51 © Copyright 2023, Cloud Security Alliance. All rights reserved.

on the cluster. In that case, it is possible to gain control of the entire cluster. It is important to
restrict access to Kubelet API and limit the kubelets permissions by enforcing NodeRestriction in the
--admission control settings3 on the API. This helps restrict kubelet so that it can modify only pods
that are associated with it. Kubelets also need client certificates to be able to communicate with the
API server. These certificates should be rotated periodically and may be set to rotate automatically.

Kubernetes stores configuration and state information in a distributed key-value store called etcd.
Any user that can write to etcd can effectively control the Kubernetes cluster. Even just reading the
contents of etcd could easily provide helpful hints to a would-be attacker. All Kubernetes Secrets
should be encrypted prior to being stored in ETCD. Secrets should not rely on etcd encryption at
rest for security. The Kubernetes API should be deployed in a highly available and fault-tolerant
deployment. A highly available deployment fulfills the availability requirement of information
security, ensuring that the cluster can be administered during an outage or attack/incident, and
quality of service can be maintained. The etcd nodes should be configured with security to only
accept traffic from the API Server on port 2379. The etcd nodes should also be configured to only
accept traffic from other etcd nodes on port 2380. The etcd nodes should be deployed behind a
highly available load balancer. This will ensure that traffic is evenly balanced across nodes and so the
etcd nodes are not directly exposed to the API Server. The etcd nodes should be deployed in an odd
number so that they can properly elect a leader in the cluster. This is required for high availability.
The etcd nodes should be deployed to separate instances from the API Server and other Kubernetes
components. The Kubernetes Audit, Authenticator, API, Controller Manager, and Scheduler logs
should be stored and monitored for issues. Common issues include repeated authentication failures.

Basic authentication using static passwords should be disabled. The Kubernetes cluster should
be integrated with enterprise identity and access management. Kubernetes hosts should not
have public IP addresses. Kubernetes hosts should be running on an approved operating system.
[Kubernetes, 2021]

Data plane

Pod Security Policies should be defined at the cluster level and consumed by all pods in the
cluster. By default, pods should not be allowed to run as privileged users and should not escalate
permissions. Kubernetes worker nodes should not have public IP addresses assigned and should only
serve traffic behind a load balancer or proxy server.

Pods are dynamically provisioned with least privilege credentials based on the role. These credentials
should be generated by a Kubernetes webhook that is integrated with the backend provider. Pods
should not inherit the credentials of the underlying host. Pods should have no privileges on the
underlying cloud provider by default unless explicitly assigned by a Service Account.

All pods should be assigned a Service Account or default Service Account with the least privilege by
default.

Securing pods and the containers that run as part of pods is a critical aspect of protecting container
environments. These are individual units of compute that can be subject to attacks that may be used

3 http://bit.ly/2IgwP7G

http://bit.ly/2IgwP7G

52 © Copyright 2023, Cloud Security Alliance. All rights reserved.

to attack Kubernetes clusters. For defense in depth, applying security at the lowest component unit
level ensures greater fine-grained controls implemented on an individual application component.
Kubernetes and other container orchestration systems provide capabilities that enable users to
harden and secure pods, e.g. Kubernetes security context and security policies, such as Pod Security
Policies.

There are other open-source tools, such as Open Policy Agent (OPA), which can also enforce
security policies.

There may be specific requirements where deviation from those policies is needed. Hence, it is
essential to apply security policies to all containers within a given pod, so a security context for
individual containers can be specified. Therefore, the security context field must be included in the
container manifest; the constraints for an individual container will override those specified for the
pod when there is overlap or conflict.

6.4.3 Base Image Mgmt and Hardening

Base images

Base images are the foundation for all images and could be considered equivalent to base-level
operating systems. Base images could be owned by cloud development teams, or the operating
system team within the organization. These images are pulled from various official repositories
(Docker, Quay, etc.) and stored in the organization’s image registry or repository, which should
be made available to engineering teams as approved and authorized versions for use within the
organization.

Workflow for developing
with containers

Developer commits code

Triggers Update

Pulls latest
signed image Feedback Loop Feedback Loop

Pulls latest
stable image

Sends
signed image RegistryCI/CD Platform Production

Environment

Ongoing
AuditingImage Scanner

https://www.openpolicyagent.org/

53 © Copyright 2023, Cloud Security Alliance. All rights reserved.

As per NIST 800-190, organizations should use minimalistic container-specific host OSs, with all
other services and functionality disabled whenever possible. Organizations should take steps to
enhance the security of these images by following industry best practices, including patching and
hardening, in accordance with the Center for Internet Security (CIS) Hardening Benchmarks. This
helps ensure that only the essential ports, protocols, and services needed to support business
requirements are made available.

The use of a CI/CD pipeline is needed in order to automatically build, tag, and test the base image.
Then, supplementing this by requiring that the development, testing, and security teams sign
images before deploying them into production is the next step.

A few Base Image Security hardening best practices:

Remove or disable
default Accounts

Default account names and passwords are commonly known in the attacker
community.

Configure OS User
Authentication

The base images should be configured to authenticate a prospective user/
service and should be used with encryption. MFA should be used whenever
possible. Organizations should implement TLS to protect sensitive
authentication information during transmission over untrusted networks.

Limit access
permissions

Configure RBAC and ABAC access controls and ensure that all users have
the necessary privileges to carry out their tasks—no less and no more.

Repudiation &
Integrity

Container images (through an image manifest) should be protected from
modification using digital signatures securely stored in a notary.

Configure Image
registry

Upstream versions of base images should undergo security hardening
and then should then be made available to tenant engineering teams as
approved and authorized versions for use within the organization.

Address Image
vulnerabilities

Patches and other mitigating controls should be deployed as soon as
possible (based on organizational business and compliance needs)
whenever new security vulnerabilities are discovered and include
immediate testing for the vulnerability to confirm the risk has been
addressed.

Securing the
Software Supply
chain

An important aspect of the deployment pipeline is ensuring that the
deployments follow the organization’s approved processes. A few
methods for establishing this are the ones with Binary Authorization, tags,
attestations, and so on.

Tagging the container images with the corresponding commit hash makes
it easy to trace the image back to a specific point in history. Attestors
can state whether an image meets a particular criterion by adding notes
about images in Container Registry at each of the critical stages of your
deployment pipeline.

With binary authorization, a policy can be configured that requires specific
attestations on the image before the image can be deployed across
clusters. Images can be undeployed if the defined policy is not satisfied.

54 © Copyright 2023, Cloud Security Alliance. All rights reserved.

6.4.4 Kubernetes Configurations and Service Mesh Policies
Enforcement

Kubernetes (K8s) is an open-source orchestration platform that automates the deployment, scaling,
and management of containerized applications. The Kubernetes control plane stores the state and
configuration data for the entire cluster in ectd, a persistent and distributed key-value data store.
Each node has access to ectd, and through it, nodes learn how to maintain the configurations of the
containers they are running.

K8s control plane communicates with the components in the cluster through the kube-Apiserver.
It ensures that configurations in etcd match the configurations of containers running in the cluster.
This is carried out using declarative API. However, K8s does not specify a standard (or mandate) for
configuration language/system (JSON, YAML).

The core of Kubernetes’ control plane is the API server. The API server exposes an HTTP API that lets
end-users, different parts of your cluster, and external components communicate with one another.
The Kubernetes API lets you query and manipulate the state of API objects in Kubernetes (e.g., Pods,
Namespaces, ConfigMaps, and Events). Most operations can be performed through the kubectl
command-line interface, which uses the API via REST calls.

Network Policy is a Kubernetes feature to configure how groups of pods are allowed to communicate
with each other and other network endpoints. Network Policy operates at Layers 3 (Network) and
4 (Transport) in the OSI model. Kubernetes network policy specifies how groups of Kubernetes
workloads, which are hereafter referred to as pods, are allowed to communicate with each other and
other network endpoints. Network policy resources use labels to select pods and define rules which
specify what traffic is allowed to the selected pods.

Pod IP addresses are not durable and will appear and disappear in response to scaling up or down,
application crashes, or Node reboots. Services were built into Kubernetes to address this problem.
A Kubernetes Service manages the state of a set of pods, allowing you to track a set of pod IP
addresses that are dynamically changing over time. Services act as an abstraction over pods and
assign a single virtual IP address to a group of pod IP addresses. Any traffic addressed to the virtual
IP of the Service will be routed to the set of pods that are associated with the virtual IP. This allows
the set of pods associated with a Service to change at any time — clients only need to know the
Service’s virtual IP, which does not change.

Istio service mesh is a security as a service layer that offers policy-based routing and policy-based
authorization for supported protocols. Istio policy operates at the “service” (OSI Layer 7). The service
mesh will inject the proxy and node agent containers into the application’s deployment specification,
sharing the pod’s network namespace and transparently intercepting traffic to apply policy. The
node agent will use the pod’s service account token to acquire platform certificates for the proxy and
serve the certificate/key to the proxy using the proxy’s secret discovery service (SDS). For service
mesh-enabled pods, all TCP traffic into and out of the pod will be redirected through the Envoy proxy
running as a sidecar container in the pod, and can be extended to support external services as shown
in the diagram below.

55 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Kubernetes Policy Enforcement Using Istio

Service-to-Service Inside Istio:
Both services are inside the service mesh in a single cluster and are deployed as Kubernetes native
services, and the Istio control plane can automatically discover their definitions and configure the
proxies appropriately.

External Service to Istio:
This represents a client (e.g., curl) or service outside the mesh connecting to a service inside the
mesh (shown as SvcA-to-SvcB in the diagram above). For this communication to work, the client
needs a client certificate, and SvcB must also be integrated with the Istio ingress gateway

Istio to External Service:
In this case, a client inside the mesh needs to initiate connections to an external service, shown as
SvcC-to-SvcD in the diagram.

In addition to the Istio Proxy/Envoy sidecar, application pods could include an OPA sidecar, as
suggested in the Github blog. When Istio Proxy receives API requests destined for your microservice,
it checks with OPA to decide if the request should be allowed.

Admins

Istio Data Plane

Pod IP tables

Routing/Policy for
service B

Service A

Kube-api server

Istio control plane

Istio proxy

Pod IP tables

Service A

Istio proxy

Routing/Policy for
service A

Pilot

56 © Copyright 2023, Cloud Security Alliance. All rights reserved.

6.4.5 Access Management Controls

The Apiserver is configured to listen for remote connections on a secure HTTPS port (443) with
one or more forms of client authentication enabled. One or more forms of authorization should
also be enabled.

Authentication/Authorization

All communications in the control plane are through mutually authenticated TLS. A firewall rule is
configured to allow external HTTPS access to the API. Users access the API using Kubectl, client
libraries, or by making REST requests. Both human users and Kubernetes service accounts can be
authorized for API access. When a request lands at the API server, it performs a series of checks to
determine whether to serve the request or not and, if it does serve the request, whether to further
validate using defined policy. Authorization is usually implemented by the K8s RBAC authorization
module. However, they can be implemented using alternate methods, such as advanced
authorization policies through Open Policy Agent (OPA) by leveraging the Webhook authorization
module.

Admission controller/Pod Security Policy

Once an API request has been authenticated and authorized, the resource object can be subject
to validation or mutation before it’s persisted to the cluster’s state database, using admission
controllers. An admission controller is a piece of code that intercepts requests to the Kubernetes API
server prior to the persistence of the object, but after the request is authenticated and authorized.

Some Admission Controllers are provided below:

• DenyEscalatingExec — if it’s necessary to allow your pods to run with enhanced privileges
(e.g., using the host’s IPC/PID namespaces), this admission controller will prevent users
from executing commands in the pod’s privileged containers.

• PodSecurityPolicy — provides the means for applying various security mechanisms for all
created pods. The PodSecurityPolicy objects define a set of conditions that a pod must run
with to be accepted into the system, and defaults for the related fields.

• NodeRestriction — an admission controller that governs the access a Kubelet has to cluster
resources.

• ImagePolicyWebhook — allows for the images defined for a pod’s containers, to be checked
for vulnerabilities by an external ‘image validator.’

Open Policy Agent Gatekeeper (CRD-based policies)

Kubernetes allows decoupling policy decisions from the inner workings of the API Server by means
of admission controller webhooks, which are executed whenever a resource is created, updated, or
deleted. Gatekeeper is a validating webhook that enforces CRD-based policies executed by Open
Policy Agent, a policy engine. Additionally, Gatekeeper’s audit functionality allows administrators
to see what resources are currently violating any given policy. Finally, Gatekeeper’s engine allows
administrators to detect and reject non-compliant commits to an infrastructure-as-code system’s
source of truth, further strengthening compliance efforts.

https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://www.openpolicyagent.org/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://github.com/open-policy-agent/opa
https://github.com/open-policy-agent/opa

57 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Istio Service Mesh - Authentication

Istio supports mutual TLS authentication between services where the client and server proxies
exchange certificates. The certificates are verified against the CA by the proxy, and the Secure
Production Identity Framework for Everyone (SPIFFE) URI from the cert is extracted and used as the
identity of the peer. This standard authentication mechanism allows us to interoperate with clients and
servers outside of the service mesh integrated with the CA. Enabling mutual TLS can be configured
at the cluster, namespace, and service level. An authentication policy can be used to enforce client
certificate authentication. Istio supports additional client authentication methods as well (e.g., JWT).

Istio Service Mesh - Authorization

Istio’s authorization feature provides namespace-level, service-level, and method-level access control
for services enabled with service mesh. It features:

• Role-Based semantics, which are simple and easy to use
• High-performance operation, as authorization is enforced natively in the local envoy proxy
• Support for HTTP and GRPC protocol attributes and plain TCP connections

Namespace administrators can configure authorization policies for services in their namespace. The
policies are configured as k8s custom resource definitions (CRDs) using the K8s API. Like any other
K8s CRD, the authorization policies are namespaced, meaning the service admin must have write
access to the policy CRDs in the service’s K8s namespace to affect the service’s authorization policy.

When authorization is enabled for a service, all of the inbound requests to a service will fail unless it
is permitted by a policy (who can do what under which conditions).

6.4.6 Kubernetes Risks & Controls

Example: API server access

Internet

Internet

etcd

Authenticator

User

JSON web
token X.509 certs

Deployment of
configured pods

Resource
management

Network-proxy
load-balancer

Creates
containers

Saves state

Gets configuration
of a pod

Scheduler Controller Kubelet

Container Container

Docker

Pod Pod

Kube proxy

Control plane/master node Worker Node

Kube_apiserver

58 © Copyright 2023, Cloud Security Alliance. All rights reserved.

The API server is the hub of all communication within the cluster. It is on the API server where the
majority of the cluster’s security configuration is applied. Suppose somebody or something gains
unsolicited access to the API. In that case, it may be possible for them to acquire all kinds of sensitive
information and gain control of the cluster itself. Carefully managing access to the API server is
crucial as far as security is concerned.

The API server controls access to all workloads on K8s clusters and the resources they use. It is on
the API server where the majority of the cluster’s security configuration is applied. If a bad actor gains
unauthorized access to a privileged resource via K8s API server, they can access any cluster resource
which is secured by K8s RBAC (e.g. Secrets), access any file on cluster nodes, etc. Carefully managing
access to privileged Resources is therefore crucial to maintain the integrity of a cluster. One of the
most basic needs of a new application that’s deployed on Kubernetes is to expose a couple of web
endpoints on the public internet with different URLs and secure them with SSL. It is important to
manage the endpoint security for this.

The list below contains examples of exploits that can happen if access to API server is not protected:

• A Denial of Service attack (DOS) is when the victim service is overloaded with many fake
requests. As a result, the service is no longer capable of responding to legitimate requests.
In extreme cases, the attack leads to depleting the system resources of the entire machine
(CPU, memory, network bandwidth, disk I/O, etc.), causing even more damage.

• Netflix announced eight vulnerabilities in their advisory that affect HTTP/2
implementations; two of them affect the Go net/http library: CVE-2019-9512 “Ping Flood”
and CVE-2019-9514 “Reset Flood.” Any application written in Go that uses the net/http
package to listen for HTTP/2 requests is vulnerable to DoS attacks, including Kubernetes.

• CVE-2019-9512 “Ping Flood”: the attacker hammers the HTTP/2 listener with a continuous
flow of ping requests. The recipient - to respond to each request - starts queuing the
responses one after the other. That queue could grow, allocating more memory and CPU
until the application crashes.

• CVE-2019-9514 “Reset Flood”: this attack has a similar theme as the first, except that it
exploits the RST_STREAM frame of HTTP/2. RST_STREAM is simply a frame type that - when
sent from a peer - signals to the other peer that the connection needs to be canceled. So, a
DoS attack can be crafted by opening several streams to the server and sending invalid data
through them. Having received invalid data, the server sends RST_STREAM frames to the
attacker to cancel the “invalid” connection. With lots of RST_STREAM responses, they start
to queue. As the queue gets more massive, more and more CPU and memory get allocated
to the application until it crashes.

• CVE-2018-1002105 - incorrect handling of error responses to proxied upgrade requests in
the kube-apiserver.

• CVE-2016-7054 (OpenSSL advisory) [High severity] - TLS connections using *-CHACHA20-
POLY1305 ciphersuites are susceptible to a DoS attack by corrupting larger payloads.

• According to our 2018-2019 Global Application & Network Security report, HTTPS flood
attacks or DDoS attacks that exploit SSL/TLS were the most commonly reported form of
application-layer attacks in 2018. By using SSL/TLS, we enjoy authenticity, integrity and
confidentiality. However, when it comes to the destination server, the SSL/TLS connection
requires large amounts of allocated resources – 15 times more than from the requesting
host, to be exact.

https://golang.org/pkg/net/http/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9512
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9514
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1002105
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7054
https://www.openssl.org/news/secadv/20161110.txt
https://www.openssl.org/policies/secpolicy.html#high
https://www.radware.com/ert-report-2018/

59 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Example : Misconfiguration

Kubernetes is a complex system that offers multiple configuration options. These configurations
should be carried out securely. Security misconfigurations can expose sensitive user data and system
details that may lead to full server compromise. Security misconfigurations are commonly the
result of insecure default configurations, incomplete or ad-hoc configurations, open cloud storage,
misconfigured HTTP headers, unnecessary HTTP methods, and so on. Attackers will take advantage
of these misconfigurations to exploit these unpatched flaws, common endpoints, or unprotected
files and directories to gain unauthorized access.

Mitigation strategies:

• Establish repeatable hardening and patching processes
• Disable unnecessary features
• Restrict administrative access
• Define and enforce all outputs, including errors
• Ensure the host is secure and configured correctly; check your configuration against CIS

Benchmarks
• Autochecker assesses conformance with these standards automatically
• Establish a repeatable hardening process leading to the fast and easy deployment of a

properly locked-down environment
• Kubernetes stores configuration and state information in a distributed key-value store called

etcd; any user that can write to etcd can effectively control the Kubernetes cluster
• Review and update configurations across the entire API stack; the review should include

orchestration files, API components, and cloud services
• Continuously assess the effectiveness of the configuration (configuration flaws) in settings

in all environments via an automated process
• Configure custom dashboards and alerts, enabling suspicious activities to be detected and

responded to earlier
• Continuously monitor the infrastructure, network, and API functioning (possibly through

automation)

Example: Vulnerability scanning

Scanning an image for vulnerabilities throughout its lifecycle is crucial. It is also important for
weighing your organization’s risk tolerance against maintaining the velocity. An organization will
need to generate its own policies and procedures for handling image security and vulnerability
management. Deploying container images with vulnerabilities can lead to attacks carried out by
threat vectors looking to exploit these vulnerabilities.

Best practices:

Start by defining your criteria for what constitutes an unsafe image, using metrics such as:

• Vulnerability severity
• Number of vulnerabilities
• Whether those vulnerabilities have patches or fixes available
• Whether the vulnerabilities impact misconfigured deployments

60 © Copyright 2023, Cloud Security Alliance. All rights reserved.

6.4.7 Additional Security

6.4.7.1 Threat Modeling

Threat modeling is a valuable practice that should come into play when discussing additional security
controls for container image-based serverless applications. Threat modeling helps identify and
address potential security threats and vulnerabilities systematically. Here is where threat modeling
fits in when considering additional security controls for such environments:

Identification of Attack Vectors: Threat modeling helps identify the various attack vectors and
potential threats that the container image-based serverless applications may face. This includes
considering how attackers might exploit vulnerabilities within the container images or in the
serverless runtime.

Risk Assessment: By conducting threat modeling, the risks associated with different components of
the serverless application,can be assessed, including the container images. This assessment allows
us to prioritize security controls based on the severity and impact of potential threats.

Designing Security Controls: Threat modeling informs the design and implementation of additional
security controls. It helps to determine what specific measures are needed to mitigate identified
threats effectively. For container image-based serverless applications, this could include measures
such as runtime security, access controls, and network segmentation.

Secure Coding Practices: Threat modeling also emphasizes the importance of secure coding
practices during the development of container images and serverless functions. Developers can
focus on addressing specific threats and vulnerabilities that have been identified through the threat
modeling process.

Testing and Validation: Once security controls are in place, threat modeling guides the testing
and validation phase. It helps ensure that the implemented controls are effective in mitigating the
identified threats. This can include vulnerability scanning, penetration testing, and code reviews.

Continuous Improvement: Threat modeling is an ongoing process. As the container image-based
serverless applications evolve, so do potential threats. Regularly revisiting and updating the threat
model ensures that security controls remain relevant and effective over time.

In summary, threat modeling is an integral part of the security lifecycle for container image-
based serverless applications. It helps to proactively identify and address security threats, design
appropriate security controls, and continuously improve the security posture to protect against
evolving threats in these dynamic environments.

61 © Copyright 2023, Cloud Security Alliance. All rights reserved.

6.4.7.2 Kubernetes Security Best Practices

Kubernetes is a robust open-source container orchestration engine that is pivotal in automating
the deployment, scaling, and holistic management of containerized applications. Kubernetes K8s
cluster consists of worker nodes/pods that host applications. Within the Kubernetes K8s cluster,
the architecture involves worker nodes responsible for hosting applications encapsulated within
pods. Simultaneously, the Kubernetes control plane oversees pod network management across the
entire cluster. The following sections delve into the realm of Kubernetes and container security best
practices, each uniquely addressing key aspects to fortify a deployment. These sections include:

Part One

TLS everywhere
Enabling TLS across every compatible component not only thwarts traffic sniffing but also provides
robust authentication for both communication endpoints, significantly enhancing overall security.

Run a service Mesh
A service mesh constitutes an intricate network of encrypted, persistent connections, facilitated
by high-performance ‘sidecar’ proxy servers like Envoy. This integration brings forth a suite of
functionalities encompassing advanced traffic management, comprehensive monitoring, and policy
enforcement—all achieved without necessitating alterations to microservices.

Use Network policies
Leveraging network policies becomes imperative to strengthen security. By default, Kubernetes
permits all pod-to-pod traffic, but this openness can be controlled and fortified using Network
Policies, ensuring a more controlled and secure networking environment.

Use Open Policy Agent (OPA)
Incorporating Open Policy Agent (OPA) empowers the enforcement of tailor-made policies on
Kubernetes objects seamlessly, bypassing this way the need for recompilation or extensive
reconfiguration of the Kubernetes API server.

Logging & Monitoring
Embracing logging and monitoring is a cornerstone in proactively identifying anomalies across
both application and infrastructure tiers. By diligently capturing patterns such as attacks, unusual
activities, or signs of potential compromise, this practice facilitates early detection and response.

Consider using a Bastion host
A bastion host, engineered as a specialized network entity, serves as an important barrier against
attacks. By employing this meticulously configured host, secure access to Kubernetes masters is
ensured, while privileged user activities are also monitored for heightened security.

Private networking
To ensure secure connectivity with corporate networks, prevent direct Internet access, and minimize
the potential for security breaches, it is important to deploy both Kubernetes master and worker
nodes within private subnets. This proactive measure guarantees secure connectivity with corporate
networks, mitigates direct exposure to the Internet, and substantially minimizes the potential attack
surface.

62 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Use Linux Security Features
The Linux kernel has several security extensions (SELinux) that can be configured to provide the least
privilege to applications. The Linux kernel has many overlapping security extensions (capabilities,
SELinux, AppArmor, seccomp-bpf) that can be configured to provide less privilege to applications.

Cluster node images
When you are building in a Kubernetes cluster, you will be using a Linux image. It needs to be CIS
benchmarked to make sure all the Linux security controls are in place. Not doing the operating
system hardening process can open up the infrastructure to software vulnerabilities. It is also
important to consider the entire Software supply chain security to ensure that the software chain
of custody is being followed according to security best practices. Binary Authorization, tags,
attestations, and so on, are examples of how this can be implemented.

Separate and Firewall Your etcd cluster
etcd stores information on state and secrets and is a critical Kubernetes component; it should be
protected differently from the rest of your cluster.

Rotate Encryption keys
A security best practice is to regularly rotate encryption keys and certificates to limit the “blast
radius” of a key compromise.

Part Two: Container Security

Use PodSecurityPolicies
Policies are a vital but often overlooked piece of security that simultaneously functions as a
validating and mutating controller. PodSecurityPolicy is an optional admission controller enabled by
default through the API; thus, policies can deploy without the PSP admission plugin enabled.

Statically Analyze YAML
Where PodSecurityPolicies deny access to the API server, static analysis should be used in the
development workflow to model an organization’s compliance requirements or risk appetite.

Run Containers as a Non-root user
Containers that run as the root frequently have far more permissions than their workload requires
which, in case of compromise, could help an attacker further their attack.

Part Three: Automation Security

Image Scanning
All the deployments should be controlled through an automated CI/CD environment. At a high level,
everything in Kubernetes is deployed as a container image. When someone creates an application, it
becomes a container image and gets added to the container registry. The container image scanner
needs to be part of the CI/CD pipeline. When someone creates a container image, it needs to be
continuously scanned for vulnerabilities. You can do image whitelisting through an admission
controller in Kubernetes. If your application uses certain images, those need to be approved.

63 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Secret Management
Your clusters also need to be integrated via secret management systems. This ensures application
pods will automatically receive required passwords and secrets at runtime based on the AppRoles
attached to the pods.

Code Analysis
Code scanning and static code analysis are also integral parts of automation security. When working
on any application code in Kubernetes, you should scan the source code to ensure it does not have
any vulnerabilities or any hard-coded anomalies.

Third-Party Vulnerability Scanning
Vulnerability assessments are a core requirement for organizations. This is especially necessary
when using upstream components which could be vulnerable. Third-party vulnerability scanning
(BlackDuck, Tenable, etc.), when conducted continuously, can help organizations stay ahead of
threat agents. These standard vulnerability scanning tools scan open-source libraries for known
vulnerabilities published in various vulnerability databases (such as National Vulnerability Database).

Once the vulnerabilities are identified, the remediation of these vulnerabilities will depend on how
these might impact an organization’s operations, business, regulatory requirements, or reputation.
For example, PCI DSS 3.2.1 requires that known vulnerabilities of high/critical type should be
remediated within 30 days.

DevSecOps (CI/CD)
Security should be built into the entire DevSecOps process. The Agile process that feeds DevSecOps
must also be secure and security user stories must be in the backlog. Embed security throughout
the software lifecycle to identify vulnerabilities earlier, perform faster fixes, therefore, reduce cost.
Continuous monitoring to ensure devices, tools, accounts, and so on, are continuously discovered
and validated.

Part Four: Identity and Access Management

Enable RBAC with Least Privilege
Role-based access control (RBAC) provides fine-grained policy management for user access to
resources, such as access to namespaces. Centralizing authentication and authorization across an
organization (aka Single Sign-On) helps onboarding, offboarding, and consistent permissions for
users.

Use Third-Party Auth for API Server
To secure and manage access to Kubernetes APIs, administrators need to create detailed
authentication and authorization policies and implement advanced, full-featured screening
technologies.

64 © Copyright 2023, Cloud Security Alliance. All rights reserved.

6.4.7.3 API Security (OWASP Top 10)

APIs are critical to automating container management at scale. APIs are used to:

• Validate and configure the data for pods, services, and replication controllers.
• Perform validation on incoming requests and invoke triggers on other components.

API threats are considered the most common attack vector. Threat agents exploit these vulnerabilities
in the APIs to breach the applications. Please refer to OWASP Top 10 threats and mitigations

6.4.7.4 Kubernetes Policy
Kubernetes allows decoupling policy decisions from the inner workings of the API Server by means
of Admission Controller Webhooks. Admission webhooks are HTTP callbacks that receive admission
requests and do something with them. There are two types of admission webhooks, validating
admission webhook and mutating admission webhook. Mutating admission webhooks are invoked
first and can modify objects sent to the API server to enforce custom defaults. After all object
modifications are complete, and after the incoming object is validated by the API server, validating
admission webhooks are invoked and can reject requests to enforce custom policies.

Open Policy Agent (OPA) is an open-source, general-purpose policy engine that unifies policy
enforcement across the stack. It provides a high-level declarative language that allows you to specify
policy as code and use simple APIs to offload policy decision-making from your software. OPA
enables you to enforce policies in microservices, Kubernetes, CI/CD pipelines, API gateways, and
more. Gatekeeper is a validating (mutating) webhook that enforces CRD-based policies executed by
Open Policy Agent. Gatekeeper’s audit functionality allows administrators to see what resources are
currently violating any given policy.

Example of validating webhooks (LINK):

• Disallow running of privileged containers
• Disallow shared usage of host namespaces
• Restrict all usage of host networking and ports
• Restrict any usage of the host filesystem
• Restrict Linux capabilities to the default set
• Restrict usage of defined volume types
• Privilege escalation to root
• Restrict the user and group IDs of the container
• Restrict allocating an FSGroup that owns the pod’s volumes
• Requires Seccomp profile

https://owasp.org/www-project-api-security/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://github.com/open-policy-agent/opa
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

65 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Kubernetes policy best practices:

• All network connections should be subject to enforcement through policies.
• Establishing the identity of a remote endpoint is always based on multiple criteria including

strong cryptographic proofs of identity.
• Network-level identifiers like IP address and port are not sufficient on their own as they can

be spoofed by a hostile network.
• Compromised workloads must not be able to circumvent policy enforcement.
• Use encryption to prevent disclosure of data to entities snooping network traffic.
• Start by applying the “default-deny-all” network policy. Only connections explicitly

whitelisted by other network policies should be allowed.
• Network policies are namespaced and are created for each namespace.
• In order to receive traffic from outside sources, designate labels applied on pods to allow

access from the internet and to create network policies that target those labels.
• For a more locked-down set of policies, you would ideally want to specify more fine-grained

CIDR blocks as well as explicitly list out allowed ports and protocols.

6.5 Compliance and Governance
When we leverage the Cloud computing model, the organization is able to not only reduce
investments in hardware, facilities, utilities, and data centers, but in theory transferring this risk
to the CSP should reduce overall risk. There is a broad assumption being that the Cloud provider
is making ongoing investments in platform security and managing those areas of risk, but how do
we know that? Ongoing and regular assessment of the cloud provider’s performance and quality
of service is an essential part of the organization’s security assurance program. The organization’s
sourcing team should regularly analyze and assess the state of the cloud provider to ensure that
contractual obligations are being met.

OPA

Pod

sidecar

OPA

Pod

sidecar

OPA

Pod

sidecar

etcd

Validating-webhook

Example: undeploy
images w.

vulnerabilities

Mutating webhook

Example: add a
sidecar

Authorization
(RBAC, policy)

Admission Controller

kube_apiserver

Policy Definition

Mutating
admission

Object
schema

validation

Validating
admission

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.14/#ipblock-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.14/#networkpolicyport-v1-networking-k8s-io

66 © Copyright 2023, Cloud Security Alliance. All rights reserved.

The security team’s focus should be directed to identifying risk themes related to Serverless
applications being deployed by development teams. An analysis of the risks or risk themes related
to Serverless computing can be examined and used to develop a better understanding of overall risk.
We can then form risk statements that can be used to determine the likely harm resulting from a
particular risk and begin an assessment of what to do about the risk. Any residual risks can then be
recorded in the organization’s GRC system.

It is hard to protect and govern an environment without having a view of all the assets.

6.5.1 Asset Management for Serverless

The asset management system requires a mechanism designed to handle the ephemeral
nature of Cloud compute. The ephemeral nature of Cloud compute creates a challenge in asset
management and incident response. One of the best approaches is to integrate automated asset
tracking within your CI/CD pipeline. This way, any time a new serverless function is deployed or
changes, the corresponding change can be recorded, updated, and the asset tagged accordingly.
Monitoring, alerting, and audit actions and changes to the environment are updated in real-time.
This information can then be integrated with systems to automatically respond and take action.
This way, gaps in visibility are closed, and confusion or incorrect response during an actual incident
can be avoided. Alternatively, organizations can also adopt a polling approach towards gathering
asset inventory. In serverless, APIs activated for the organization are polled a certain number of
times per day. The information is updated in the organization’s asset inventory by taking delta of two
consecutive polling runs.

When we leverage the Cloud computing model the organization can reduce investments in
hardware, facilities, utilities, and data centers, and in theory, transferring this risk to the CSP
should reduce overall risk. There is a broad assumption that the Cloud provider is making ongoing
investments in platform security and managing those areas of risk, but how do we know that?
Ongoing and regular assessment of the cloud provider’s performance and quality of service is an
essential part of the organization’s security assurance program. The organization’s sourcing team
should regularly analyze and assess the state of the cloud provider to ensure that contractual
obligations are being met.

The security team’s focus should be identifying risk themes related to Serverless applications
deployed by development teams. An analysis of the risks or risk themes related to Serverless
computing can be examined and used to better understand overall risk. We can then form
risk statements that can determine the likely harm resulting from a particular risk and begin
an assessment of what to do about the risk. Any residual risks can then be recorded in the
organization’s GRC system.

Due to the nature of serverless computing, developers no longer have to worry about infrastructure,
network, or host security. Serverless computing changes the nature of concerns of the underlying
infrastructure to reducing reliance on the surrounding environment.
Network and API gateway for example still remain a concern, but it is the complexity of inspection
that changes in serverless. However, as time has shown, new attack vectors emerge as the progress
continues.

67 © Copyright 2023, Cloud Security Alliance. All rights reserved.

6.5.2 Serverless Governance

Forward-thinking approaches to serverless governance aim to strike a balance between agility and
control, harnessing the full potential of serverless while addressing security, compliance, and cost-
efficiency challenges.

Elements of Governance:

• Asset Inventory – Leveraging a combination of the CI/CD pipeline, CMDB, and asset
metadata history maintained by the CSP to develop a complete view of assets that need
protection.

• Shared Responsibility – Customer or Application Owner and CSP; Stakeholders and
Regulators Mandate.

• RACI – Responsible, Accountable, Consulted, Informed. This framework helps clarify roles
and responsibilities within the governance processes.

• Metrics – Gathering and analyzing performance metrics and operational data from serverless
functions and services. Metrics provide insights into resource usage, latency, error rates,
and overall system health, enabling informed decision-making and optimization.

• Automation – Implement automation for serverless management tasks, including
provisioning, scaling, deployment, monitoring, and error handling. Automation tools and
scripts help streamline operations and reduce manual intervention, improving efficiency and
reliability.

• Performance – Efficiency and effectiveness. Implement monitoring and observability tools
to track serverless functions’ performance, troubleshoot issues, and ensure reliability.

• Service Agreement – Service-level Agreement (SLA) to ensure the availability and reliability
of serverless services.

Complement the broader serverless governance framework by enhancing operational efficiency,
scalability, and visibility into the serverless environment by implementing the following:

a. Develop single-purpose functions that are stateless: Since functions are stateless
and persist for a limited duration only, writing single-purpose codes for a function is
recommended. This limits the execution time of a function which has a direct impact on
cost. In addition, single-purpose codes are easier to test, deploy and release, thus improving
enterprise agility. Finally, even though statelessness may be perceived as a limitation, it
provides infinite scalability to a platform for handling an increasing number of requests,
which would not have been possible otherwise.

b. Design push-based, event-driven patterns: Designing push-based and event-driven
architecture patterns where a chain of events propagate without any user input imparts
scalability to an architecture.

c. Incorporate appropriate security mechanisms across the technology stack: Appropriate
security mechanisms must be incorporated at the API Gateway layer and also at the FaaS
layer. These security mechanisms include access controls, authentication, identity and
access management, encryption and establishing trust relationships, etc.

d. Identify performance bottlenecks: On-going measurement of performance bottlenecks
in terms of identifying which functions are slowing down a particular service is critical to
ensure the optimal customer experience.

68 © Copyright 2023, Cloud Security Alliance. All rights reserved.

e. Create thicker and powerful front-ends: Executing more complex functionality at the
front-end, especially through rich client-side application frameworks, helps reduce cost by
minimizing function calls and execution times. Completely decoupling back-end logic from
the front-end while not compromising on security is one way of doing it. This also allows
more services to be accessed from the front-end resulting in better application performance
and a richer user experience.

f. Leverage third-party services: Serverless being an emerging field, existing enterprise tools
for various services like logging, monitoring, etc. may not be compatible. Choosing the
right third-party tools for executing the task at hand will be key for enterprises to ensure the
benefits of serverless are utilized to the fullest.

6.5.3 Compliance

To achieve compliance, continuous real-time monitoring plays a pivotal role, promptly detecting and
recording any deviations in vulnerabilities, security measures, or compliance requirements.
Organizations that don’t focus on compliance can be endangered by legal issues. The compliance
process is often highly detailed, requiring extensive diagramming and documentation and explaining
it to auditors and regulatory bodies on how the organizational systems are compliant. Because
serverless applications remove the ability to identify a physical machine as evidence of security
controls, this complicates regulatory compliance.

An integral component for serverless compliance is the Sarbanes-Oxley Act (SOX) compliance.
This particularly for organizations operating within the realm of financial services or publicly traded
companies.

Enforced software engineering practices and DevOps policies cover a large part of the SOX
compliance. However, it is pertinent for organizations to have a strategy for dealing with personally
identifiable information to achieve full compliance and demonstrate that to regulators. For
example, for AWS Lambda functions, this means that significant enforcement of SOX will be in AWS
configuration and development pipeline policies and controls to resources.

Similarly, for GDPR, vital elements of the regulation require proper security implementation, data
access restrictions, change control management, data retention, and destruction policies -- all
the items expected of a publicly traded company generally implemented as part of an effort for an
organization to become SOX-compliant.

6.6 Serverless Best Practices
Serverless applications and application components should use industry practices from a variety of
sources to maintain an appropriate level of security for the application. By using existing standards
for effective information security management, application architecture standards guidance from
cloud providers, and documented practice recommendations from researchers, the organization can
manage and reduce the risk of operating a serverless application with appropriate control patterns.

69 © Copyright 2023, Cloud Security Alliance. All rights reserved.

6.6.1 Regular Risk Evaluation Cycles

Use a regular evaluation cycle to link risks with serverless security architectural changes and
updates. This requires an effective program to evaluate threat intelligence, and to identify new or
changed risks to the organization, the organization’s industry, and the technologies being used in the
serverless application.

Industry references, such as the ISO 27005:2002 standard Guidance on managing information
security risks and US NIST Special Publications 800-30 Guide for Conducting Risk Assessments
and 800-39 Managing Information Security Risk can help provide a foundation to evaluate risks,
document them consistently, and make effective decisions on control selection and investment.

6.6.2 Use Vendor “Well Architected” Reference Documentation

Periodically (at least once per year) compare architectural and/or design and deployment patterns
with the “well architected” criteria released by cloud service providers.

Complete gap analysis as part of the technical roadmap and/or product management disciplines for
the serverless application, prioritizing those changes which represent material risk to the application.

6.6.3 Inspect Upstream Identity Providers

Where a cross-tenant, CSP, or partner identity provider is the controller or verifier for access to the
serverless application, periodically audit provided credentials and technical protection mechanisms
for conformance to the security and compliance needs of the organization, and this application’s data
sensitivity and governing obligations.

Pay special attention to the issuance and verification controls for conformance to industry practice,
especially in concert with major updates to external standards the organization or application may
have adherence requirements to.

Configure identity integration options and/or accepted tokens from the identity provider consistent
with issuance assurance, authentication levels, and cryptographic integrity obligations for the
specific application and its underlying data sensitivity.

6.6.4 Minimize Durable Assumptions and Authorizations

Consistent with publications on Zero Trust Guiding Principles and Zero Trust Principles and Guidance
for Identity and Access Management, avoid durable authorizations, features, and role assignments,
even for appropriately authenticated upstream requests of the serverless application.

Use platform specific approaches - such as tag-based and/or lambda-driven authentication functions
on Amazon Web Services (section 4 and 6.1.1), or execution time evaluation of calling environment
credentials on Microsoft Azure - detailed in section 6.1.1 and section 6.2 in this document to
use short term authorization which is re-evaluated as later requests are made to the serverless
application.

https://www.iso.org/standard/80585.html
https://www.iso.org/standard/80585.html
https://csrc.nist.gov/pubs/sp/800/30/r1/final
https://csrc.nist.gov/pubs/sp/800/39/final
https://cloudsecurityalliance.org/artifacts/zero-trust-guiding-principles/
https://cloudsecurityalliance.org/artifacts/zero-trust-principles-and-guidance-for-iam/
https://cloudsecurityalliance.org/artifacts/zero-trust-principles-and-guidance-for-iam/

70 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Durable environment-based context, such as IP address, network segment, and originating
application, should be used as a contextual element to an authorization decision, not as a primary
mechanism to evaluate authorization through a discretionary access (“trust”) grant. For example,
these may be filtering criteria but no single characteristic of a connection or request should fully
authorize access.

6.6.5 Use Managed Identities and/or Keys

When constructing a serverless application, use environmental secure services to inject identities
and/or keys used to access and interoperate with other resources at execution time when possible.

These integrated services should appropriately manage the credentials, certificates, and/or keys
in use by the serverless application components and log the ingestion of those items for security
traceability.

When it is possible to granularly set permissions or access for use, the minimum required identity
rights should be assigned and managed for specific application components.

6.6.6 Use Appropriate Data Protection Practices

To safeguard the data within the serverless application, it is essential to perform threat modeling
as outlined in sections 5.2.1 Key Threat Areas and 5.3 Threat Model of the document, titled “25
Serverless Threats for Application Owners.” This process helps identify and address potential
vulnerabilities that could compromise the data structures supporting the serverless applications.

Protect data through appropriate logic to evaluate the operation of the serverless application
according to reasonable guidelines and limits to avoid exfiltration attempts.

Sensitive data should be encrypted and protected at all times in all layers possible, such as with
encryption when passed from the front end of the application to back-end function(s), during
requests between back-end serverless components, and at read or write time to durable storage.

Logging mechanisms, both code implemented and those operating at the environment level should
be evaluated to ensure that sensitive or privacy impacting information is not inappropriately included
in logs. Debug functions should be removed from production code to minimize risk when feasible.

6.6.7 Protect Logs for Serverless Applications

Logging for serverless applications should include replicas and/or log management which cannot
be modified in the same tenant as the application resources. For a high-security production
environment, logs should be streamed and/or replicated to a durable and protected location.
Depending on the specific platform and/or cloud service provider, this may include separation of the
long-term security log storage in a separate account with one-way write access.

71 © Copyright 2023, Cloud Security Alliance. All rights reserved.

6.6.8 Secure Communication Channels

• Ensure that all communication channels utilized by the serverless application fulfill the latest
recommendations of the robust encryption standards.

• Use HTTPS for transmitting sensitive data over networks and implement Transport Layer
Security (TLS) protocols to prevent interception and data tampering.

• Evaluate and implement secure communication practices, including mutual authentication
and encryption, when interacting with external services, APIs, and databases.

• Regularly review and update the certificates and encryption algorithms to stay aligned with
industry best practices.

6.6.9 Continuous Security Testing and Remediation

• Incorporate continuous security testing as an integral part of the serverless development
lifecycle. Implement automated security scanning tools that identify code vulnerabilities and
dependencies.

• Integrate security testing into the CI/CD pipeline to catch and remediate issues early in the
development process.

• Perform regular security assessments, including penetration testing, to identify potential
weaknesses in the application’s defenses.

• Establish a process to promptly address and mitigate identified vulnerabilities based on their
severity.

6.6.10 Serverless Incident Response Plan

Develop a comprehensive incident response plan tailored to the specific serverless environment.
Define roles, responsibilities, and communication channels for handling security incidents. Outline
procedures to detect, analyze, and respond to security breaches affecting the serverless application.

Conduct regular tabletop exercises to test the effectiveness of the organization’s incident response
plan and improve coordination among relevant teams. Document lessons learned from previous
incidents to enhance the organization’s ability to manage future incidents efficiently.

In anticipation of potential cloud provider downtime, establish a well-defined contingency plan
to ensure the uninterrupted availability of the serverless applications. This plan encompasses
strategies for relocating or redeploying applications to an alternate cloud provider or on-premises
infrastructure.

Create a guidebook that outlines the steps involved in moving applications, from one cloud provider
to another. This should encompass tasks such as transferring data, adjusting service settings and
conducting testing. If opting for on-premises deployment, ascertain that the plan outlines the
necessary infrastructure setup, connectivity requirements, and scalability considerations.

Stay vigilant by conducting periodic drills of the contingency plan to verify its readiness and to
familiarize the team with the intricacies of executing a seamless migration. Continuously refine and

72 © Copyright 2023, Cloud Security Alliance. All rights reserved.

adapt the plan based on evolving technologies, industry trends, and lessons learned from practice
scenarios.

For insights into the evolving landscape of security-enabled innovation and cloud trends, refer to the
2023 survey conducted by the Cloud Security Alliance (CSA) titled “Security-Enabled Innovation and
Cloud Trends”4. This survey serves as a valuable resource for professionals revising their strategies
for on-premises deployments, offering a comprehensive overview of emerging practices and
considerations in this realm.

Develop a robust disaster recovery plan tailored to the serverless architecture to ensure business
continuity in the face of unforeseen disruptions. Identify critical components and data within the
serverless application and define recovery point objectives (RPOs) and recovery time objectives
(RTOs) for each.

A more detailed understanding of the approach to business continuity planning (BCP) and disaster
recovery plan (DRP) include:

• Risk Assessment: Explain how the risk assessment is conducted in order to identify
potential threats and vulnerabilities to the serverless architecture.

• Critical Components: Provide examples of what is considered critical components within
the serverless application. This could include databases, functions, third-party services, and
so on.

• RPOs and RTOs: Explain the reasons for the selected specific recovery point objectives
(RPOs) and recovery time objectives (RTOs). Detail the trade-offs and considerations that
went into these choices.

• Testing and Maintenance: Mention plans for regularly testing the disaster recovery plan and
keeping it up to date as the system’s architecture evolves.

• Communication Plan: Describe the plan to communicate with stakeholders and team
members during a disaster or disruption.

• Roles and Responsibilities: Outline who is responsible for what aspects of the disaster
recovery plan, including incident response.

• Resource Allocation: Discuss how the allocation of resources is done, both in terms of
infrastructure and personnel, to support the disaster recovery efforts.

Regularly test the organization’s disaster recovery plan through simulated scenarios to validate its
effectiveness. Ensure that the plan encompasses data backup and restoration strategies, resource
failover mechanisms, and communication protocols to stakeholders in case of a disaster or major
event.

6.6.11 Secure Serverless Supply Chain

• Ensure the security of the serverless application’s supply chain by carefully managing third-
party dependencies, libraries, and services.

• Regularly assess the security posture of third-party components for vulnerabilities and
compliance with the organization’s security standards.

4 https://cloudsecurityalliance.org/artifacts/security-enabled-innovation/

https://cloudsecurityalliance.org/artifacts/security-enabled-innovation/

73 © Copyright 2023, Cloud Security Alliance. All rights reserved.

• Maintain an up-to-date inventory of all third-party components used in the serverless
application.

• Implement automated mechanisms to receive notifications about security updates and
patches for these components, and promptly integrate them into the application to prevent
exploitation of known vulnerabilities.

Remember that these practices should be adapted to the specifics of each organization’s
environment and the cloud services being used. Security is an ongoing effort, so regularly review and
update practices to align with emerging threats and industry standards.

6.6.12 Serverless Application Performance Monitoring

Adopt an all-encompassing approach to performance monitoring, enhancing security while ensuring
optimal functionality for the serverless applications. Employ monitoring tools that provide real-time
insights into the application’s behavior, encompassing response times, latency, resource utilization,
error rates, and overall operational efficiency.

Implement mechanisms to detect anomalies, swiftly identifying irregular patterns and potential
security breaches. Integrate the monitoring system with the incident response plan to facilitate rapid
action in the event of security incidents or performance deteriorations.

Prioritize cost-effectiveness when deploying serverless applications in the cloud, recognizing the
financial implications of service usage and performance. Conduct meticulous cost analysis to align
deployment choices with the organization’s budget and performance expectations.

Evaluate cloud service providers (CSPs) based on their pricing models, scalability options, and
resource allocation mechanisms. Consider the financial implications of performance metrics such as
response times and execution speeds in relation to the cost of services. Optimize resource allocation
to ensure an optimal balance between performance and cost efficiency.

Regularly assess the financial efficiency of the serverless deployment strategy. Employ cloud
cost management tools to track expenses, set budget thresholds, and identify opportunities for
optimization. Continuously adjust the deployment strategy to align with the organization’s evolving
financial considerations and performance requirements.

6.6.13 Continuous Security Testing and Remediation

Ensure that continuous security testing is seamlessly integrated into the serverless development
lifecycle. Implement automated tools for security scanning that can identify any vulnerabilities in
your code and its dependencies. Integrating security testing into CI/CD pipeline will help catch and
address any issues during the development process.

Regularly conduct security assessments, including penetration testing to identify any weaknesses in
the defensive measures of the application. Establish a defined process, for addressing and mitigating
any vulnerabilities that are identified, prioritizing them based on their severity.

74 © Copyright 2023, Cloud Security Alliance. All rights reserved.

7. Futuristic Vision for Serverless Security
As we have seen, Serverless brings many benefits and challenges along. In this section, we will
focus on areas that will become vital for security in the upcoming years in the realm of operations,
applications security, and encryption/privacy. The serverless tools are still a challenge and are tied
to CSP’s as the technology matures. Deployments and configuration have improved over the last
few years by the Cloud providers. However, the experience is still very fragmented as some cloud
providers are more mature than others.

Full adoption will require the same level of maturity across the board for consumers to create multi-
cloud strategies or a level of abstraction on top of the CSPs. The Cloud providers also need to bring
the continuous delivery approach to serverless to inspect and mitigate security defects and provide
operational best practices on deployment like AB testing, blue/green deployments, and canary
releases built into the platform. As serverless has increased cardinality, it requires similar constructs
as containers. Currently, the tooling to introspect those systems is still an open problem.

Alongside the operational challenge, there is the application’s quality from a security perspective and
its dependencies. Topics that focus on the application runtime, sandboxes, and AI/ML methods to
identify and mitigate risk, will grow in the upcoming years as serverless gains adoption. Developers
usually are not trained in security. As such, novel programming languages, more robust SDLC
integration, and formal methods will enable developers to be agile with the proper guardrails.

Finally, serverless encryption and privacy aspects will require breakthroughs; although most CSP’s
adopted secure enclaves for specialized workloads, it also needs to be extended to serverless products.
The privacy aspect and the ability to do operations on encrypted data due to the transient and boundless
nature of serverless will require better privacy frameworks, and in some cases, the ability to work over
encrypted data, which several frameworks from the major cloud providers (SEAL) have been published.

As serverless gets widespread, adoption operations will require and push the CSPs for more maturity
and consistency across different environments. The application security lifecycle will be more
streamlined and integrated with the Cloud providers. DevOps tools and supply chain integration,
especially with the recent hacks that took advantage of these tools, will be a major area of focus.
Finally, despite being the more far-reaching goal, the privacy aspect -- major cloud providers have
been publishing R&D in this area, highlighting the roadmap and their focus.

7.1 The Road for the Future of Serverless

7.1.1 Movement Towards Serverless Container Image-based Serverless

All enterprises today are embracing digital transformation for continued growth and to gaining
competitive edge.

Containers are now broadly deployed, mainly using the Kubernetes orchestration system. Cloud-
native technologies such as Kubernetes provide the automation, visibility and control necessary to
manage applications at scale, and high innovation velocity.

75 © Copyright 2023, Cloud Security Alliance. All rights reserved.

To a casual observer, it may appear that the Kubernetes-led automation minimizes operational
tasks in the deployment pipeline, and during the deployment and operations processes. A deeper
look unveils why that is not so. While applications can be flexibly deployed using a Kubernetes
configuration, understanding replicas, scale, taints, and tolerations are not top of mind for many
developers. This leads to much unnecessary complexity for developers, which explains why the
future of Containers is Serverless.

The Serverless model of Container Image-based Serverless abstracts a lot of the management of a
lot of the functionality like scaling, replicas, managing the control plane to the Service provider. This
enables developers to focus on their tasks.

As we move forward, we will see more and more Container Image based Serverless models providing
greater flexibility in what a developer has to do, even as we move towards lesser and lesser overhead
for developers.

7.1.2 Virtualization Changes

Security is a big concern for Containers. Virtual machines provide very strong isolation on the host.
Containers, however, use Linux namespace to separate, restrict and isolate resources from one
container to another. This isolation can be compromised, and containers cannot act as security
boundaries, just like VMs. The need for compromise between the capabilities of fast deployment,
easy component assessment, and strong security is leading to many different models of OS:

Unikernels

Unikernels are non-general purpose, built using the library operating system, and use a single
address space machine. The OS greatly reduces the attack surface and resource footprint.

Kata containers

Kata is a secure container runtime with lightweight virtual machines that feel and perform like
containers, but provide stronger workload isolation using hardware virtualization technology as a
second layer of defense.

gVisor

gVisor provides a virtualized environment to sandbox containers for greater security and isolation. The
system interfaces normally implemented by the host kernel are moved into a distinct, per-sandbox
application kernel to minimize the risk of a container escape exploit. gVisor does not introduce large
fixed overheads and still retains a process-like model with respect to resource utilization.

7.1.3 FaaS Evolution

As the adoption of FaaS grows, so does the need to provide greater flexibility, transparency, more
robust security, and more controls for enterprises’ deployments of their FaaS applications. FaaS is
built on top of Container Image-based Serverless platforms.

76 © Copyright 2023, Cloud Security Alliance. All rights reserved.

As such, it allows FaaS to grow in different aspects such as:

Knative

As Kubernetes becomes the layer of abstraction, Knative is an open-source platform, which
adds components for deploying, running, and managing serverless, cloud-native applications
to Kubernetes. This provides the infrastructure administrators the ability to build on existing
infrastructures while enabling the platform to be more flexible and transparent. This allows
customers to run Functions on the private cloud too.

OpenWhisk

With the growth of FaaS, there is a need to support stateful FaaS. OpenWhisk provides a distributed
Serverless platform that executes functions in response to events at any scale. OpenWhisk manages
the infrastructure, servers, and scaling using Docker containers so you can focus on building amazing
and efficient applications. OpenWhisk allows for Stateful Functions. This allows customers to run
Functions on the private Cloud too.

OpenFaaS

Like Knative, OpenFaaS is a framework for building serverless functions with Docker and Kubernetes
which has first class support for metrics. Any process can be packaged as a function enabling you to
consume a range of web events without repetitive boiler-plate coding.

Similarly to OpenWhisk, this would also allow the functions to run Functions on private Cloud too.

Closed FaaS

There is a growing trend towards allowing the ability to run monitoring and security logic within the
containers running the functions to enable enterprises to control their FaaS deployments, even for
closed FaaS.

7.2 Serverless Security
Our understanding of how and when to use Serverless architectures is still in its infancy. We’re starting
to see patterns of recommended practice occur, and this knowledge will only grow.” (Martin Fowler)

Above are the words of practical wisdom and challenges, as Serverless is still at an early stage
and knowledge. Practices and Architecture patterns will keep growing in the next few years trying to
learn the best approaches to better develop, deploy, monitor, deliver performance and more
secure applications.

1. Serverless is left focused towards the developer - code first. There is change and challenge
presently towards the support of languages across cloud providers. We find solutions with the use
of frameworks. Some tasks required to configure and deploy a serverless application are too time-

77 © Copyright 2023, Cloud Security Alliance. All rights reserved.

consuming to do without the help of a serverless framework. A developer gets no benefit from taking
care of these tasks manually, so it makes total sense to take advantage of a framework. Frameworks
will continue to evolve. Enhancing support for languages, continuous development and integration,
bundling and packaging code for deployment and the actual deployment process (which may take
multiple steps in itself), setting environment variables, managing secrets, configuring endpoints to
expose your serverless service as a public API, taking and properly setting the permissions needed
by the function, etc.

Presently, the ecosystem for serverless frameworks is quite rich and diverse. Some are focused on
specific programming languages and/or cloud providers. Others are runtime and cloud-agnostic. It is
better to shift to supporting more cloud-native, more support of developer languages, and becoming
cloud-agnostic.

2. Standards are evolving, and effort is made towards the harmonization of security controls in
serverless environments.

3. Logging and debugging - developers need to have control over the platform that is running code
and need metrics that can be relied upon, generated by background processes or daemons. Code
could be instrumented to send metrics to third-party services in real-time, but that means latency
will impact the overall execution. Specific information is critical to log in to serverless applications,
so that they are available when it comes the time to act on security breaches. Having critical logs will
help, for example, understand which security flaws attackers explored and how to fix them, or build a
blacklist of IP addresses, or identify compromised customer accounts.

To properly conduct logging and debugging of serverless applications we must rethink how we
approach these activities. Access to information on desired parameters such as Invocation/Event
Inputs, Response payload, Authentication requests and its integrity availability, open integration,
and this needs to evolve.

4. Moving towards stateful and tracing - Serverless functions are ephemeral and will almost always
interact with external services, mainly because they intrinsically cannot persist data.

Whether it is a database, object storage, a data lake, or else, functions need external storage to
accomplish tasks that rely on the statefulness of data. Other services interacting with functions
may be message queues, data streaming processing, authentication mechanisms, machine learning
models, etc.

While tracking the entire lifecycle of a serverless function, runtime execution is essential for
performance improvement, security monitoring, debugging, etc. All these external interactions
pose difficulties for that. One crucial thing to consider when choosing a tracing system for
instrumentation is its scalability and availability. Since serverless platforms, by definition, can scale
very quickly and offer high availability, the tracing system must be able to cope with the elastic
demand of serverless functions. For this reason, solutions specially tailored for instrumenting
serverless functions need to evolve.

78 © Copyright 2023, Cloud Security Alliance. All rights reserved.

5. Performance: Although serverless functions offer virtually infinite elasticity in terms of scalability,
it does not mean they should run unmonitored. It is paramount to set up thresholds of performance
expectations so that it is possible to determine when something requires attention.
Some of the key measures to look for are:

• Invocations count
• Count of runtime crashes, application failures, cold starts, retries
• Memory utilization
• Duration of executions

Cold starts happen when our function does not have enough containers to serve the number of
requests coming in at a given point in time. This forces the underlying serverless platform to spin
up a new container – which may take from a few hundred milliseconds to several seconds – while
the requester is waiting for a response. There are many scenarios where this is undesirable. If that is
the case for our application, we need to detect and monitor cold starts in our stack. Cloud services
usually will not provide this information directly, but monitoring services need to evolve.

6. IAM Serverless Functions can integrate with services in a domain and potentially cross trust
domains. This makes trust management and access management complex for Container Image-
based Serverless and FaaS. Having uniform service trust and user identity available across platforms
and domains is critical as the use of serverless grows. There is work in progress in the industry for
developing SPIFFE and the SPIFFE Runtime Environment (SPIRE) for cross-platform authentication
and access management. SPIFFE is still not a formal standard yet but is in the process of being
ratified. SPIFFE/SPIRE also help to improve observability, monitoring, and ultimately Service Level
Objectives (SLO). By normalizing software identity across various systems (not necessarily just
containerized or cloud native), and providing an audit trail of identity issuance and usage, SPIFFE/
SPIRE can greatly improve situational awareness before, during, and after an incident occurs. More
mature teams may even find that it improves their ability to predict problems before they impact
service availability.

7. Supply Chain Developers may use various libraries in their functions. Using libraries saves the
developer time by leveraging and reusing existing functionality rather than writing it. These libraries
may be developed by third parties or could be open source. There is typically no guarantee that
the library is efficient and without vulnerabilities. The developer of the library may have used other
libraries. The number of libraries may be several layers deep in their supply chain.

When a piece of code uses a library in the logic it executes, that library is technically a dependency. A
layer of code is introduced as a dependency in the code. As dependencies use other dependencies,
these layers get deeper. A vulnerability may exist at any layer or branch, and it may affect the
serverless function depending on the severity and difficulty to exploit. Therefore, it is essential to
understand the dependency tree and keep it as short and narrow as possible. Periodically checking
your dependencies for vulnerabilities is a good practice to maintain the security posture of your
application. Also, there is much work being done around supply-chain security of the Cloud-native
technologies and functions after a series of compromises like Node.JS and recent Solarigate breach.
These best practices will provide mechanisms for establishing trust in the dependencies from supply
chain software and keep serverless functions secure from vulnerabilities in the dependencies from
third-party libraries and open source-software.

79 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Serverless is still in sort of an early stage compared to other technologies, and knowledge will keep
growing in the next few years about the best approaches to better develop, deploy and monitor
applications. (Martin Fowler)

7.3 Serverless Advances for Data Privacy
As serverless is poised to become the biggest driver in shaping how organizations build, consume
and integrate with the Cloud-native capabilities, (due to the way Cloud providers want to increase
stickiness and have been increasing their BaaS offerings) there needs to be mechanisms in order to
safeguard data privacy.

In the last year, we have seen a rise in confidential computing5 from the most prominent vendors, e.g.
(AWS Nitro, Azure confidential computing, GCP confidential computing). The trend is that some of
these capabilities will also be ported to serverless [Gartner, 2021].

As more workloads shift to serverless, encrypting and working on data, state-data, and metadata
becomes a requirement. If we look at some examples that probably will make it into the serverless
offering of the CSP’s:

Self-protection: functions will, in real-time, evaluate and adapt the security and micro-segmentation
around each resource, even by using predictive analytics(AI/ML) to evaluate the security posture and
define new alerting mechanisms.

Pre-defined compliant functions: A set of functions that developers could leverage and use,
according to the guardrails established and type of data required to be used. This could be a natural
extension to set up guardrails, a kind of catalog for serverless. This would have the benefits of
creating guardrails without reducing agility.

Secure enclaves for FaaS: With the scrutiny and assurance that some regulated industries want from
the Cloud environments, organizations need to leverage mechanisms to be compliant with ever-
increasing regulations.

We have seen that trusted execution environments have been extensively used to maintain
the confidentiality, integrity of the data, code, and computation. One example of this would be
the European General Data Protection Regulation (EU GDPR), which is globally relevant. These
mechanisms would benefit from having available cloud environments specifically in Faas functions as
they start to be used in more traditional IaaS environments.

This technology would allow the code, data, and processing to be better isolated from other
customers, and from the CSP. Especially important when it contains personal or sensitive data.

5 “By 2025, 50% of large organizations will adopt privacy-enhancing computation for processing data
in untrusted environments and multiparty data analytics use cases.”- Gartner.

80 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Some libraries already exist (i.e., IEEE Xplore6, Graphene7) that offer enclaves as a service and include
the natural extension of making their way into FaaS.

8. Conclusions
IT organizations in nearly all industries feel the pressure to deliver value faster, get ahead of the
competition and provide new experiences to customers at a rapid rate. Serverless platforms allow
application teams to deliver value without managing the infrastructure the application runs on. As
this movement gains steam, we will see a proliferation of serverless platforms and more high-value
applications being put on these platforms. Security concerns on Serverless platforms are going to
grow from here.

As the CSA Serverless Working Group, we have captured all aspects of Serverless Security,
including both the Container Image-based Serverless and FaaS platforms as they exist today and
as we envision they will evolve. We will provide new revisions of the document when we see more
significant changes in the Serverless platform.

6 https://ieeexplore.ieee.org/document/7163017
7 https://grapheneproject.io/

https://ieeexplore.ieee.org/document/7163017
https://grapheneproject.io/

81 © Copyright 2023, Cloud Security Alliance. All rights reserved.

9. References
[Ananthanarayanan
et al., 2011]

Ananthanarayanan, G., Ghodsi, A., Shenker, S., Stoica, I. (2011). Disk-
Locality in Datacenter Computing Considered Irrelevant. University of
California, Berkeley.
https://people.eecs.berkeley.edu/~alig/papers/disk-locality-irrelevant.pdf

[Berkeley, 2019] Berkeley. (2019). Electrical Engineering and Computer Sciences University
of California at Berkeley. Cloud Programming Simplified: A Berkeley View on
Serverless Computing.
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf

[CSA, 2019] Cloud Security Alliance. (2019). The 12 Most Critical Risks for Serverless
Applications.
https://cloudsecurityalliance.org/artifacts/the-12-most-critical-risks-for-
serverless-applications

[CSA, 2013] Cloud Security Alliance. (2013). Top Threats Working Group. The Notorious
NineCloud Computing Top Threats in 2013.
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_
Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf

[Forrester, 2020] Forrester research. (2020). The Forrester New Wave™: Function-As-A-
Service Platforms, Q1 2020. The Nine Providers That Matter Most And How
They Stack Up.
https://reprints.forrester.com/#/assets/2/108/RES155938/reports

[Gartner, 2021] r3. Gartner Report. (2021). Top Strategic Technology Trends for 2021:
Privacy- Enhancing Computation.
https://www.r3.com/gartner-2021-privacy-enhancing-computation/

[IEEE Spectrum,
2020]

Fahmida, R. (2020). IEEE Spectrum. What is Confidential Computing?.
https://spectrum.ieee.org/what-is-confidential-computing

[Jericho Forum-
White Paper,
2007]

The Open Group Library. Jericho Forum - White Paper. (2007). Business
rationale for de-perimeterisation.
https://collaboration.opengroup.org/jericho/Business_Case_for_DP_v1.0.pdf

[Jericho Forum
Commandments,
2007]

The Open Group Jericho Forum. (2007). Jericho Forum Commandments.
https://publications.opengroup.org/w124

[Kubernetes,
2021]

Kubernetes. (2021). Kubernetes Components.
https://kubernetes.io/docs/concepts/overview/components/

[Manral, 2021] Manral V. (2021). The Evolution of Cloud Computing and the Updated
Shared Responsibility. Cloud Security Alliance Blog Article.
https://cloudsecurityalliance.org/blog/2021/02/04/the-evolution-of-cloud-
computing-and-the-updated-shared-responsibility/

https://people.eecs.berkeley.edu/~alig/papers/disk-locality-irrelevant.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf
https://cloudsecurityalliance.org/artifacts/the-12-most-critical-risks-for-serverless-applications
https://cloudsecurityalliance.org/artifacts/the-12-most-critical-risks-for-serverless-applications
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://reprints.forrester.com/#/assets/2/108/RES155938/reports
https://www.r3.com/gartner-2021-privacy-enhancing-computation/
https://spectrum.ieee.org/what-is-confidential-computing
https://collaboration.opengroup.org/jericho/Business_Case_for_DP_v1.0.pdf
https://publications.opengroup.org/w124
https://kubernetes.io/docs/concepts/overview/components/
https://cloudsecurityalliance.org/blog/2021/02/04/the-evolution-of-cloud-computing-and-the-updated-shared-responsibility/
https://cloudsecurityalliance.org/blog/2021/02/04/the-evolution-of-cloud-computing-and-the-updated-shared-responsibility/

82 © Copyright 2023, Cloud Security Alliance. All rights reserved.

[NIST SP 800-123,
2008]

NIST Special Publication 800-123. (2008). Guide to General Server Security.
Recommendations of the National Institute of Standards and Technology.
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-123.pdf

[Node-RED, 2020] Node-RED. (2020). Low-code programming for event-driven applications.
https://nodered.org/

[OpenWHISK,
2020]

OpenWHISK. (2020). Open Source Serverless Cloud Platform. Apache
OpenWhisk.
https://openwhisk.apache.org/

[OWASP, 2017] OWASP. (2017). OWASP Top 10. Interpretation for Serverless.
https://owasp.org/www-pdf-archive/OWASP-Top-10-Serverless-
Interpretation-en.pdf

[OWASP, 2019] OWASP. (2019). OWASP API Security Project. API Security Top 10 2019.
https://owasp.org/www-project-api-security/

[PCI, 2018] PCI. Security Standards Council. (2018). DSS 3.2.1 Standard. Requirements
and Security Assessment Procedures.
https://www.pcisecuritystandards.org/document_library

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.
pdf?agreement=true&time=1615400173449

[Rahic, 2020] Rahic, A. (2020). Fantastic serverless security risks and where to find them.
Serverless.
https://www.serverless.com/blog/fantastic-serverless-security-risks-and-
where-to-find-them

[Shankar et al.,
2018]

Shankar, V., Krauth, K., Pu, Q., Jonas, E., Venkataraman, S., Stoica, I., Recht,
B., and Ragan-Kelley, J. (2018). numpywren: Serverless Linear Algebra.
https://arxiv.org/pdf/1810.09679.pdf

[Veryard, 2011] Veryard, R. (2011). Architecture, Data and Intelligence. Service Boundaries
in SOA.
https://rvsoapbox.blogspot.com/2011/07/service-boundaries-in-soa.html

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf
https://nodered.org/
https://openwhisk.apache.org/
https://owasp.org/www-pdf-archive/OWASP-Top-10-Serverless-Interpretation-en.pdf
https://owasp.org/www-pdf-archive/OWASP-Top-10-Serverless-Interpretation-en.pdf
https://owasp.org/www-project-api-security/
https://www.pcisecuritystandards.org/document_library
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf?agreement=true&time=1615400173449
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf?agreement=true&time=1615400173449
https://www.serverless.com/blog/fantastic-serverless-security-risks-and-where-to-find-them
https://www.serverless.com/blog/fantastic-serverless-security-risks-and-where-to-find-them
https://arxiv.org/pdf/1810.09679.pdf
https://rvsoapbox.blogspot.com/2011/07/service-boundaries-in-soa.html

83 © Copyright 2023, Cloud Security Alliance. All rights reserved.

Appendix 1: Acronyms
Selected acronyms and abbreviations used in this paper are defined below.

ABAC Attribute-based access control

API Application Program Interface

BaaS Backend as a Service

CICD Continuous integration, continuous delivery

CISO Chief Information Security Officer

CPU Central processing unit

CRUD Create, Read, Update, Delete

CSP Cloud Service Provider

DevOps A portmanteau of “development” and “operations.”

DLP Data Loss Prevention

FaaS Function as a Service

GDPR General Data Protection Regulation

HIPAA The Health Insurance Portability and Accountability Act of 1996

IaaS Infrastructure as a Service

IT Information Technology

KMS Key Management System

NIST National Institute of Standards and Technology

OPA OPA (Open Policy Agent) is an open-source, general-purpose policy engine
that unifies policy enforcement across the stack. OPA provides a high-level
declarative language that lets you specify policy as code and simple APIs to
offload policy decision-making from your software.

OS Operating System

PaaS Platform as a Service

PCI Payment Card Industry

SLO Service Level Objectives

SPIFFE Secure Production Identity Framework for Everyone

SPIRE SPIFFE Runtime Environment

84 © Copyright 2023, Cloud Security Alliance. All rights reserved.

STS Security Token Service

VNet Virtual Network

VPC Virtual Private Cloud

Appendix 2: Glossary
Service
boundaries

Service boundaries are defined by the declarative description of the
functionality provided by the service. A service - within its boundary - owns,
encapsulates and protects its private data and only chooses to expose certain
(business) functions outside the boundary.

