
WWW .DE V S E COP SGU I D E S . COM

Defending APIs

· · 38 min readFeb 26, 2024

Table of contents

Securely Handling JSON Web Tokens (JWTs) in Your API

1. Purposeful Usage of JWTs

2. Secure Storage Mechanisms

3. Explicit Declaration of Token Usage

4. Expiration Timestamp Management

Securely Using Algorithms in API Development

Explicit Algorithm and Key Specification

Signing and Verification

Secure Key Management

Utilizing Key Vaults

Utilizing Libraries Effectively for JWT Handling

JWT Generation in Python

JWT Decoding on the Client Side

Secure Usage Patterns

Enhancing Password and Token Security

Increasing Complexity and Length

Utilizing Secure Password Storage Solutions

Time to Crack Passwords: A Deterministic Improvement

Using Cryptographically Secure Pseudo-Random Number Generators

https://rezaduty-1685945445294.hashnode.dev/defending-apis

.NET Core Implementation

Java Implementation

Securing the Password Reset Process

Importance of a Secure Password Reset Process

Best Practices for Password Reset Processes

Implementation in .NET Core

.NET Core Example

Implementation in Java

Java Example

Implementing Authentication

Authentication in FastAPI (Python)

Python Code (FastAPI)

Authentication in .NET Core

.NET Core Code Example

Authentication in Java

Java Code Example (Spring Boot)

Authentication in Node.js (Express)

JavaScript Code (Node.js with Express)

Leveraging the OpenAPI Specification for Secure API Design

API-First vs. Design-First vs. Code-First

Data Modeling with OAS

Combining Schemas

Ensuring Data Security

Enhancing API Security with the OpenAPI Specification

Supported Security Schemes

Applying Security Directives

Audit and Remediation

Code Generation

API Portal

Embracing the Positive Security Model for API Protection

Negative Security Model

The Strength of the Positive Security Model

Leveraging the OpenAPI Specification

Implementing Positive Security in .NET Core and Java

.NET Core Example

Java Example

Conducting Threat Modeling of APIs: A Shift-Left Approach to Security

Threat Modeling

Importance of Threat Modeling in API Security

Practical Approach: Threat Modeling with .NET Core and Java

Threat Modeling in .NET Core

Threat Modeling in Java

Automating API Security: Enhancing Development Lifecycle with Automated Tools

Automated API Security

CI/CD Integration for Automated API Security

GitHub Actions

Semgrep

Thinking Like an Attacker

Exploring OpenAPI Generator for API Code Generation

Introduction to OpenAPI Generator

Installing OpenAPI Generator

Generating Server Stubs

Generating Schema

Generating Documentation

Using Templates and Custom Generators

Integration with Frameworks

Java

.NET Core

Python

Node.js

Object-Level and Function-Level Vulnerabilities in APIs

Object-Level Vulnerabilities

Understanding the Vulnerability

Mitigation Strategies

Practical Implementation

Function-Level Vulnerabilities

Understanding the Vulnerability

Mitigation Strategies

Practical Implementation

Using Authorization Middleware

Key Components of Authorization Frameworks

Recommended Authorization Frameworks

Understanding Data Vulnerabilities in APIs: Mitigation Strategies and Best Practices

Data Propagation in APIs

Excessive Data Exposure

Coding Securely

Classifying Data

Mass Assignment

Understanding and Mitigating API Vulnerabilities: Injection, SSRF, Logging, and Resource

Consumption

Injection Vulnerabilities

Validate User Input

Sanitize User Input

Utilize OpenAPI Definitions

Server-Side Request Forgery (SSRF)

Allow List for URLs

Restrict URL Schema and Ports

Disable HTTP Redirections

Insufficient Logging and Monitoring

Protecting Against Unrestricted Resource Consumption

Rate Limiting

Scalability

Understanding Your Stakeholders in API Security

Roles in the Security Domain

CISO (Chief Information Security Officer)

Head of AppSec

DevSecOps Team

Pentest/Red Team

Risk and Compliance Team

Roles in the Business or Development Domain

CIO (Chief Information Officer)

Product Owner

Technical Lead

Solution Architect

DevOps Team

Roles in the API Product Domain

API Product Owner

API Platform Owner

API Architect

Distributing Ownership of API Security

The 42Crunch Maturity Model for API Security

Overview of the Maturity Model

1. Inventory

2. Design

3. Development

4. Testing

5. Protection

6. Governance

Planning Your Program

Assessing Your Current State

Building a Landing Zone for APIs

Building Your Teams

Tracking Your Progress

Integrating with Existing AppSec Programs

Resources

Show less

we embark on a journey to fortify our APIs against common vulnerabilities that lurk at

every stage of the Software Development Lifecycle (SDLC). Drawing from insights

gained through dissecting past breaches and understanding the ramifications of

insecure APIs, our focus now shifts to cultivating a defensive mindset aimed at

crafting robust and resilient APIs from the ground up.

Throughout the chapters preceding this one, we've delved into the arsenal of

techniques attackers employ to compromise APIs, setting the stage for our defensive

endeavors. Now, armed with this knowledge, we are poised to confront each class of

vulnerability head-on, equipping ourselves with best practices, cautionary tales of

common pitfalls, recommendations for essential tools and libraries, and illustrative

code samples showcasing key defensive strategies.

For developers, this aticle represents a pivotal milestone in your learning journey,

empowering you to architect APIs that not only meet functional requirements but also

stand as bastions of security in an ever-evolving threat landscape. Meanwhile, for

those seeking a broader understanding of API security, this chapter offers invaluable

insights into foundational defensive techniques that underpin the resilience of modern

digital ecosystems.

Building upon the critical lessons learned in "Attacking APIs," where we underscored

the indispensable role of authentication and authorization in safeguarding APIs, the

initial focus of this chapter is to reinforce these fundamental pillars of API security.

Fortunately, the path to enhancing authentication and authorization mechanisms is

paved with well-established practices, patterns, and readily available supporting

libraries, ensuring that API builders can swiftly bolster their defenses against

unauthorized access and misuse.

Securely Handling JSON Web Tokens (JWTs) in

Your API

JSON Web Tokens (JWTs) have become a cornerstone in modern API

implementations, serving as a portable means of exchanging information about

identity and permissions. However, their ubiquity also makes them prime targets for

various attacks if not handled securely. In this article, we'll explore key strategies for

securely handling JWTs within your codebase to mitigate common vulnerabilities.

First and foremost, ensure that you're using JWTs for their intended purpose – as a

means of exchanging information about identity and permissions. Avoid using them as

session cookies, as this can lead to issues with logging out users and increases the

risk of theft and misuse.

When storing JWTs on the client-side, prioritize secure storage mechanisms to

prevent theft via Cross-Site Scripting (XSS) attacks. Utilize browser memory or cache

(session storage) for temporary storage, or consider utilizing the HttpOnly tag on

cookies to prevent theft.

1. Purposeful Usage of JWTs

COPY

Avoid using JWT as a session cookie
Example of incorrect usage
app.use(session({ secret: 'keyboard cat', cookie: { secure: true,
maxAge: 60000 }, saveUninitialized: true, resave: true }));

COPY

2. Secure Storage Mechanisms

COPY

// Example of storing JWT in session storage
sessionStorage.setItem('jwtToken', token);

// Example of setting HttpOnly flag on cookies
res.cookie('jwt', token, { httpOnly: true });

COPY

Explicitly declare the intended usage of your token by setting the typ field in the JWT

header. This helps in ensuring that the token is used in the correct context and

prevents potential misuse.

One of the crucial properties of a JWT is its expiration timestamp. Ensure that JWTs

are generated with appropriate expiration windows and that clients validate these

expirations before trusting the token. Determine suitable lifetimes based on the

specific application requirements, considering factors such as internal services versus

external APIs requiring human login.

In the realm of API security, the choice and implementation of cryptographic

algorithms play a crucial role in safeguarding against various attacks. In this article,

3. Explicit Declaration of Token Usage

COPY

// Example JWT header with explicit token type
{
 "alg": "HS256",
 "typ": "IT+JWT",
 "kid": "BTVBRYNjEyxc"
}

COPY

4. Expiration Timestamp Management

COPY

// Example of setting expiration timestamp
const token = jwt.sign({ user: 'username' }, 'secret', { expiresIn:
'1h' });

COPY

Securely Using Algorithms in API Development

we'll delve into best practices for securely using algorithms within your API to mitigate

vulnerabilities and enhance overall security.

One of the fundamental principles to thwart potential attacks is to be explicit about

the cryptographic algorithm and key used for signing JWTs. By ignoring values

supplied in the JWT header and specifying the algorithm and key directly, you

eliminate the risk of attackers injecting malicious keys or confusing the client about

the algorithm in use.

Always ensure that JWTs are signed upon generation and that the signature is

verified upon consumption. This ensures the integrity and authenticity of the tokens,

preventing tampering or unauthorized access.

Explicit Algorithm and Key Specification

COPY

Example of explicit algorithm and
key specification in JWT generation
jwt.encode({'user': 'username'}, 'secret_key', algorithm='HS256')

COPY

Signing and Verification

COPY

// Example of JWT verification upon consumption
jwt.verify(token, 'secret_key', (err, decoded) => {
 if (err) {
 // Handle verification failure
 } else {
 // Token is valid, proceed with processing
 }
});

COPY

When using symmetric keys, such as those in HMAC-based algorithms like HS256, it's

imperative to securely manage and distribute these keys. Avoid common pitfalls

associated with secret distribution, such as storing keys in plain text or committing

them to source code repositories.

Consider utilizing a robust key vault solution for managing your cryptographic keys

securely. Key vaults provide centralized management, access control, and auditing

capabilities, reducing the risk of unauthorized access or accidental exposure of keys.

JSON Web Tokens (JWTs) are a popular choice for secure authentication and data

exchange in modern web applications. However, proper usage of libraries for JWT

generation and consumption is critical to ensure the security and integrity of your

system. In this article, we'll explore best practices for using libraries correctly to

handle JWTs securely.

Secure Key Management

COPY

Example of generating a secure random key
openssl rand -base64 32

COPY

Utilizing Key Vaults

COPY

Example of using Azure Key Vault for secure key storage
az keyvault secret set --vault-name <vault-name> --name <secret-name>
--value <secret-value>

COPY

Utilizing Libraries Effectively for JWT Handling

Let's start with a basic example of generating JWT tokens using the jwt library in

Python:

This code snippet demonstrates how to generate a JWT token with a specified

payload, expiration time, secret key (JWT_SECRET), and algorithm (JWT_ALGORITHM).

Ensure that these values are retrieved securely from storage to prevent unauthorized

access.

On the client side, you'll need to decode and validate the JWT token to ensure its

authenticity and integrity:

JWT Generation in Python

COPY

import jwt
import time

def signJWT(user_id: str) -> str:
 payload = {
 "user_id": user_id,
 "expires": time.time() + 600 # Token expiration time (10
minutes)
 }
 token = jwt.encode(payload, JWT_SECRET, algorithm=JWT_ALGORITHM)
 return token

COPY

JWT Decoding on the Client Side

COPY

def decodeJWT(token: str) -> dict:
 try:
 decoded_token = jwt.decode(token, JWT_SECRET, algorithms=
[JWT_ALGORITHM])
 if decoded_token["expires"] >= time.time():

COPY

This code snippet decodes the JWT token using the same secret key and algorithm. It

verifies the signature and checks the expiration time (expires) to ensure the token is

still valid. If the token is valid, the decoded payload is returned; otherwise, None is

returned.

When utilizing libraries for JWT handling, it's crucial to adhere to secure usage

patterns:

Hardcoded Algorithm and Secret: Avoid extracting algorithm and secret from the

JWT header. Instead, use hardcoded values retrieved securely from storage to

prevent potential attacks.

Validate Headers: When validating JWTs, check for extraneous values in the

headers that may have been inserted by attackers or third parties. This can help

detect compromises in closed systems.

Improving password and token security is paramount in ensuring the resilience of

authentication mechanisms against malicious attacks. In this article, we'll explore best

practices and implementation techniques in both .NET Core and Java to harden

passwords and tokens, thereby fortifying your systems against potential

vulnerabilities.

 return decoded_token
 else:
 return None # Token expired
 except jwt.ExpiredSignatureError:
 return None # Token expired
 except jwt.InvalidTokenError:
 return None # Invalid token

Secure Usage Patterns

Enhancing Password and Token Security

The first step in hardening passwords and tokens is to increase both complexity and

length. This simple yet effective approach significantly enhances security:

Complexity: Incorporate a wide range of characters, including uppercase letters,

lowercase letters, numbers, and special symbols, to maximize permutations and

resilience against brute-force attacks.

Length: Extend the length of passwords and tokens to increase the number of

possible characters, thereby exponentially increasing the time required to crack

them.

When human users are involved in the authentication process, consider leveraging

secure password storage solutions to encourage the adoption of long and complex

passwords:

Password Managers: Utilize reputable password managers such as 1Password or

LastPass to securely store and manage passwords. These solutions not only

enhance security but also mitigate user resistance to using complex passwords.

The time required to crack passwords increases exponentially with complexity and

length. As illustrated in the table below (data from 2023), passwords or tokens with a

length of 16 or more characters and with complex characters should be resistant

within practical reason from common attacks:

Number of Characters Complexity Time Taken

4 Mixed case letters Instantly

8 Mixed case letters 28 seconds

Increasing Complexity and Length

Utilizing Secure Password Storage Solutions

Time to Crack Passwords: A Deterministic Improvement

Number of Characters Complexity Time Taken

12 Mixed case letters 6 years

14 Mixed case letters 17,000 years

16 Numbers and mixed case letters 779 million years

18 Numbers and mixed case letters 2 trillion years

(Source: Data from 2023)

To generate passwords and tokens with a high degree of entropy, utilize

cryptographically secure pseudo-random number generators. In .NET Core and Java,

different methods are available:

Using Cryptographically Secure Pseudo-Random Number

Generators

.NET Core Implementation

COPY

using System;
using System.Security.Cryptography;

public class PasswordGenerator
{
 public string GeneratePassword(int length)
 {
 const string allowedChars =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%^&
*()_+";

 using (var rng = RandomNumberGenerator.Create())
 {
 var result = new char[length];
 var bytes = new byte[length];

COPY

 rng.GetBytes(bytes);

 for (int i = 0; i < length; i++)
 {
 result[i] = allowedChars[bytes[i] %
allowedChars.Length];
 }

 return new string(result);
 }
 }
}

Java Implementation

COPY

import java.security.SecureRandom;

public class PasswordGenerator {
 private static final String ALLOWED_CHARS =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%^&
*()_+";

 public String generatePassword(int length) {
 SecureRandom random = new SecureRandom();
 StringBuilder password = new StringBuilder();

 for (int i = 0; i < length; i++) {

password.append(ALLOWED_CHARS.charAt(random.nextInt(ALLOWED_CHARS.leng
th())));
 }

 return password.toString();

COPY

Ensuring the security of the password reset process is crucial in safeguarding user

accounts against unauthorized access and potential breaches. In this article, we'll

discuss best practices and implementation techniques for securing the password

reset process, with examples in both .NET Core and Java.

A flawed password reset process can leave user accounts vulnerable to exploitation

and compromise. To mitigate these risks, it's essential to design and implement a

secure password reset mechanism that adheres to best practices and considers

potential threats and vulnerabilities.

Implement the following best practices to enhance the security of your password

reset process:

1. Bounded Time Window: Ensure that the password reset process has a bounded

time window from start to finish. On timeout, reset the process entirely and

invalidate any tokens or PINs in use.

2. Trusted Side Channel: Utilize a trusted side channel, such as email, to

communicate the reset sequence to the user securely.

3. Uniform Responses: Provide uniform responses in content and timing, regardless

of whether the account exists, to prevent enumeration attacks.

 }
}

Securing the Password Reset Process

Importance of a Secure Password Reset Process

Best Practices for Password Reset Processes

4. Logging and Tracking: Log and track suspicious reset activity for potential

incident detection and response.

5. Randomized Reset PINs or Tokens: Ensure that reset PINs or tokens are

sufficiently random and cannot be easily guessed.

6. Progressive Rate-Limiting: Implement progressive rate-limiting on the reset

request endpoint to prevent brute-force attacks.

7. Step-Up Process: Enforce additional security factors, such as security questions,

if a user performs multiple reset attempts or enters incorrect information.

8. User Confirmation: Always confirm with the user at the start and end of the

process to indicate a reset is in progress, giving them the option to abort if they

did not initiate it.

Implementation in .NET Core

.NET Core Example

COPY

// Implementation of secure password reset process in .NET Core
// (Pseudocode)

public class PasswordResetController : ControllerBase
{
 [HttpPost]
 [Route("reset")]
 public IActionResult ResetPassword([FromBody] ResetRequestModel
resetRequest)
 {
 // Validate reset request
 // Generate a random token or PIN
 // Send reset instructions via email
 // Log reset activity

 return Ok("Reset instructions sent successfully.");

COPY

 }

 [HttpPost]
 [Route("confirm")]
 public IActionResult ConfirmReset([FromBody]
ResetConfirmationModel resetConfirmation)
 {
 // Validate reset confirmation
 // Reset user's password
 // Invalidate reset token or PIN
 // Log reset confirmation

 return Ok("Password reset successful.");
 }
}

Implementation in Java

Java Example

COPY

// Implementation of secure password reset process in Java
// (Pseudocode)

@RestController
@RequestMapping("/reset")
public class PasswordResetController {

 @PostMapping("/request")
 public ResponseEntity<String> requestPasswordReset(@RequestBody
ResetRequest resetRequest) {
 // Validate reset request
 // Generate a random token or PIN
 // Send reset instructions via email
 // Log reset activity

COPY

Authentication is a critical aspect of securing API endpoints, ensuring that only

authorized users can access protected resources. In this article, we'll explore how to

handle authentication in code using examples in .NET Core and Java.

In FastAPI, authentication is achieved using dependency injection to inject an

authentication handler into the API endpoint handler. Here's an example:

 return ResponseEntity.ok("Reset instructions sent
successfully.");
 }

 @PostMapping("/confirm")
 public ResponseEntity<String> confirmPasswordReset(@RequestBody
ResetConfirmation resetConfirmation) {
 // Validate reset confirmation
 // Reset user's password
 // Invalidate reset token or PIN
 // Log reset confirmation

 return ResponseEntity.ok("Password reset successful.");
 }
}

Implementing Authentication

Authentication in FastAPI (Python)

Python Code (FastAPI)

COPY

from fastapi import FastAPI, Depends, HTTPException
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel

COPY

from typing import List

app = FastAPI()

Mock database
posts = []

class PostSchema(BaseModel):
 id: int
 title: str
 content: str

class JWTBearer(HTTPBearer):
 async def __call__(self, request):
 credentials: HTTPAuthorizationCredentials = await
super().__call__(request)
 if credentials:
 if not credentials.scheme == "Bearer":
 raise HTTPException(status_code=403, detail="Invalid
authentication scheme.")
 if not self.verify_jwt(credentials.credentials):
 raise HTTPException(status_code=403, detail="Invalid
token or expired token.")
 return credentials.credentials
 else:
 raise HTTPException(status_code=403, detail="Invalid
authorization code.")

@app.post("/posts", dependencies=[Depends(JWTBearer())], tags=
["posts"])
async def add_post(post: PostSchema) -> dict:
 post.id = len(posts) + 1
 posts.append(post.dict())
 return {"data": "post added."}

In .NET Core, authentication is often handled using middleware components provided

by the ASP.NET Core framework. These components allow for flexible authentication

schemes, including JWT (JSON Web Tokens), OAuth, and cookie-based

authentication. Let's see how we can implement JWT authentication in a .NET Core

web API.

Authentication in .NET Core

.NET Core Code Example

COPY

// Startup.cs

using Microsoft.AspNetCore.Authentication.JwtBearer;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.IdentityModel.Tokens;
using System.Text;

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 // Configure JWT authentication
 var key = Encoding.ASCII.GetBytes("YourSecretKeyHere");

services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
 .AddJwtBearer(options =>
 {
 options.TokenValidationParameters = new
TokenValidationParameters
 {
 ValidateIssuer = false,
 ValidateAudience = false,
 ValidateLifetime = true,
 ValidateIssuerSigningKey = true,

COPY

http://asp.net/

This code sets up JWT authentication in the application's startup configuration.

In Java, authentication is commonly implemented using frameworks like Spring

Security, which provides comprehensive support for securing web applications and

APIs. Spring Security offers various authentication mechanisms, including form-

based, HTTP Basic, and JWT authentication. Let's see how we can implement JWT

authentication using Spring Security.

 IssuerSigningKey = new SymmetricSecurityKey(key)
 };
 });

 // Other service configurations
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseAuthentication();
 app.UseAuthorization();

 // Other middleware configurations
 }
}

Authentication in Java

Java Code Example (Spring Boot)

COPY

// SecurityConfig.java

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.http.HttpMethod;
import

COPY

org.springframework.security.config.annotation.web.builders.HttpSecuri
ty;
import
org.springframework.security.config.annotation.web.configuration.Enabl
eWebSecurity;
import
org.springframework.security.config.annotation.web.configuration.WebSe
curityConfigurerAdapter;
import
org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.csrf().disable()
 .authorizeRequests()
 .antMatchers(HttpMethod.POST,
"/api/authenticate").permitAll() // Allow authentication endpoint
 .anyRequest().authenticated()
 .and()
 .addFilter(new
JwtAuthenticationFilter(authenticationManager()))
 .addFilter(new
JwtAuthorizationFilter(authenticationManager()))

.sessionManagement().sessionCreationPolicy(SessionCreationPolicy.STATE
LESS);
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();

This code configures JWT authentication using Spring Security in a Spring Boot

application.

In Node.js with Express, authentication can be implemented by adding a middleware

function to the call list in the API endpoint handler. Here's an example:

 }
}

Authentication in Node.js (Express)

JavaScript Code (Node.js with Express)

COPY

const express = require('express');
const app = express();

// Mock database
const secrets = [{ id: 1, name: "Secret 1" }];

// Middleware function for authentication
function isAuth(req, res, next) {
 const auth = req.headers.authorization;
 if (auth === 'password') {
 next();
 } else {
 res.status(401).send('Access forbidden');
 }
}

// API endpoint handler
app.get("/secrets", isAuth, (req, res) => {
 res.json(secrets);
});

COPY

In the realm of API development, security is a paramount concern. Adopting a design-

first approach allows developers to integrate security considerations into the very

fabric of their APIs. In this article, we'll delve into utilizing the OpenAPI Specification

(OAS) to bolster the security of our APIs. But before we delve into the technical

details, let's clarify some terminology surrounding API design methodologies.

API-First: In an API-first approach, the primary focus is on building APIs as the

core product, with user interfaces (UIs) developed around them. Companies like

Twilio exemplify this paradigm, where APIs are the primary revenue driver.

Design-First: This methodology involves designing APIs using a specification

language like Swagger or OAS before writing any code. It emphasizes security by

design and is the approach we'll focus on in this article.

Code-First: In contrast, the code-first approach involves writing code to

implement APIs before formalizing their design. While prevalent, it's considered a

legacy approach and lacks the security benefits of design-first methodologies.

Now that we've clarified these terms, let's explore how we can leverage the OAS for

secure API design.

// Start the server
const PORT = 3000;
app.listen(PORT, () => {
 console.log(`Server is running on port ${PORT}`);
});

Leveraging the OpenAPI Specification for Secure

API Design

API-First vs. Design-First vs. Code-First

At the heart of secure API design lies accurate data modeling. The OAS allows us to

precisely define data structures using various primitive and complex types. Here's a

brief overview of primitive types supported by OAS:

string

number

integer

boolean

array

object

Complex types, such as dictionaries, can also be defined. For example:

Here, Messages is a dictionary with string keys and Message objects as values. The

$ref directive allows for referencing common definitions, promoting reusability and

Data Modeling with OAS

COPY

Components:
 schemas:
 Messages: # Dictionary
 type: object
 additionalProperties:
 $ref: '#/components/schemas/Message'
 Message: # Object
 type: object
 properties:
 code:
 type: integer
 text:
 type: string

COPY

maintainability.

OAS allows for combining schemas using directives like oneOf , anyOf , allOf , and

not . For instance:

This snippet specifies that the request body can be either a Cat or a Dog , but not

both. Additionally, the enum directive can be used to constrain values, enhancing data

validation.

By fully specifying data structures in the OAS, developers can mitigate the risk of

data exposure and misuse. However, incomplete or ambiguous specifications can

leave APIs vulnerable to attack. Tools like the 42Crunch VSCode Swagger editor

extension provide invaluable assistance in auditing OAS definitions for security gaps.

Combining Schemas

COPY

paths:
 /pets:
 patch:
 requestBody:
 content:
 application/json:
 schema:
 oneOf:
 - $ref: '#/components/schemas/Cat'
 - $ref: '#/components/schemas/Dog'

COPY

Ensuring Data Security

Enhancing API Security with the OpenAPI

Specification

In the realm of API development, ensuring robust security measures is paramount to

protect sensitive data and prevent unauthorized access. The OpenAPI Specification

(OAS) provides a structured approach to specifying security mechanisms, including

authentication and authorization, within APIs. In this article, we'll explore how to

leverage the OAS directives for bolstering API security.

The OAS supports various security schemes, including:

HTTP authentication schemes (e.g., basic and bearer types)

API keys in headers, query strings, or cookies

OAuth 2

OpenID Connect Discovery

These schemes can be specified using the securitySchemes directive within the

OpenAPI definition.

Supported Security Schemes

COPY

components:
 securitySchemes:
 BasicAuth:
 type: http
 scheme: basic
 BearerAuth:
 type: http
 scheme: bearer
 ApiKeyAuth:
 type: apiKey
 in: header
 name: X-API-Key
 OAuth2:
 type: oauth2

COPY

Once the security schemes are defined, they can be applied to specific endpoints or

the entire API using the security directive.

 flows:
 authorizationCode:
 authorizationUrl: ...
 tokenUrl: ...
 scopes:
 read: Grants read access
 write: Grants write access
 admin: Grants access to admin operations

Applying Security Directives

COPY

paths:
 /billing_info:
 get:
 summary: Gets the account billing info
 security:
 - OAuth2: [admin]
 responses:
 '200':
 description: OK
 '401':
 description: Not authenticated
 /ping:
 get:
 security: []
 responses:
 '200':
 description: Server is up and running

COPY

In this example, the /billing_info endpoint is protected with OAuth2 within the

admin scope, while the /ping endpoint remains unprotected.

Tools like the 42Crunch VSCode Swagger editor extension enable easy auditing of

OpenAPI definitions to detect missing or incomplete security controls. By applying

appropriate security directives, developers can address security gaps proactively

during the design phase.

Once the OpenAPI definition is audited and validated, developers can leverage code-

generation tools like Swagger Codegen or OpenAPI Generator to automatically

generate client-side and server-side code. This design-first approach streamlines API

development and ensures consistency across implementations.

A significant advantage of using the OpenAPI Specification is the ability to generate

interactive API portals within applications. These portals allow consumers to explore

and experiment with APIs before developing client applications, facilitating easier

adoption.

 default:
 description: Something is wrong

Audit and Remediation

Code Generation

API Portal

In the realm of API security, the positive security model stands out as a robust

approach to ensuring data integrity and protecting against malicious attacks. Unlike

the traditional negative security model, which relies on blocklists to identify and block

known malicious data, the positive security model operates based on an allowlist

principle. In this article, we'll delve into the benefits of leveraging the positive security

model, particularly within the context of API development, and explore how the

OpenAPI Specification serves as a foundation for implementing this model effectively.

Before delving into the positive security model, let's briefly examine its counterpart,

the negative security model. In the negative security model, protection tools like Web

Application Firewalls (WAFs) maintain a list of known malicious data patterns and

attempt to block any requests containing such data. However, this approach suffers

from several drawbacks:

1. Maintenance Overhead: Continuously updating and maintaining the blocklist is

labor-intensive and error-prone.

2. False Negatives: Despite the extensive blocklist, some valid attacks may slip

through undetected.

3. False Positives: Overly restrictive rules may flag legitimate requests as malicious,

impacting the application's functionality.

The positive security model flips the paradigm by focusing on allowing known valid

data while blocking everything else. This approach offers several advantages:

Embracing the Positive Security Model for API

Protection

Negative Security Model

The Strength of the Positive Security Model

1. Precision: By defining a precise allowlist, false positives and false negatives are

minimized, enhancing the accuracy of threat detection.

2. Simplicity: Unlike maintaining a blocklist, managing an allowlist is more

straightforward and less prone to oversight.

3. Dependability: With a well-defined contract as the source of truth, the API's

behavior becomes more predictable and secure.

For API development, the OpenAPI Specification serves as the ideal contract for

implementing the positive security model. By accurately defining data structures,

request parameters, and operations within the OpenAPI definition, developers

establish a clear contract for API interactions. This contract becomes the basis for

enforcing security controls based on allowing only known valid inputs and operations.

Let's take a practical approach by implementing positive security measures in both

.NET Core and Java using the OpenAPI Specification.

Leveraging the OpenAPI Specification

Implementing Positive Security in .NET Core and

Java

.NET Core Example

COPY

// .NET Core API Controller with OpenAPI Specification
[ApiController]
[Route("api/[controller]")]
public class UsersController : ControllerBase
{
 private readonly IUserService _userService;

COPY

 public UsersController(IUserService userService)
 {
 _userService = userService;
 }

 [HttpGet("{id}")]
 public ActionResult<UserDto> GetUserById(int id)
 {
 // Implement positive security logic to retrieve user by ID
 // Validate ID against OpenAPI definition
 if (OpenAPISecurityValidator.ValidateRequest(Request,
"GetUserById"))
 {
 var user = _userService.GetUserById(id);
 if (user == null)
 {
 return NotFound();
 }
 return Ok(user);
 }
 else
 {
 return Unauthorized();
 }
 }
}

Java Example

COPY

// Java Spring Boot Controller with OpenAPI Specification
@RestController
@RequestMapping("/api/users")
public class UsersController {

COPY

In both examples, we validate the incoming requests against the OpenAPI definition

to ensure that only allowed operations and inputs are processed, adhering to the

positive security model.

In the realm of API development, incorporating security measures early in the

software development lifecycle is essential for safeguarding against potential threats

 private final UserService userService;

 public UsersController(UserService userService) {
 this.userService = userService;
 }

 @GetMapping("/{id}")
 public ResponseEntity<UserDto> getUserById(@PathVariable int id) {
 // Implement positive security logic to retrieve user by ID
 // Validate ID against OpenAPI definition
 if (OpenAPISecurityValidator.validateRequest(request,
"getUserById")) {
 UserDto user = userService.getUserById(id);
 if (user == null) {
 return ResponseEntity.notFound().build();
 }
 return ResponseEntity.ok(user);
 } else {
 return
ResponseEntity.status(HttpStatus.UNAUTHORIZED).build();
 }
 }
}

Conducting Threat Modeling of APIs: A Shift-Left

Approach to Security

and vulnerabilities. Threat modeling emerges as a proactive strategy that enables

security and development teams to identify, assess, and mitigate potential risks

before they manifest into security breaches. In this article, we will explore the

concept of threat modeling, its significance in API security, and practical approaches

to conducting threat modeling activities using .NET Core and Java.

Threat modeling is a systematic approach to identifying potential security threats and

vulnerabilities in a system or application. It involves asking critical questions about the

system's design, functionality, and potential attack vectors. The key steps in threat

modeling can be summarized as follows:

1. Identify Assets and Scope: Determine the assets being protected and define the

boundaries of the system under consideration.

2. Enumerate Threats: Identify potential threats and vulnerabilities that could

compromise the security of the system.

3. Evaluate Risks: Assess the likelihood and impact of each threat on the system's

security posture.

4. Mitigate Risks: Develop strategies and countermeasures to mitigate identified

risks and enhance the system's security.

5. Review and Iterate: Continuously review and refine the threat model as the

system evolves, ensuring ongoing protection against emerging threats.

Threat modeling plays a crucial role in API security by allowing teams to anticipate

and address security concerns early in the development process. By conducting

threat modeling activities, organizations can:

Proactively Identify Vulnerabilities: By systematically analyzing the system's

design and functionality, teams can uncover potential security weaknesses and

Threat Modeling

Importance of Threat Modeling in API Security

vulnerabilities before they are exploited by malicious actors.

Enhance Collaboration: Threat modeling encourages collaboration between

security and development teams, fostering a shared understanding of security

risks and promoting a culture of security awareness.

Prioritize Security Investments: By prioritizing risks based on their severity and

impact, organizations can allocate resources effectively to address the most

critical security concerns.

Improve Security Posture: Through the implementation of targeted security

controls and countermeasures, organizations can strengthen their overall security

posture and mitigate potential threats effectively.

Let's illustrate how threat modeling can be integrated into the development process

using .NET Core and Java. We'll demonstrate a simplified example of threat modeling

for an API endpoint that manages user authentication.

Practical Approach: Threat Modeling with .NET Core and Java

Threat Modeling in .NET Core

COPY

// Threat modeling for user authentication endpoint in .NET Core
public class AuthenticationController : ControllerBase
{
 [HttpPost("/api/authenticate")]
 public IActionResult AuthenticateUser([FromBody] Credentials
credentials)
 {
 // Threat modeling considerations:
 // - Potential brute-force attacks on authentication endpoint
 // - Insecure storage of credentials
 // - Lack of input validation on credentials

 // Implement authentication logic

COPY

In both examples, we identify potential threats and vulnerabilities specific to the user

authentication endpoint, such as brute-force attacks, injection attacks, and insecure

storage of credentials. By incorporating threat modeling considerations directly into

the code, developers can address security concerns proactively during the

development phase.

 }
}

Threat Modeling in Java

COPY

// Threat modeling for user authentication endpoint in Java
@RestController
@RequestMapping("/api")
public class AuthenticationController {

 @PostMapping("/authenticate")
 public ResponseEntity<?> authenticateUser(@RequestBody Credentials
credentials) {
 // Threat modeling considerations:
 // - Injection attacks (e.g., SQL injection, XSS) on
authentication endpoint
 // - Insufficient authentication controls (e.g., lack of rate
limiting, weak password policies)
 // - Exposure of sensitive information in error responses

 // Implement authentication logic
 }
}

COPY

Ensuring the security of APIs is a critical aspect of software development, given the

myriad of potential vulnerabilities and attack vectors that APIs can be exposed to.

However, with the right tools and practices in place, developers can automate

security checks throughout the development lifecycle to detect and mitigate potential

threats early on. In this article, we'll explore the concept of automating API security

and demonstrate practical examples using .NET Core and Java.

Automating API security involves integrating automated security checks into the

continuous integration/continuous deployment (CI/CD) pipeline to identify and

address security vulnerabilities in APIs throughout the development process. By

leveraging automated tools, developers can detect common security flaws, such as

injection attacks, broken authentication, sensitive data exposure, and more, without

manual intervention.

To achieve successful CI/CD integration for automated API security, developers

should consider the following key characteristics of security tools:

Low Latency of Execution: Security tools should execute quickly to avoid

blocking the pipeline for an extended period.

Low False Positives: Tools should minimize false positives to prevent

unnecessary interruptions in the development workflow.

API Accessibility: Tools should provide APIs for seamless integration into CI/CD

pipelines, allowing for full automation.

Automating API Security: Enhancing Development

Lifecycle with Automated Tools

Automated API Security

CI/CD Integration for Automated API Security

GitHub Actions

GitHub Actions allows developers to define CI/CD pipelines as code and execute

them automatically at various stages of the development lifecycle. Below are

examples of integrating security tools into GitHub Actions for automated API security

checks:

Semgrep is a powerful static analysis tool for detecting security vulnerabilities in

code. It offers a rich set of rules for identifying common security flaws. Below is an

example of using Semgrep to detect JWT-related vulnerabilities in Java code:

COPY

Example of integrating 42Crunch audit tool into GitHub Actions
name: Security Audit
on:
 pull_request:
 branches:
 - main

jobs:
 security_audit:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout Repository
 uses: actions/checkout@v2
 - name: Run Security Audit
 uses: 42Crunch/action-security-audit@v1
 with:
 apiKey: ${{ secrets.CRUNCH_API_KEY }}

COPY

Semgrep

COPY

// Example of using Semgrep to detect JWT signature validation failure
public class JWTAuthenticator {
 public boolean authenticate(String token) {

COPY

In addition to leveraging automated security tools, developers should adopt a

proactive approach to API security by thinking like an attacker. By understanding

potential attack vectors and exploiting APIs from an adversary's perspective,

developers can better identify and mitigate security risks. Here are some practical

steps to enhance API security:

Equip Yourself with Resources: Explore curated lists of API security resources

and tutorials available online.

Test Your APIs: Use tools like Postman to interact with your APIs and simulate

unauthorized access attempts.

Learn by Doing: Work with deliberately vulnerable API applications to gain hands-

on experience in identifying and exploiting security vulnerabilities.

Learn from Others: Stay informed about recent API breaches and analyze

underlying issues to learn from others' mistakes.

By adopting these practices and integrating automated security checks into the

development workflow, developers can enhance the security of their APIs and

mitigate potential risks effectively.

 // Semgrep rule: Look for call to decode() without verify()
 if (token != null) {
 // Decode JWT without verifying the signature
 Jwt decodedToken = Jwt.decode(token);
 return true;
 }
 return false;
 }
}

Thinking Like an Attacker

API code generation is a crucial aspect of modern software development, enabling

developers to streamline the creation of server stubs, client libraries, and

documentation based on OpenAPI specifications. While SwaggerHub has been a

popular choice for generating API code, the open-source community has introduced

an alternative solution: OpenAPI Generator. In this article, we'll delve into the

capabilities of OpenAPI Generator and demonstrate its usage with practical examples

using .NET Core and Java.

OpenAPI Generator, an open-source project, aims to provide a community-driven

solution for API code generation. It offers various installation methods, including npm,

Homebrew, Docker, and plugins for Maven and Gradle. With OpenAPI Generator,

developers can generate server stubs, client libraries, and documentation from

OpenAPI specifications seamlessly.

To install OpenAPI Generator, you can use npm, Homebrew, Docker, or download the

JAR file for JVM platforms. Here, we'll focus on using the CLI on MacOS or the Docker

image.

Generating server stubs with OpenAPI Generator is straightforward. You can use a

command similar to Swagger Codegen's format:

Exploring OpenAPI Generator for API Code

Generation

Introduction to OpenAPI Generator

Installing OpenAPI Generator

Generating Server Stubs

COPY

openapi-generator generate -
i book_sample_1.yml -g python-flask -o out/

COPY

This command generates a Python Flask project based on the provided OpenAPI

specification.

OpenAPI Generator also allows generating database schema from data definitions

within an OpenAPI specification. For example, given a well-specified user entity in the

API definition, you can generate a corresponding MySQL schema:

This command produces a MySQL script based on the data definitions in the OpenAPI

specification.

OpenAPI Generator excels at producing human-readable documentation from

OpenAPI definitions. You can generate HTML documentation using a command like:

This command generates HTML documentation based on the provided OpenAPI

specification.

One of the powerful features of OpenAPI Generator is its support for templates and

custom generators. Developers can customize code generation behavior by

modifying templates or creating custom generators from scratch. For instance, you

Generating Schema

COPY

openapi-generator generate -i Pixi.json -g mysql-schema -o out/

COPY

Generating Documentation

COPY

openapi-generator generate -i Pixi.json -g html -o out/

COPY

Using Templates and Custom Generators

can tweak templates to suit specific requirements or build entirely new language

support.

OpenAPI Generator seamlessly integrates with popular frameworks in various

programming languages, facilitating API development and documentation. Let's

explore some common scenarios:

For Java APIs, frameworks like Spring Boot and Micronaut offer built-in support for

generating OpenAPI documentation. Libraries like Springdoc-OpenAPI and Micronaut

OpenAPI provide comprehensive support for generating and customizing API

documentation.

In the .NET Core ecosystem, packages like NSwag and Swashbuckle enable the

generation of OpenAPI definitions from existing code bases. These packages offer

features for producing API documentation and client libraries.

Python developers can leverage packages like apispec for generating OpenAPI

documentation. Depending on the chosen framework (e.g., Flask or aiohttp),

additional support packages may be required for seamless integration.

For Node.js applications, libraries like swagger-ui-express facilitate the generation

and display of OpenAPI documentation. These libraries require an OpenAPI definition

Integration with Frameworks

Java

.NET Core

Python

Node.js

for generating documentation.

In the realm of API security, object-level and function-level vulnerabilities pose

significant risks to the integrity and confidentiality of data. In this article, we'll delve

into these vulnerabilities, understand their implications, and explore strategies to

mitigate them using code examples in .NET Core and Java.

Object-level vulnerabilities, as defined in the OWASP API Security Top 10, occur when

APIs grant access to objects (typically data) not owned by the calling user or client.

Despite their severity, addressing these vulnerabilities is relatively straightforward

with proper validation mechanisms.

Object-level vulnerabilities often stem from incomplete or improper validation of

access rights. For instance, trusting session identifiers, parameters, or JWT tokens

without explicit validation can lead to unauthorized access.

To mitigate object-level vulnerabilities, it's crucial to always explicitly validate access

to objects. Let's consider a code sample in Ruby on Rails:

Object-Level and Function-Level Vulnerabilities in

APIs

Object-Level Vulnerabilities

Understanding the Vulnerability

Mitigation Strategies

COPY

class UserController < ApplicationController
 def show
 if Authorization.user_has_access(current_user, params[:id])
 @this_user = User.find(params[:id])
 render json: @this_user

COPY

In this example, Authorization.user_has_access explicitly validates whether the

current_user has access to the specified user ID (params[:id]), effectively mitigating

the object-level vulnerability.

In .NET Core, you can implement similar validation logic in C#:

 end
 end
end

Practical Implementation

COPY

public class UserController : ControllerBase
{
 private readonly IUserService _userService;

 public UserController(IUserService userService)
 {
 _userService = userService;
 }

 [HttpGet("{id}")]
 public IActionResult GetUser(int id)
 {
 if
(!_userService.UserHasAccess(HttpContext.User.Identity.Name, id))
 {
 return Unauthorized();
 }

 var user = _userService.GetUserById(id);
 return Ok(user);

COPY

Here, UserHasAccess method validates whether the authenticated user has access to

the requested user ID before returning the user data.

Similar to object-level vulnerabilities, function-level vulnerabilities arise when APIs fail

to properly validate access rights for certain operations or endpoints. These

vulnerabilities can allow unauthorized users to execute privileged functions.

Function-level vulnerabilities often occur when APIs allow access to high-privilege

endpoints without adequate authorization checks. For example, granting access to

/admin endpoints without verifying the user's administrative privileges can lead to

unauthorized operations.

Mitigating function-level vulnerabilities involves explicitly validating access rights for

privileged endpoints. Let's examine a Python/FastAPI code example:

 }
}

Function-Level Vulnerabilities

Understanding the Vulnerability

Mitigation Strategies

COPY

from fastapi import FastAPI, Depends, HTTPException
from fastapi.security import OAuth2PasswordBearer

oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")

async def get_current_user(token: str = Depends(oauth2_scheme)):
 # Logic to retrieve current user based on token
 return current_user

app = FastAPI()

COPY

In this example, the do_admin endpoint checks whether the current user has admin

access before executing privileged operations.

In .NET Core, you can implement function-level authorization checks as follows:

Here, the [Authorize(Roles = "Admin")] attribute ensures that only users with the

"Admin" role can access the /admin endpoint.

@app.get("/admin")
async def do_admin(current_user: User = Depends(get_current_user)):
 if not AuthZ.user_has_admin_access(current_user):
 raise HTTPException(status_code=401, detail="User does not
have admin privileges")
 else:
 # Perform admin operations
 pass

Practical Implementation

COPY

public class AdminController : ControllerBase
{
 [Authorize(Roles = "Admin")]
 [HttpGet("/admin")]
 public IActionResult DoAdminStuff()
 {
 // Perform admin operations
 return Ok();
 }
}

COPY

While implementing authorization checks directly in code can address many

vulnerabilities, managing authorization at scale requires robust frameworks.

Authorization frameworks abstract policy logic from application code, enabling

centralized management and extensibility.

Authorization frameworks typically consist of three key components:

1. Modeling: Allows designers to define users, groups, roles, and permissions.

2. Policy Engine: Implements authorization logic based on access requests and

policies.

3. Policy Enforcement: Client library integrated into the application to enforce policy

decisions.

Several mature authorization frameworks are available, including:

Open Policy Agent (OPA): A Cloud Native Computing Foundation (CNCF) project

focused on policy evaluation.

Oso: A comprehensive authorization solution supporting various authorization

patterns and featuring its own policy definition language (Polar).

Casbin: A lightweight authorization framework supporting role-based access

control (RBAC), attribute-based access control (ABAC), and more.

Using Authorization Middleware

Key Components of Authorization Frameworks

Recommended Authorization Frameworks

Understanding Data Vulnerabilities in APIs:

Mitigation Strategies and Best Practices

Data vulnerabilities represent a critical aspect of API security, often leading to

breaches and data leakage. In this article, we'll explore the fundamentals of data

vulnerabilities, their implications, and effective strategies to defend against them.

We'll provide code examples in .NET Core and Java to illustrate key concepts and

implementation techniques.

Data in APIs traverses through multiple layers, including the request, API layer, and

database layer. It's crucial to understand this flow to identify potential vulnerabilities

effectively. Here's a simplified architecture diagram:

Three main data processing layers are involved:

1. Data Input Object: Represents the data format received in API requests.

2. Database Object: Represents the data format stored in the database.

3. Data Output Object: Represents the data format transmitted in API responses.

Data vulnerabilities often arise when developers map data directly between these

objects without considering data sensitivity.

Excessive data exposure occurs when APIs return more data than necessary or

desirable, leading to potential security risks. Let's discuss mitigation strategies at

both the code and data classification levels.

Developers should avoid using coalescing operators like to_json() or to_string()

indiscriminately, especially with sensitive data. Instead, be explicit about which fields

are transmitted in API responses.

Data Propagation in APIs

Excessive Data Exposure

Coding Securely

In .NET Core, you can define Data Transfer Objects (DTOs) to control data exposure.

Here's an example in C#:

Classify data based on sensitivity and intended audience. Review access to APIs

based on business needs, adhering to the principle of least privilege. Enhance API

test fixtures to monitor data types and flag potential data leakage.

Mass assignment occurs when APIs accept more data than intended, potentially

allowing attackers to modify sensitive fields. Mitigate this vulnerability by being

specific about allowed fields and avoiding implicit assignments.

COPY

public class UserBaseDto
{
 public string Username { get; set; }
 public string Email { get; set; }
 public string FullName { get; set; }
}

public class UserInDto : UserBaseDto
{
 public string Password { get; set; }
}

public class UserOutDto : UserBaseDto
{
 // No sensitive data exposed
}

COPY

Classifying Data

Mass Assignment

In Java, you can implement explicit field assignment to prevent mass assignment

vulnerabilities. Here's an example using Spring Boot:

API security remains a critical concern in today's digital landscape, with various

vulnerabilities posing significant risks to applications and data. In this article, we'll

delve into the realm of injection attacks, SSRF vulnerabilities, insufficient logging, and

resource consumption issues in APIs. We'll explore mitigation strategies and best

practices, accompanied by code examples in .NET Core and Java.

Injection attacks, such as SQL injection and command injection, exploit systems that

trust user input without proper validation. To mitigate these risks, follow these best

practices:

COPY

public class User {
 private String username;
 private String email;
 private String password;

 // Getters and setters

 public void setPassword(String password) {
 // Explicitly set password after hashing
 this.password = hashPassword(password);
 }
}

COPY

Understanding and Mitigating API Vulnerabilities:

Injection, SSRF, Logging, and Resource

Consumption

Injection Vulnerabilities

In .NET Core, use parameterized queries to prevent SQL injection:

In Java, similarly use parameterized queries with JDBC:

Ensure proper handling of special characters in user input to prevent command

injection:

Validate User Input

COPY

string query = "SELECT * FROM Users WHERE Username = @Username";
using (var command = new SqlCommand(query, connection))
{
 command.Parameters.AddWithValue("@Username", userInput);
 // Execute the command
}

COPY

COPY

String query = "SELECT * FROM Users WHERE Username = ?";
PreparedStatement statement = connection.prepareStatement(query);
statement.setString(1, userInput);
ResultSet resultSet = statement.executeQuery();

COPY

Sanitize User Input

COPY

string sanitizedInput = userInput.Replace(";", "").Replace("&", "");

COPY

COPY

String sanitizedInput = userInput.replaceAll("[;\\&]", "");

COPY

Define input formats in OpenAPI definitions to constrain data types and use API

firewalls for protection.

SSRF vulnerabilities allow attackers to force servers to make unintended requests.

Mitigate SSRF risks with these approaches:

Explicitly define a list of allowed URLs for redirection:

Ensure that only specified URL schemas and ports are allowed for redirection.

Utilize OpenAPI Definitions

Server-Side Request Forgery (SSRF)

Allow List for URLs

COPY

if (allowedUrls.Contains(userInputUrl))
{
 // Perform the redirection
}
else
{
 // Reject the URL
}

COPY

COPY

if (allowedUrls.contains(userInputUrl)) {
 // Perform the redirection
} else {
 // Reject the URL
}

COPY

Restrict URL Schema and Ports

Prevent automatic HTTP redirections to untrusted URLs.

Insufficient logging can hinder the detection of abnormal activities and security

breaches. Enhance logging and monitoring by:

Recording failed operations with transaction details.

Identifying suspicious transactions and raising alerts.

Integrating API logs into standard SIEM and SOC solutions.

Implement rate limiting and throttling to prevent excessive API resource usage:

Limit the number of requests per client within a given window:

Disable HTTP Redirections

Insufficient Logging and Monitoring

Protecting Against Unrestricted Resource

Consumption

Rate Limiting

COPY

// .NET Core implementation
services.AddMvc(options =>
{
 options.Filters.Add(new RateLimitAttribute());
});

COPY

COPYCOPY

Design APIs to gracefully handle variable loads by leveraging cloud-native platforms

for automatic scaling.

In the realm of API security, understanding the various stakeholders and their

perspectives is crucial for effectively managing and implementing security measures.

Let's explore the different roles across IT, API, operations, security, and business

units, along with their key responsibilities and how they contribute to API security.

Responsible for information security in the organization.

Ensures that security measures are in place to protect the organization's data

and assets.

// Java implementation with Spring Boot
@Bean
public FilterRegistrationBean rateLimitFilter() {
 FilterRegistrationBean registrationBean = new
FilterRegistrationBean();
 registrationBean.setFilter(new RateLimitFilter());
 registrationBean.addUrlPatterns("/api/*");
 return registrationBean;
}

Scalability

Understanding Your Stakeholders in API Security

Roles in the Security Domain

CISO (Chief Information Security Officer)

Oversees the application security (AppSec) program and activities.

Implements security measures to protect applications from vulnerabilities and

attacks.

Integrates and operates security tools within the automated software

development lifecycle (SDLC) environment.

Ensures that security is incorporated throughout the development process.

Conducts offensive testing of product releases using black box techniques.

Identifies vulnerabilities and weaknesses in the organization's systems and

applications.

Manages risk and compliance in the organization based on applicable operating

environments.

Ensures that the organization adheres to relevant regulations and standards.

Responsible for the IT operations of a business unit.

Oversees the organization's technological infrastructure and strategy.

Head of AppSec

DevSecOps Team

Pentest/Red Team

Risk and Compliance Team

Roles in the Business or Development Domain

CIO (Chief Information Officer)

Manages the product development and lifecycle of a business unit's offerings.

Defines product requirements and priorities.

Manages the technical team responsible for developing and maintaining

products.

Provides technical guidance and support to team members.

Supports and evangelizes the product to customers.

Designs and implements technical solutions that align with business goals.

Operates the build and release process through automation.

Facilitates collaboration between development and operations teams.

Manages the product management of a set of APIs offered as a product.

Defines the roadmap and strategy for API products.

Product Owner

Technical Lead

Solution Architect

DevOps Team

Roles in the API Product Domain

API Product Owner

API Platform Owner

Owns the central API platforms (e.g., API gateways, management portals) and API

PaaS infrastructure.

Ensures the reliability and security of API platforms.

Defines the overall API strategy, including authentication, authorization, and

architecture.

Designs APIs to meet business and technical requirements.

Ownership of API security may reside across multiple organizational units, each

responsible for different aspects of security implementation. For example:

The API platform owner may focus on applying API gateway policies.

The API architect may handle overall authentication strategy.

The head of AppSec may oversee SAST/DAST scans.

The CISO holds ultimate accountability for API security.

To avoid duplication of responsibilities and ensure effective security management,

roles and responsibilities should be clearly defined and distributed among

stakeholders. By involving various stakeholders and aligning their efforts,

organizations can achieve a comprehensive and robust approach to API security.

As a technical evangelist at 42Crunch, I developed a comprehensive six-domain API

security maturity model aimed at assisting organizations in assessing their current

API Architect

Distributing Ownership of API Security

The 42Crunch Maturity Model for API Security

security posture and charting a roadmap towards a more secure environment. This

model has gained popularity among customers due to its structured approach and

actionable insights.

The maturity model consists of six key domains, each representing a crucial aspect of

API security. Within each domain, specific activities are outlined, categorized based

on their maturity level: non-existent, emerging, or established. Let's delve into each

domain:

Maintaining an up-to-date and accurate inventory of APIs is fundamental for visibility

into the organization's risk and attack surface. Key activities include:

Introduction and tracking of new APIs

Discovering API inventory from source code repositories

Runtime discovery of APIs through network traffic inspection

At lower maturity levels, only a basic inventory is maintained, often via manual

tracking. As maturity increases, a centralized platform is utilized, and shadow/zombie

APIs are actively managed.

Addressing security issues at the design phase is cost-effective and crucial for

building secure APIs. Key elements of secure API design include:

Authentication methods

Authorization models

Data privacy and exposure requirements

Overview of the Maturity Model

1. Inventory

2. Design

Compliance considerations

Threat modeling exercises

Lower maturity levels may lack a formal design process, while higher levels

emphasize security as a first-class element of API design, incorporating standard

practices like threat modeling.

The development phase is where specifications are implemented, making it vital to

follow security best practices. Key considerations include:

Choice of languages, libraries, and frameworks

Correct configuration of frameworks

Defensive coding practices

Central enforcement of authentication and authorization

At lower maturity levels, developers may be unaware of security concerns, while

higher levels see proactive adoption of secure coding practices.

Effective API security testing is essential to identify vulnerabilities before deployment.

Key aspects of testing include:

Authentication and authorization bypass testing

Data exposure and handling of invalid requests

Rate limiting and quota enforcement

Integration with CI/CD processes

3. Development

4. Testing

Lower maturity levels may lack specific API security testing, while higher levels tightly

integrate testing into all stages of the SDLC.

Despite efforts in earlier stages, APIs remain susceptible to attacks and require

dedicated protection mechanisms. Key aspects of protection include:

JWT validation

Secure transport options

Brute-force protection

Logging and monitoring of protection mechanisms

Lower maturity levels may rely solely on standard firewalls, while higher levels

implement dedicated API firewalls for enhanced protection.

A robust governance process ensures that APIs are developed and maintained

according to organizational standards. Key principles of governance include:

Consistency in API usage

Standard processes for API development and testing

Compliance with data privacy requirements

Lifecycle management of APIs

Lower maturity levels may lack standardized processes, while higher levels enforce

proactive governance and address deviations.

5. Protection

6. Governance

Planning Your Program

Establishing clear objectives and understanding the motivations behind implementing

an API security program are crucial first steps. Organizations should prioritize APIs

based on their security objectives and gradually expand their program.

Assessing the current state involves estimating API inventory, determining ownership,

and mapping capabilities to the maturity model. It's essential to build consensus

among stakeholders and establish controls and procedures to meet security

requirements.

Creating secure landing zones with integrated security tooling simplifies the

development process and ensures consistent security across APIs. Organizations can

standardize landing zones to achieve greater API security.

Building a successful API security team requires individuals with diverse skills and

backgrounds, emphasizing diplomacy and collaboration over technical specialization.

Leveraging security champions within development teams can also enhance security

efforts.

Selecting key performance indicators (KPIs) aligned with program objectives helps

track progress effectively. Understanding the nature of KPIs and selecting metrics

based on authentication, authorization, and coverage metrics can drive continuous

improvement.

Assessing Your Current State

Building a Landing Zone for APIs

Building Your Teams

Tracking Your Progress

Integrating with Existing AppSec Programs

DevSecOps Devops appsec APIs secure coding

Aligning API security initiatives with existing DevSecOps teams and integrating API

testing methods into security testing processes enhances overall security efforts.

Understanding API dependencies and managing software dependencies are also

critical aspects.

Defending APIs by Colin Domoney

Resources

https://rezaduty-1685945445294.hashnode.dev/tag/devsecops?source=tags_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/tag/devops?source=tags_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/tag/appsec?source=tags_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/tag/apis?source=tags_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/tag/secure-coding?source=tags_bottom_blogs

