DEVSECOPS

WWWWWWWWWWWWWWWWWWWWWWW

DevSecOps Scenarios

Scenario: Full Lifecycle DevSecOps Implementation

1. Planning & Code Development

= Tools: Jira, GitHub Copilot
» Security Practice: Secure coding guidelines

» Description: Developers use Jira for task tracking, ensuring security requirements are included from the start.
GitHub Copilot assists in writing secure code by suggesting best practices.

2. Source Code Repository

= Tools: GitHub, GitGuardian
= Security Practice: Secret scanning and code security
« Command/Code:

GitGuardian pre-receive hook
gitguardian pre-receive

« Description: Code is committed to GitHub, where GitGuardian scans for secrets and sensitive data.

3. Continuous Integration

= Tools: Jenkins, SonarQube, Snyk
« Security Practice: SAST and dependency scanning
« Command/Code:

// Jenkinsfile for SAST with SonarQube and Snyk
pipeline {
agent any
stages {
stage('SAST') {
steps {
script {
sh 'sonar-scanner ...
sh 'snyk test'’

= Description: Jenkins integrates with SonarQube for static analysis and Snyk for vulnerability scanning in
dependencies.

4, Continuous Deployment

» Tools: Ansible, HashiCorp Vault
» Security Practice: Secure deployment and secrets management
« Command/Code:

Ansible playbook using HashiCorp Vault for secrets
- hosts: all

vars:*

UU_pPasswoiu. 11 LOORUpPL Nashii_Vvaull , SCLiCi=iyapp/Udlia/U0 PasoswOilQ=ily _vaull_passwlOiu / rr
tasks:
- name: Deploy application
ansible,builtin.git:
repo: 'https://github.com/myrepo/myapp.git’
dest: '/var/www/myapp'

» Description: Ansible automates deployment, with HashiCorp Vault managing secrets securely.

5. Infrastructure Management

« Tools: Terraform, Checkov
= Security Practice: Infrastructure as Code security
+« Command/Code:

Terraform script for secure AWS setup
resource “aws_instance" "example" {
ami = "ami-123456"
instance_type = "t2.micro"
Security group, roles, etc.

::

Checkov for Terraform security
checkov -d .

= Description: Terraform scripts manage cloud infrastructure, with Checkov ensuring security best practices.

6. Continuous Monitoring & Logging

» Tools: Datadog, Splunk
» Security Practice: Real-time security monitoring and log analysis
« Command/Code:

Datadog agent configuration for monitoring
logs_enabled: true
logs:
- type: file
path: /var/log/myapp.log
service: myapp
source: python

« Description: Datadog and Splunk are used for monitoring application performance and analyzing logs for
security insights.

7. Incident Response & Feedback

= Tools: PagerDuty, TheHive
» Security Practice: Automated incident response and case management
» Command/Code:

Triggering an incident in PagerDuty

curl =X POST —header 'Content-Type: application/json' \

--header 'Authorization: Token token=my_pagerduty_token' \

~-d '{"incident": {"type": "incident", "title": "Security Alert", "service": {"id": "service_id",
"type": "service_reference"}}}' \

‘https://api.pagerduty.com/incidents'

= Description: PagerDuty manages incident alerts, while TheHive is used for case management and investigation.

I WNALHUWEI WY Vil il Wiy i i

[Developers] —plan & code-—> [Jira & GitHub Copilot]
I
| (1) Secure Coding
v
[GitHub Copilot] ——commit code--> [GitHub Repository]
I
| (2) Secret Scanning
v
[GitHub] —-trigger CI-—> [Jenkins Server]
|
| (3) SAST & Dependency Scanning
v
[Jenkins] --deploy code-—> [Ansible & HashiCorp Vault]
I
| (4) Secure Deployment & Secrets Management
v
[Ansible] --manage infrastructure-—> [Terraform & Checkov]
I
| (5) Infrastructure as Code Security
v
[Terraform] —log data—> [Datadog & Splunk]
|
| (6) Monitoring & Logging
v
[Datadog] --incident detection-—> [PagerDuty & TheHive]
I
| (7) Incident Response & Case Management
v
[PagerDuty & TheHive]l —alert & manage——> [Developers/Security Team]

CIA Triangle for Compliance

« Confidentiality (Rating: 9/10)
« Proof: Use of HashiCorp Vault for secrets management and GitGuardian for secret scanning ensures high
confidentiality of sensitive data.
= Integrity (Rating: 8/10)
» Proof: SonarQube and Snyk maintain code and dependency integrity. Terraform and Checkov ensure
infrastructure integrity.
= Availability (Rating: 7/10)
« Proof: Datadog and Splunk provide continuous monitoring to maintain high availability, but there's always
room for improvement in disaster recovery and redundancy strategies.

Scenario: Advanced DevSecOps Workflow in a Cloud-Native Environment

1. Planning & Code Development

» Tools: Azure DevOps Boards, GitHub

« Security Practice: Agile planning with security user stories

» Description: Azure DevOps Boards is used for sprint planning, ensuring security tasks and user stories are
included. Code is developed and managed in GitHub repositories.

2. Source Code Repository

« Tools: GitHub, GitLab
« Security Practice: Code scanning and review
» Command/Code:

& Cletdihh Artdnme ETar rarda crammemm

name: "Code Scanning - Action"

on:
push:
pull_request:
schedule:
- cron: '0 1 % % @'

jobs:
build:
name: Build
runs-on: ubuntu-latest

steps:
— name: Checkout repository
uses: actions/checkout@v2

— name: Run CodeQL
uses: github/codeql-action/analyze@vl

» Description: GitHub Actions is used for automated code scanning using CodeQL to detect vulnerabilities and
errors.

3. Continuous Integration
= Tools: Jenkins, SonarCloud
= Security Practice: SAST (Static Application Security Testing)
» Command/Code:

// Jenkinsfile for SAST with SonarCloud
pipeline {
agent any
stages {
stage('SonarCloud Analysis') {
steps {
withSonarQubeEnv('SonarCloud') {
sh 'mvn clean verify sonar:sonar'

» Description: Jenkins integrates with SonarCloud for static application security testing, ensuring code quality
and security.

4. Continuous Deployment

« Tools: Azure DevOps Pipelines, Terraform Cloud
« Security Practice: Secure and automated deployment
» Command/Code:

Azure DevOps pipeline for deployment
trigger:
— main

pool:
vmImage: 'ubuntu-latest’

steps:
— script: echo Deploying Application!

= Description: Azure DevOps Pipelines automate the deployment process, with Terraform Cloud managing the
infrastructure provisioning securely.

5. Infrastructure Management

» Tools: Terraform, Pulumi
= Security Practice: Infrastructure as Code (laC) security
» Command/Code:

// Pulumi script for AWS infrastructure
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";

const bucket = new aws.s3.Bucket("myBucket", {
acl: “private",

1);

» Description: Pulumi and Terraform are used for infrastructure management, ensuring best practices and
security in cloud infrastructure provisioning.

6. Continuous Monitoring & Logging

= Tools: Datadog, New Relic
» Security Practice: Real-time monitoring and logging
« Command/Code:

Datadog agent configuration for log collection
logs:
- type: file
path: /var/log/myapp/*.log
service: myapp
source: python

» Description: Datadog and New Relic provide comprehensive monitoring and logging capabilities, offering
insights into application performance and security.

7. Incident Response & Feedback

« Tools: Opsgenie, Jira Service Management
« Security Practice: Incident management and feedback loop
» Command/Code:

Opsgenie alert creation
curl -X POST https://api.opsgenie.com/v2/alerts \
-H "Content-Type: application/json" \
-H "Authorization: GenieKey YOUR_API_KEY" \
-d '{
"message": "High CPU Usage detected",
"alias": "High CPU",
"description": "CPU usage exceeded 90%",
“responders": [{"type": "team", "name": "Operations"}],
"visibleTo": [{"type": "team", "name": "Development"}],
“actions": ["Restart", "Scale"],
“"tags": ["cpu", "high_usage"],
“"details": {"monitoring_tool": "Datadog"}
}

» Description: Opsgenie for alerting and incident management, integrated with Jira Service Management for

Textual System Diagram

[Developers] —plan & code-—> [Azure DevOps Boards & GitHub]
I
| (1) Agile Planning & Code Management
%
[GitHub] --code scanning—> [GitHub Actions]
I
| (2) Automated Code Scanning
v
[GitHub] —trigger CI-—> [Jenkins & SonarCloud]
|
| (3) SAST & Code Quality Check
v
[Jenkins] --deploy code-—> [Azure DevOps Pipelines & Terraform Cloud]

|
| (4) Deployment Automation

v
[Azure DevOps Pipelines] ——manage infrastructure-——> [Terraform & Pulumi]
I
| (5) IaC Security & Management
v

[Terraform & Pulumi] --monitoring—> [Datadog & New Relic]

I
| (6) Continuous Monitoring & Logging
v

[Datadog & New Relic] —incident detection—> [Opsgenie & Jira Service Management]

|
| (7) Incident Response & Management
v
[Opsgenie & Jiral ——feedback loop-—> [Developers/Security Team]

CIA Triangle for Compliance
= Confidentiality (Rating: 8/10)
» Proof: Use of GitHub for secure code management and HashiCorp Vault for secrets management ensures
data confidentiality.
« Integrity (Rating: 9/10)
= Proof: SonarCloud and Jenkins ensure code integrity. Terraform and Pulumi maintain infrastructure
integrity.
« Availability (Rating: 7/10)
» Proof: Continuous monitoring with Datadog and New Relic ensures high availability, but disaster recovery
strategies could be further enhanced.

Scenario: Modern DevSecOps in a Microservices Architecture

1. Planning & Code Development

= Tools: Atlassian Confluence, JetBrains IntelliJ IDEA

« Security Practice: Secure design documentation and IDE-based security linting

» Description: Confluence is used for documenting security requirements and architecture. IntelliJ IDEA, with its
security plugins, assists developers in writing secure code.

2. Source Code Repository

= Tools: Bitbucket, GitLeaks
« Security Practice: Secure source code management and secret scanning
« Command/Code:

GitlLeaks pre-push hook
gitleaks protect ——staged

« Description: Bitbucket hosts the repositories, and GitLeaks scans for accidental secret commits.

3. Continuous Integration

» Tools: CircleCl, Veracode
« Security Practice: SAST and container scanning
« Command/Code:

CircleCI config for SAST with Veracode
version: 2.1
orbs:

veracode: veracode/veracode-scan@l.0.0
workflows:

version: 2

build-and-scan:

jobs:
- veracode/scan:
file_path: "./target/*.jar"

» Description: CircleCl integrates with Veracode for static application security testing and container vulnerability
scanning.

4. Continuous Deployment

» Tools: Spinnaker, HashiCorp Vault
» Security Practice: Secure deployment automation and secret management
+ Command/Code:

// Spinnaker pipeline JSON snippet
{
"keepWaitingPipelines": false,
"limitConcurrent": true,
“"stages": [
{
"name": "Deploy to Kubernetes",
"type": "deployManifest"
// Additional deployment details

» Description: Spinnaker manages deployments across environments, with HashiCorp Vault handling secrets.

5. Infrastructure Management

= Tools: AWS CloudFormation, Bridgecrew
= Security Practice: Infrastructure as Code security and compliance
» Command/Code:

AWS CloudFormation snippet for secure infrastructure
Resources:
MyEC2Instance:
Type: "AWS::EC2::Instance"
Properties:
Imageld: "ami-@abcdef1234567890"

Bridgecrew scan
bridgecrew —d /path/to/cloudformation

» Description: AWS CloudFormation scripts define the infrastructure, and Bridgecrew checks them for security
and compliance.

6. Continuous Monitoring & Logging

« Tools: Grafana Loki, Prometheus
» Security Practice: Log aggregation and performance monitoring
« Command/Code:

Prometheus configuration for monitoring
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'microservices'
static_configs:
- targets: ['servicel:9090', 'service2:9090']

= Description: Grafana Loki aggregates logs, and Prometheus monitors microservices performance and health.

7. Incident Response & Feedback

= Tools: PagerDuty, Tenable.io
= Security Practice: Incident alerting and vulnerability management
= Command/Code:

Tenable.io scan initiation

curl =X POST -H 'Content-Type: application/json' —-H 'X-ApiKeys:
accessKey=ACCESS_KEY; secretKey=SECRET_KEY' \

-d '{"uuid": “TEMPLATE_UUID"}' \

'https://cloud. tenable.com/scans’

= Description: PagerDuty handles incident alerts, and Tenable.io is used for continuous vulnerability
management.

Textual System Diagram

[Developers] —plan & code--> [Confluence & Intellil IDEA]
|
| (1) Secure Design & Development
v
[Intelli) IDEA] --commit code——> [Bitbucket Repository]
I
| (2) Source Code Management & Secret Scanning
v
[Bitbucket] —trigger CI—> [CircleCI & Veracodel
I
| (3) SAST & Container Scanning
v
[CircleCI] —deploy code—> [Spinnaker & HashiCorp Vault]
I
| (4) Deployment Automation & Secret Management
v
[Spinnaker] —manage infrastructure—> [AWS CloudFormation & Bridgecrew]
I
| (5) IaC Security & Compliance
v

TANWIC ClnundCarmatinn)l L wmantitnrdinac.s Crafana 1 akd £ Deanmathariel

| (6) Log Aggregation & Performance Monitoring
%
[Grafana Loki & Prometheus] --incident detection-—> [PagerDuty & Tenable.io]
|
| (7) Incident Alerting & Vulnerability Management
v
[PagerDuty & Tenable.io] --feedback loop--> [Developers/Security Team]

CIA Triangle for Compliance

« Confidentiality (Rating: 8.5/10)
= Proof: HashiCorp Vault for secrets management and Bitbucket with GitLeaks for source code
confidentiality.
« Integrity (Rating: 9/10)
« Proof: Veracode and Bridgecrew ensure the integrity of code and infrastructure. CircleCl maintains the
integrity of the CI/CD process.
= Availability (Rating: 8/10)
= Proof: Prometheus and Grafana Loki ensure high availability through monitoring, but additional disaster
recovery measures could improve the score.

Scenario: Comprehensive DevSecOps in a Hybrid Cloud Environment

1. Project Management & Planning
= Tools: Microsoft Azure DevOps, Miro
« Security Practice: Integrating security into Agile workflows
» Description: Azure DevOps for sprint planning with security tasks integrated. Miro is used for collaborative
threat modeling.

2. Code Development & Review

« Tools: Visual Studio Code, Codacy
= Security Practice: Secure coding and automated code reviews
» Command/Code:

Codacy analysis CLI command
codacy-analysis—-cli analyze —directory /path/to/project —format json

« Description: Developers use Visual Studio Code for development, with Codacy integrated for automated code
reviews and security checks.

3. Continuous Integration

» Tools: GitLab CI/CD, Whitesource
» Security Practice: SAST and open-source vulnerability scanning
+ Command/Code:

GitLab CI/CD pipeline configuration for Whitesource
whitesource-scan:
image: whitesource/agent
script:
— ws unify -apiKey $WHITESOURCE_API_KEY -projectName "MyProject"

« Description: GitLab CI/CD pipelines are configured to use Whitesource for scanning dependencies and ensuring
open-source security compliance.

4. Continuous Deployment

= Tools: Jenkins, Terraform
= Security Practice: Secure deployment automation and infrastructure as code
« Command/Code:

// Jenkins pipeline for Terraform deployment
pipeline {
agent any
stages {
stage('Deploy') {
steps {
sh 'terraform apply —auto-approve'

« Description: Jenkins automates the deployment process, with Terraform scripts managing the provisioning of
cloud infrastructure securely.

5. Infrastructure & Configuration Management

» Tools: Ansible, Cloud Custodian
» Security Practice: Configuration management and cloud security enforcement
« Command/Code:

Ansible playbook for configuration management
- hosts: all
tasks:
- name: Ensure latest security patches are applied
apt:
upgrade: ‘'dist’

Cloud Custodian policy
policies:

- name: ec2-compliance
resource: ec2
filters:

- type: value
key: InstanceType
value: t2.micro

« Description: Ansible ensures configurations are secure and consistent. Cloud Custodian enforces security
policies in the cloud environment.

6. Monitoring & Incident Response

« Tools: Splunk, Grafana
» Security Practice: Security information and event management (SIEM) and incident response
« Command/Code:

Splunk search query for monitoring
index=main sourcetype=myapp | stats count by host

= Description: Splunk for SIEM, aggregating logs and providing insights for security monitoring. Grafana is used
for visualizing metrics and setting up alerts.

7. Compliance & Vulnerability Management

« Tools: Qualys, Prisma Cloud

T LQELUNILY FiaLlILl. LUNHLTNIUUUS LUNIPHAlILE CHICTURS aliu vUlliciaullily dooToolliTiiL
« Command/Code:

Qualys API call for vulnerability scan
curl =X POST —H "X-Requested-With: Curl" -u "USERNAME:PASSWORD" \
"https://qualysapi.qualys.com/api/2.0/fo/scan/"

« Description: Qualys for regular vulnerability scanning and assessment. Prisma Cloud ensures continuous
compliance in the cloud environment.

Textual System Diagram

[Project Management Team] —-plan-—> [Azure DevOps & Mirol
I
| (1) Agile Planning & Threat Modeling
v

[Developers] —-code—> [Visual Studio Code & Codacyl
I
| (2) Code Development & Automated Review
v
[Code Repository] ——CI/CD pipeline-—> [GitLab CI/CD & Whitesource]
I

| (3) Continuous Integration & Security Scanning
%

[GitLab CI/CD] --deploy——> [Jenkins & Terraform]
I

| (4) Deployment Automation & Infrastructure Provisioning
v

[Infrastructure] —manage & enforce—> [Ansible & Cloud Custodian]
|
| (5) Configuration Management & Cloud Security
v

[Operational Environment] --monitor & respond-——> [Splunk & Grafana]
|
| (6) SIEM & Incident Response
v

[Compliance Team] --compliance & vulnerability management--> [Qualys & Prisma Cloud]
I

| (7) Compliance Checks & Vulnerability Assessment
v

[Feedback] —-back to planning—> [Project Management Team]

CIA Triangle for Compliance

« Confidentiality (Rating: 8.5/10)

» Proof: Codacy and Whitesource ensure code confidentiality. Cloud Custodian enforces data privacy
policies.

« Integrity (Rating: 9/10)
= Proof: GitLab CI/CD and Jenkins maintain the integrity of the deployment process. Qualys ensures the
integrity of the operational environment.
« Availability (Rating: 8/10)
« Proof: Terraform and Ansible ensure the availability of infrastructure. Splunk and Grafana provide
operational monitoring, but disaster recovery strategies could be further optimized.

Scenario: Streamlined DevSecOps in a Serverless Architecture
1. Project Initiation & Planning

« Tools: Trello, Lucidchart

e R e e L e I B e U e e B B e e I = e W e\ R

» Description: Trello for task management with security tasks integrated into the sprint. Lucidchart for creating
secure architecture diagrams.

2. Development & Code Review

» Tools: VS Code with Security Extensions, CodeClimate
» Security Practice: Secure coding and automated code quality checks
« Command/Code:

CodeClimate CLI analysis
codeclimate analyze —-f json > codeclimate_report.json

« Description: Developers use VS Code with security extensions for development. CodeClimate is integrated for
automated code quality and security checks.

3. Continuous Integration

= Tools: GitHub Actions, SonarCloud
= Security Practice: SAST and code quality analysis
+« Command/Code:

GitHub Actions workflow for SonarCloud
name: SonarCloud
on: [push, pull_request]
jobs:
build:
name: SonarCloud Scan
runs-on: ubuntu-latest
steps:
— uses: actions/checkout@v2
- name: SonarCloud Scan
uses: sonarsource/sonarcloud-github-action@master

« Description: GitHub Actions triggers SonarCloud for static application security testing and code quality
analysis.

4. Deployment & Configuration Management

« Tools: AWS SAM (Serverless Application Model), AWS Secrets Manager
» Security Practice: Secure serverless deployment and secret management
« Command/Code:

AWS SAM template for serverless deployment
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
MyFunction:
Type: AWS::Serverless::Function
Properties:
Handler: index.handler
Runtime: nodejsl4.x
Environment:
Variables:
SECRET_NAME: mySecret

» Description: AWS SAM for deploying serverless applications. AWS Secrets Manager securely manages and
retrieves secrets.

5. Infrastructure as Code (laC)

» Tools: Terraform, Checkov
» Security Practice: 1aC security and compliance
« Command/Code:

Terraform script for AWS infrastructure
resource "aws_s3_bucket" "my_bucket" {
bucket = "my-secure-bucket"
acl = "private"

Checkov for Terraform security
checkov -d /path/to/terraform

« Description: Terraform scripts define cloud infrastructure, with Checkov ensuring laC security and compliance.

6. Monitoring & Incident Management

= Tools: Datadog, PagerDuty
» Security Practice: Real-time monitoring and incident alerting
« Command/Code:

Datadog configuration for AWS Lambda monitoring
logs:
- type: lambda
source: my_lambda_function

» Description: Datadog for monitoring serverless applications and infrastructure. PagerDuty for incident alerting
and management.

7. Compliance & Vulnerability Assessment

« Tools: Prisma Cloud, Snyk
» Security Practice: Cloud compliance and vulnerability scanning
» Command/Code:

Snyk command for vulnerability scanning
snyk test ——all-projects

» Description: Prisma Cloud for continuous cloud compliance checks. Snyk scans for vulnerabilities in
dependencies and serverless functions.

Textual System Diagram

[Team] —plan & design—> [Trello & Lucidchart]
I
| (1) Agile Planning & Secure Design
%
[Developers] ——code & review—> [VS Code & CodeClimatel
|
| (2) Development & Automated Review
v
[Code Repository]l —CI pipeline-—> [GitHub Actions & SonarCloud]
|
| (3) CI & Security Analysis
%
[GitHub Actions] —deploy-—> [AWS SAM & Secrets Manager]
|

| (4) Serverless Deployment & Secret Management

[Deployment] ——IaC-—> [Terraform & Checkovl
|
| (5) Infrastructure as Code Security
v
[Terraform] —monitor & manage-—> [Datadog & PagerDuty]

| (6) Monitoring & Incident Management

v
[Operational Environment] --compliance & assessment—-> [Prisma Cloud & Snyk]
|
| (7) Compliance Checks & Vulnerability Scanning
%

[Feedback] —back to planning—> [Team]

CIA Triangle for Compliance

» Confidentiality (Rating: 8.5/10)
» Proof: AWS Secrets Manager for secret confidentiality. CodeClimate and SonarCloud ensure secure code.
= Integrity (Rating: 9/10)
» Proof: GitHub Actions and Terraform maintain deployment integrity. Checkov ensures |aC integrity.
= Availability (Rating: 8/10)
» Proof: Datadog ensures high availability through monitoring. AWS SAM optimizes serverless deployment
availability.

Scenario: Advanced DevSecOps in a Containerized Environment

1. Project Management & Requirement Analysis
* Tools: Jira, Draw.io
» Security Practice: Agile security task integration and architectural design
» Description: Using Jira for sprint planning with integrated security tasks. Draw.io for designing secure system
architectures.

2. Development & Static Code Analysis

= Tools: Visual Studio Code, SonarLint
= Security Practice: Secure coding and real-time static analysis
« Command/Code:

SonarLint integration in VS Code for real-time analysis
Extension installed directly in VS Code

« Description: Developers use Visual Studio Code with SonarLint extension for real-time static code analysis and
secure coding practices.

3. Version Control & Secret Scanning

« Tools: Git, GitGuardian
= Security Practice: Source code management and secret leak prevention
« Command/Code:

GitGuardian pre-commit hook for secret scanning
ggshield secret scan pre-commit

= Description: Git for version control with GitGuardian integrated to scan and prevent secrets from being
committed.

4. Continuous Integration & Security Scanning

» Tools: Jenkins, Anchore Engine
« Security Practice: Automated Cl pipeline with container image scanning
« Command/Code:

// Jenkins pipeline for building and scanning Docker images
pipeline {
agent any
stages {
stage('Build & Scan Image') {
steps {
sh 'docker build -t myapp:latest .
sh 'anchore-cli image add myapp:latest'

sh 'anchore-cli image wait myapp:latest'
sh ‘anchore-cli evaluate check myapp:latest’

« Description: Jenkins automates the Cl process, including building Docker images and scanning them with
Anchore Engine for vulnerabilities.

5. Container Orchestration & Configuration Management

» Tools: Kubernetes, Helm, HashiCorp Vault
» Security Practice: Secure container orchestration and secret management
« Command/Code:

Helm chart snippet for Kubernetes deployment
apiVersion: apps/vl
kind: Deployment
metadata:
name: myapp
spec:
replicas: 3
template:
spec:
containers:
- name: myapp
image: myapp:latest

» Description: Kubernetes for container orchestration with Helm charts for deployment management. HashiCorp
Vault for handling secrets and sensitive configuration.

6. Continuous Monitoring & Incident Response

» Tools: Prometheus, Grafana, Alertmanager
« Security Practice: Real-time monitoring and alerting
+« Command/Code:

Prometheus configuration for monitoring Kubernetes pods
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod

» Description: Prometheus and Grafana for monitoring containerized applications and infrastructure.
Alertmanaaer for handlina alerte and incidentes

7. Compliance & Vulnerability Management

« Tools: Aqua Security, Prisma Cloud

« Security Practice: Compliance enforcement and vulnerability assessment
= Command/Code:

Aqua Security CLI command for scanning
aqua scan —--image myapp:latest —-registry myregistry

« Description: Aqua Security for runtime protection and scanning container images. Prisma Cloud for ensuring
compliance in the cloud environment.

Textual System Diagram

[Team] —-plan & design—> [Jira & Draw.io]
I
| (1) Agile Planning & Architectural Design
v
[Developers] —code & analyze—> [VS Code & SonarLint]

I
| (2) Development & Static Analysis
v

[Code Repository]l —version control & scan—> [Git & GitGuardian]

I
| (3) SCM & Secret Scanning
v

[Git] ——CI pipeline—> [Jenkins & Anchore Engine]

I
| (4) CI & Container Scanning
v

[Jenkins] --orchestrate & configure—> [Kubernetes, Helm & Vault]
I

| (5) Orchestration & Configuration Management
v

[Kubernetes] ——monitor & alert-—> [Prometheus, Grafana & Alertmanager]

I
| (6) Monitoring & Incident Response
v

[Operational Environment] —-compliance & vulnerability—> [Aqua Security & Prisma Cloud]
|
| (7) Compliance & Vulnerability Management
v

[Feedback] —back to planning—> [Team]

CIA Triangle for Compliance

» Confidentiality (Rating: 9/10)
» Proof: HashiCorp Vault for secrets management. GitGuardian to prevent secret leaks.
» Integrity (Rating: 9/10)

= Proof: SonarLint and Anchore Engine ensure code and container integrity. Jenkins maintains Cl process
integrity.

« Availability (Rating: 8/10)

» Proof: Kubernetes and Prometheus ensure high availability. Grafana and Alertmanager for real-time alerting,
but disaster recovery strategies could be further optimized.

Scenario: Comprehensive DevSecOps in Al/ML Project Development

1. Project Planning & Design

« Tools: Monday.com, Lucidchart
« Security Control: Security-focused project management, secure architecture design
« Security Rule: "Incorporate security considerations in all project phases and architectural designs."

« Description: Monday.com is used for project management with a focus on security tasks. Lucidchart for
designing a secure Al/ML architecture.

2. Code Development & Review 8

« Tools: PyCharm, Bandit (Python Security Linter)

« Security Control: Secure coding practices, static code analysis

= Security Rule: "All Python code must pass security linting with Bandit before merging."
» Command/Code:

Bandit security linting command
bandit -r ./my_ml_project

« Description: Developers use PyCharm for Python development. Bandit is integrated for static security analysis
of Python code.

3. Version Control & Secret Management &

= Tools: GitLab, Doppler

= Security Control: Secure source code management, secret protection

« Security Rule: "No hard-coded secrets; use Doppler for secret management."
+« Command/Code:

Doppler setup command
doppler setup ——project my_ml_project —config dev

» Description: GitLab for version control with integrated CI/CD. Doppler for managing and injecting secrets into
the CI/CD pipeline.

4. Continuous Integration & Dependency Scanning @

» Tools: Jenkins, OWASP Dependency-Check

« Security Control: Automated Cl pipeline, open-source vulnerability scanning
« Security Rule: "Scan all dependencies for vulnerabilities in each Cl build."

« Command/Code:

// Jenkins pipeline stage for dependency scanning
stage('Dependency Scan') {
steps {
sh 'dependency-check.sh —project "My ML Project" —scan ./src'

}

« Description: Jenkins for Cl with automated builds and tests. OWASP Dependency-Check scans project
dependencies for vulnerabilities.

5. Containerization & Orchestration @
« Tools: Docker, Kubernetes
» Security Control: Secure containerization, orchestrated deployment
» Security Rule: "Use Docker for containerization with secure base images and Kubernetes for orchestration."
+« Command/Code:

Dockerfile example
FROM python:3.8-slim

WORKDIR /app
RUN pip install -r requirements.txt
CMD ["python", "app.py"l

« Description: Docker for containerizing the Al/ML application. Kubernetes for orchestrating container
deployment.

6. Monitoring & Incident Response 8

= Tools: Prometheus, Grafana, PagerDuty
» Security Control: Real-time monitoring, alerting, and incident management

« Security Rule: "Monitor application performance and health; alert and respond to incidents promptly."
+« Command/Code:

Prometheus scrape config
scrape_configs:
- job_name: 'kubernetes'
kubernetes_sd_configs:
- role: pod

» Description: Prometheus and Grafana for monitoring the Kubernetes environment. PagerDuty for incident
alerting and response.

7. Compliance & Vulnerability Management @

» Tools: Nessus, AWS Security Hub
= Security Control: Regular vulnerability assessments, centralized security insights

= Security Rule: "Conduct regular vulnerability scans and review AWS Security Hub for insights."
= Command/Code:

Nessus scan initiation command
nessuscli scan new —template "basic" ——name "My ML Project Scan" ——targets "10.0.0.1,10.0.0.2"

« Description: Nessus for vulnerability scanning of the network and hosts. AWS Security Hub for centralized
security insights and compliance checks.

Textual System Diagram

[Team] —plan & design——> [Monday.com & Lucidchart] M
I
| (1) Project Planning & Secure Design
v
[Developers] --code & review-—> [PyCharm & Bandit] @&
I
| (2) Secure Coding & Static Analysis
v
[Code Repository] —-version control & secrets——> [GitLab & Doppler] @
I
| (3) SCM & Secret Management
%
[GitLab] --CI pipeline-—> [Jenkins & OWASP Dependency-Check] @
|
| (4) CI & Dependency Scanning
v
[Jenkins] -——containerize & orchestrate—> [Docker & Kubernetes] @&
I
| (5) Containerization & Orchestration
v

[Kubernetes] —monitor & respond——> [Prometheus, Grafana & PagerDuty] ®

| (6) Monitoring & Incident Response
v
[Operational Environment] --compliance & assessment--> [Nessus & AWS Security Hub] @

| (7) Compliance & Vulnerability Management
v
[Feedback] —back to planning—> [Team]

CIA Triangle for Compliance

» Confidentiality (Rating: 9/10) &f
» Proof: Doppler for secret management. GitLab for secure code storage.
« Integrity (Rating: 8.5/10) @
» Proof: Bandit and OWASP Dependency-Check ensure code and dependency integrity.
« Availability (Rating: 8/10) @
» Proof: Kubernetes ensures high availability. Prometheus and Grafana for monitoring, but disaster recovery
strategies could be enhanced.

Scenario: DevSecOps in Full-Stack Web Application Development

1. Project Planning & Requirement Analysis
« Tools: ClickUp, Miro
« Security Control: Security-focused Agile project management, threat modeling
» Security Rule: "All project tasks must include security considerations, documented in Miro."
= Description: ClickUp for managing project tasks with a focus on security. Miro for collaborative threat modeling
and secure design.

2. Development & Static Code Analysis &

» Tools: Visual Studio Code, ESLint with Security Plugin

« Security Control: Secure coding practices, static code analysis

« Security Rule: "All JavaScript code must pass ESLint security linting before commit."
« Command/Code:

ESLint security linting command
eslint ——ext .js,.jsx src/

» Description: Developers use Visual Studio Code for coding. ESLint with security plugins for JavaScript linting.

3. Version Control & Secret Scanning &f

« Tools: GitHub, GitGuardian

» Security Control: Secure source code management, secret leak prevention

» Security Rule: "Scan for secrets pre-commit; block commits containing secrets."
« Command/Code:

GitGuardian pre-commit hook
ggshield secret scan pre-commit

= Description: GitHub for version control. GitGuardian integrated to scan and prevent secrets from being
committed.

4. Continuous Integration & Security Testing @
= Tools: Jenkins, SonarQube
« Security Control: Cl pipeline security, SAST

« Command/Code:

// Jenkins pipeline for SonarQube integration
pipeline {

agent any

stages {

stage('SonarQube Scan') {
steps {
withSonarQubeEnv('SonarQube') {
sh 'mvn clean verify sonar:sonar'

» Description: Jenkins for Cl, integrating SonarQube for static application security testing.

5. Containerization & Orchestration @

» Tools: Docker, Kubernetes

» Security Control: Secure containerization, orchestrated deployment

» Security Rule: "Use Docker for containerization with secure base images and Kubernetes for orchestration."
« Command/Code:

Dockerfile for web application
FROM node:14-alpine

WORKDIR /app

COPY packagex.json ./

RUN npm install

COPY ., »

EXPOSE 3000

cMD ["npm", "start"]

» Description: Docker for containerizing the web application. Kubernetes for managing container deployment.

6. Monitoring & Incident Management

« Tools: Prometheus, Grafana, Alertmanager

« Security Control: Real-time monitoring, alerting, and incident management

» Security Rule: "Continuously monitor application and infrastructure; alert on anomalies."
« Command/Code:

Prometheus configuration for monitoring
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'nodejs-app’
static_configs:
- targets: ['nodejs-app:3000']

» Description: Prometheus for monitoring the application. Grafana for dashboards and visualization.
Alertmanager for handling alerts.

7. Compliance & Vulnerability Management @,

« Tools: Nessus, AWS Security Hub
« Security Control: Regular vulnerability assessments, centralized security insights
» Security Rule: "Conduct regular vulnerability scans and review AWS Security Hub insights."

Nessus scan initiation command
nessuscli scan new —template "basic" --name "Web App Scan" -—targets "webapp.example.com"

« Description: Nessus for vulnerability scanning. AWS Security Hub for centralized security insights and
compliance checks.

Textual System Diagram

[Team] ——plan & design-—> [ClickUp & Miro] M
I
| (1) Project Planning & Threat Modeling
v
[Developers] —code & analyze—> [VS Code & ESLint] &

I
| (2) Development & Static Analysis
v

[Code Repository] —version control & scan——> [GitHub & GitGuardian] &
I
| (3) SCM & Secret Scanning
v
[GitHub] ——CI pipeline-——> [Jenkins & SonarQube] &
I
| (4) CI & Security Testing
v
[Jenkins] --containerize & orchestrate-—> [Docker & Kubernetes] @

|
| (5) Containerization & Orchestration
v

[Kubernetes] —-monitor & alert-—> [Prometheus, Grafana & Alertmanager] #
|
| (6) Monitoring & Incident Management
v
[Operational Environment] --compliance & assessment—-> [Nessus & AWS Security Hub] &
|
| (7) Compliance & Vulnerability Management
v
[Feedback] —back to planning—> [Team]

CIA Triangle for Compliance

= Confidentiality (Rating: 9/10) @&
» Proof: GitGuardian prevents secret leaks. Docker containers encapsulate application secrets.
« Integrity (Rating: 8.5/10) ¥
» Proof: SonarQube ensures code integrity. Jenkins maintains Cl process integrity.
« Availability (Rating: 8/10) @
» Proof: Kubernetes ensures high availability. Prometheus and Grafana provide operational monitoring, but
disaster recovery strategies could be enhanced.

Scenario: DevSecOps in E-commerce Web Application Development
1. Project Planning & Design

= Tools: Notion, Adobe XD
« Security Control: Security-focused Agile project management, secure UX/UI design
= Security Rule: "Incorporate security considerations in all project tasks and UX/UI designs."

« Description: Notion for managing project tasks with a focus on security. Adobe XD for designing a secure and
user-friendly e-commerce interface.

B Tt e e P L e e e P e |

= Tools: Sublime Text, SonarLint

= Security Control: Secure coding practices, real-time static analysis

« Security Rule: "All code must pass SonarLint security checks before being pushed."
« Command/Code:

SonarLint is integrated into Sublime Text for real-time analysis
No specific command needed; runs automatically

» Description: Developers use Sublime Text for coding. SonarLint is integrated for real-time static security
analysis.

3. Version Control & Secret Management &

= Tools: Bitbucket, Doppler

» Security Control: Secure source code management, secret protection

« Security Rule: "Use Doppler for managing all application secrets and API keys."
« Command/Code:

Doppler setup command
doppler setup ——project e-commerce —config dev

» Description: Bitbucket for version control with integrated CI/CD. Doppler for managing and injecting secrets
into the CI/CD pipeline.

4, Continuous Integration & Dependency Scanning @

» Tools: CircleCl, WhiteSource

« Security Control: Cl pipeline security, open-source vulnerability scanning

= Security Rule: "Scan all dependencies for vulnerabilities in each ClI build using WhiteSource."
« Command/Code:

CircleCI configuration for WhiteSource scanning
version: 2.1
orbs:

whitesource: whitesource/wss_agent@l.0.0
workflows:

version: 2

L TRR T H

jobs:
- whitesource/scan

= Description: CircleCl for continuous integration. WhiteSource scans project dependencies for vulnerabilities.

5. Containerization & Orchestration @

= Tools: Docker, Amazon ECS

» Security Control: Secure containerization, orchestrated deployment

» Security Rule: "Use Docker for containerization with secure base images and Amazon ECS for orchestration.”
« Command/Code:

Dockerfile for e-commerce application
FROM node:14

WORKDIR /usr/src/app

COPY packagex.json ./

RUN npm install

COPY .

EXPOSE 8080

= Description: Docker for containerizing the e-commerce application. Amazon ECS for managing container
deployment.

6. Monitoring & Incident Response

« Tools: New Relic, PagerDuty
» Security Control: Real-time monitoring, alerting, and incident management

» Security Rule: "Monitor application performance and health; alert and respond to incidents promptly using New
Relic and PagerDuty."

« Command/Code:

New Relic configuration for monitoring
Configured via New Relic APM UI;

« Description: New Relic for monitoring the application. PagerDuty for incident alerting and response.

7. Compliance & Vulnerability Management ®.

« Tools: Qualys, AWS Security Hub
« Security Control: Regular vulnerability assessments, centralized security insights

= Security Rule: "Conduct regular vulnerability scans with Qualys and review AWS Security Hub for insights."
» Command/Code:

Qualys scan initiation command

qualys-api.sh —-start-scan --target "e-commerce.example.com"

« Description: Qualys for vulnerability scanning. AWS Security Hub for centralized security insights and
compliance checks.

Textual System Diagram

[Team] —plan & design—> [Notion & Adobe XD] M
[
| (1) Project Planning & Secure Design
v
[Developers] —--code & analyze—> [Sublime Text & SonarLint] =
|
| (2) Development & Static Analysis
v
[Code Repository] ——version control & secrets—> [Bitbucket & Doppler] &
I
| (3) SCM & Secret Management
v
[Bitbucket] ——CI pipeline--> [CircleCI & WhiteSource] @
I
| (4) CI & Dependency Scanning
v
[CircleCI] —containerize & orchestrate-—> [Docker & Amazon ECS] @
[
| (5) Containerization & Orchestration
v
[Amazon ECS] —monitor & alert-—> [New Relic & PagerDuty] B
I
| (6) Monitoring & Incident Response
\%
[Operational Environment] --compliance & assessment--> [Qualys & AWS Security Hub] &
|

| (7) Compliance & Vulnerability Management

[Feedback] —back to planning—> [Team]

CIA Triangle for Compliance
= Confidentiality (Rating: 9/10) &
« Proof: Doppler ensures confidentiality of secrets. Bitbucket provides secure code storage.
« Integrity (Rating: 8.5/10) ¥
« Proof: SonarLint and WhiteSource maintain code and dependency integrity. CircleCl ensures Cl process
integrity.
« Availability (Rating: 8/10) @
= Proof: Amazon ECS and Docker ensure high availability. New Relic provides operational monitoring, but
disaster recovery strategies could be improved.

Scenario: DevSecOps in a Modern Web Application Development
1. Project Planning & Design Il

» Tools: Trello, Balsamiq

« Security Control: Security-integrated Agile project management, secure UIJUX design

= Security Rule: "All project tasks must include security considerations, and Ul/UX designs should be vetted for
security."

» Description: Trello is used for Agile project management with security tasks. Balsamiq for wireframing secure
UI/UX designs.

2. Development & Static Code Analysis 8

= Tools: VS Code, ESLint with Security Plugins

= Security Control: Secure coding practices, static code analysis

= Security Rule: "All JavaScript code must pass ESLint security linting before commit."
« Command/Code:

ESLint security linting command
eslint —-ext .js,.jsx,.ts,.tsx src/

« Description: Developers use VS Code for coding. ESLint with security plugins for JavaScript/TypeScript linting.

3. Version Control & Secret Management if
» Tools: GitHub, HashiCorp Vault
« Security Control: Secure source code management, secret protection
» Security Rule: "No hard-coded secrets; use HashiCorp Vault for secret management."
« Command/Code:

HashiCorp Vault command to retrieve a secret
vault kv get secret/my-web-app/db-password

= Description: GitHub for version control. HashiCorp Vault for managing and storing secrets.

4. Continuous Integration & Dependency Scanning &

» Tools: Jenkins, OWASP Dependency-Check

» Security Control: Cl pipeline security, open-source vulnerability scanning
« Security Rule: "Scan all dependencies for vulnerabilities in each Cl build."
« Command/Code:

// Jenkins pipeline stage for OWASP Dependency-Check
pipeline {

SRR, NEVYT.

stages {
stage('Dependency Check') {
steps {
sh 'dependency-check.sh —-project "My Web App" ——scan ./src'
}
}
}
}

= Description: Jenkins for Cl, integrating OWASP Dependency-Check for scanning project dependencies.

5. Containerization & Orchestration @

» Tools: Docker, Kubernetes

« Security Control: Secure containerization, orchestrated deployment

= Security Rule: "Use Docker for containerization with secure base images and Kubernetes for orchestration."
» Command/Code:

Dockerfile for the web application
FROM node:14-alpine

WORKDIR /app

COPY package.json package-lock.json ./
RUN npm install

COPY s »

EXPOSE 3000

CMD ["npm", "start"]

« Description: Docker for containerizing the web application. Kubernetes for managing container deployment.

6. Monitoring & Incident Response 8

= Tools: Prometheus, Grafana, Alertmanager

« Security Control: Real-time monitoring, alerting, and incident management

» Security Rule: "Continuously monitor application and infrastructure; alert on anomalies."
» Command/Code:

Prometheus configuration for monitoring
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'my-web-app'’
static_configs:
- targets: ['my-web-app:3000°']

= Description: Prometheus for monitoring the application. Grafana for dashboards and visualization.
Alertmanager for handling alerts.

7. Compliance & Vulnerability Management €.

» Tools: Nessus, AWS Security Hub

« Security Control: Regular vulnerability assessments, centralized security insights

» Security Rule: "Conduct regular vulnerability scans and review AWS Security Hub insights."
+« Command/Code:

Nessus scan initiation command
nessuscli scan new —template "basic" —-—name "My Web App Scan" —-targets "webapp.example.com"

» Description: Nessus for vulnerability scanning. AWS Security Hub for centralized security insights and

Py | SRR | I R

Textual System Diagram

[Team] —-plan & design-—> [Trello & Balsamiq] W
[
| (1) Project Planning & Secure Design
%
[Developers] —code & analyze—> [VS Code & ESLint] @

I
| (2) Development & Static Analysis
v

[Code Repository]l ——version control & secrets—> [GitHub & HashiCorp Vault] &

I
| (3) SCM & Secret Management
%
[GitHub] —--CI pipeline——> [Jenkins & OWASP Dependency-Check] @
|
| (4) CI & Dependency Scanning
v

[Jenkins] —-containerize & orchestrate—-—> [Docker & Kubernetes] @

|
| (5) Containerization & Orchestration
v

[Kubernetes] —monitor & alert-—> [Prometheus, Grafana & Alertmanager] 8

|
| (6) Monitoring & Incident Response
v

[Operational Environment] --compliance & assessment--> [Nessus & AWS Security Hub] @&

|
| (7) Compliance & Vulnerability Management
v

[Feedback] —back to planning—> [Team]

CIA Triangle for Compliance
= Confidentiality (Rating: 9/10) @
« Proof: HashiCorp Vault ensures the confidentiality of secrets. GitHub provides secure code storage.
« Integrity (Rating: 8.5/10) ¥
» Proof: ESLint and OWASP Dependency-Check maintain code and dependency integrity. Jenkins ensures Cl
process integrity.

« Availability (Rating: 8/10) @

» Proof: Kubernetes ensures high availability. Prometheus and Grafana provide operational monitoring, but
disaster recovery strategies could be enhanced.

Scenario: DevSecOps in a Financial Services Application

1. Project Planning & Threat Modeling

« Tools: Jira, ThreatModeler
« Security Control: Security-focused Agile project management, threat modeling
« Security Rule: "Incorporate security and threat modeling in all project phases."

« Solution: Use Jira for task management with security tasks. ThreatModeler for creating threat models specific
to financial services.

« Attacker Technique: T1587.001 (Gather Victim Identity Information)

2. Secure Coding & Code Review §&

« Tools: Eclipse, SonarQube
« Security Control: Secure coding practices, static code analysis

« Solution: Eclipse IDE with SonarLint plugin for real-time code analysis. SonarQube for comprehensive code
review.

» Attacker Technique: T1195 (Supply Chain Compromise)
« Command/Code:

SonarQube analysis command
mvn sonar:sonar -Dsonar.projectKey=financial_app -Dsonar.host.url=http://localhost:9000

3. Version Control & Secret Management &f

» Tools: GitLab, Azure Key Vault

« Security Control: Secure source code management, secret protection

« Security Rule: "No hard-coded secrets; use Azure Key Vault for all secrets."

« Solution: GitLab for version control with integrated CI/CD. Azure Key Vault for storing and managing secrets.
« Attacker Technique: T1552.001 (Unsecured Credentials: Credentials in Files)

+« Command/Code:

Azure Key Vault secret retrieval
az keyvault secret show —name db-password —vault-name MyVault

4. Continuous Integration & Dependency Scanning &

« Tools: Jenkins, OWASP Dependency-Check

« Security Control: Cl pipeline security, dependency vulnerability scanning

» Security Rule: "Scan all dependencies for vulnerabilities in each CI build."

« Solution: Jenkins for Cl, integrating OWASP Dependency-Check for scanning dependencies.
« Attacker Technique: T1199 (Trusted Relationship)

« Command/Code:

// Jenkins pipeline stage for dependency scanning
stage('Dependency Check') {
steps {
sh 'dependency-check --project "Financial App" --scan ./src'

b2

5. Containerization & Orchestration @
« Tools: Docker, Kubernetes
« Security Control: Secure containerization, orchestrated deployment
» Security Rule: "Use Docker for containerization with secure base images and Kubernetes for orchestration."
« Solution: Docker for containerizing the application. Kubernetes for managing container deployment.
» Attacker Technique: T1525 (Server Software Component)
« Command/Code:

Dockerfile for the application

FROM openjdk:11-jdk-slim

COPY target/financial-app.jar app.jar
ENTRYPOINT ["java","-jar","/app.jar"l]

6. Monitoring & Incident Response ¥

= Tools: Splunk, TheHive

» Security Control: Real-time monitoring, alerting, and incident management

= Security Rule: "Monitor application and infrastructure; alert and manage incidents."

« Solution: Splunk for SIEM and log analysis. TheHive for incident response and management.

| 1 e e N A e Mol

« Command/Code:

Splunk search query for monitoring
index="financial_logs" sourcetype="financial_app" | stats count by host, severity

7. Compliance & Vulnerability Management €.

» Tools: Nessus, AWS Security Hub
« Security Control: Regular vulnerability assessments, centralized security insights
« Security Rule: "Conduct regular vulnerability scans and review AWS Security Hub insights.”

» Solution: Nessus for vulnerability scanning. AWS Security Hub for centralized security insights and compliance
checks.

« Attacker Technique: T1595 (Active Scanning)
*» Command/Code:

Nessus scan initiation command

nessuscli scan new —template "advanced" -—name "Financial App Scan'" —targets "app.example.com"

Textual System Diagram

[Team] —-plan & threat model--> [Jira & ThreatModeler] M
|
| (1) Project Planning & Threat Modeling
v
[Developers] ——code & review-—> [Eclipse & SonarQube] @
I
| (2) Secure Coding & Code Review
v
[Code Repository] —version control & secrets—> [GitLab & Azure Key Vault] &
|
| (3) SCM & Secret Management
v
[GitLab] --CI pipeline--> [Jenkins & OWASP Dependency-Check] @
|
| (4) CI & Dependency Scanning
v
[Jenkins] —-containerize & orchestrate-—> [Docker & Kubernetes] @
I
| (5) Containerization & Orchestration
v
[Kubernetes] ——monitor & respond--> [Splunk & TheHivel B
|
| (6) Monitoring & Incident Response
v
[Operational Environment] --compliance & assessment—-> [Nessus & AWS Security Hub] @&
|
| (7) Compliance & Vulnerability Management
v
[Feedback] —back to planning—> [Team]

CIA Triangle for Compliance

« Confidentiality (Rating: 9/10) @&
» Proof: Azure Key Vault ensures confidentiality of secrets. GitLab provides secure code storage.
« Integrity (Rating: 8.5/10) @

e Proof: SonarQube and OWASP Dependency-Check maintain code and dependency integrity. Jenkins
ensures CI process integrity.
= Awvnilalhilityg (Datine~: OIM1NAY

» Proof: Kubernetes ensures high availability. Splunk and TheHive provide operational monitoring and
incident response, but disaster recovery strategies could be improved.

Scenario: DevSecOps in Advanced Cloud-Based loT Application Development
1. Project Planning & Threat Modeling Il

» Tools: Azure DevOps, securiCAD
« Security Control: Security-integrated Agile project management, advanced threat modeling
« Security Rule: "Incorporate detailed security considerations and threat modeling in all project phases."

« Solution: Azure DevOps for task management with security tasks. securiCAD for advanced threat modeling
specific to loT.

= Attacker Technique: T1584.003 (Exploit Public-Facing Application)

2. Secure Coding & Code Review §&

» Tools: PyCharm, CodeQL
= Security Control: Secure coding practices, advanced static code analysis
» Security Rule: "All Python code must pass CodeQL security checks before merging."

» Solution: PyCharm for Python development. CodeQL for deep static code analysis and identifying
vulnerabilities.

« Attacker Technique: T1195 (Supply Chain Compromise)
» Command/Code:

CodeQL analysis command

codeql database create mydb —language=python

codeql database analyze mydb python-security-queries.qls —--format=sarif-latest —
output=results.sarif

3. Version Control & Secret Management if

= Tools: Git, HashiCorp Vault

= Security Control: Secure source code management, enhanced secret protection

» Security Rule: "No hard-coded secrets; use HashiCorp Vault for all secret management."
= Solution: Git for version control. HashiCorp Vault for advanced secret management.

» Attacker Technique: T1552.003 (Credentials from Password Stores)

« Command/Code:

HashiCorp Vault secret retrieval
vault kv get -field=password secret/my-iot-app/db

4. Continuous Integration & Dependency Scanning @

= Tools: GitHub Actions, Dependabot

» Security Control: ClI pipeline security, automated dependency updates

= Security Rule: "Automatically update dependencies and scan for vulnerabilities."

» Solution: GitHub Actions for Cl. Dependabot for automated dependency updates and vulnerability scanning.
» Attacker Technique: T1199 (Trusted Relationship)

« Command/Code:

GitHub Actions workflow for Dependabot
name: Dependabot Auto Merge
on: pull_request
jobs:
auto-merge:
runs-on: ubuntu-latest
steps:

L N T PO TN L . S

uses: dependabot/fetch-metadata@vl.1.0
with:
github-token: "${{ secrets.GITHUB_TOKEN }}"

5. Containerization & Orchestration @

» Tools: Docker, Amazon EKS

« Security Control: Secure containerization, cloud-based orchestration

» Security Rule: "Use Docker for containerization and Amazon EKS for orchestration."

= Solution: Docker for containerizing loT applications. Amazon EKS for cloud-based Kubernetes orchestration.
« Attacker Technique: T1525 (Server Software Component)

« Command/Code:

Dockerfile for IoT application
FROM python:3.8-slim

COPY . /app

WORKDIR /app

RUN pip install -r requirements.txt
CMD [“python", "app.py"]

6. Monitoring & Incident Response &

» Tools: Datadog, IBM QRadar

» Security Control: Real-time monitoring, advanced incident response

« Security Rule: "Implement comprehensive monitoring and rapid incident response."

« Solution: Datadog for real-time monitoring. IBM QRadar for advanced SIEM and incident response.
« Attacker Technique: T1592 (Gather Victim Network Information)

» Command/Code:

Datadog configuration for IoT monitoring
logs:
- type: file
path: /var/log/iot-app.log
service: iot-app
source: python

7. Compliance & Vulnerability Management @,

« Tools: Nessus, AWS Security Hub
« Security Control: Regular vulnerability assessments, centralized security insights
» Security Rule: "Conduct regular vulnerability scans and review AWS Security Hub insights."

» Solution: Nessus for comprehensive vulnerability scanning. AWS Security Hub for centralized security insights
and compliance checks.

« Attacker Technique: T1595 (Active Scanning)
« Command/Code:

Nessus scan initiation command
nessuscli scan new —template "advanced" --name "IoT App Scan" ——targets "iot-app.example.com"

Textual System Diagram

[Team] —plan & threat model—> [Azure DevOps & securiCAD] W
I
| (1) Project Planning & Threat Modeling
v

[Developers] ——code & review-—> [PyCharm & CodeQL] &

| (2) Secure Coding & Code Review
v
[Code Repository] —version control & secrets—> [Git & HashiCorp Vault] &f
I
| (3) SCM & Secret Management
v
[Git] —CI pipeline—> [GitHub Actions & Dependabot] @
I
| (4) CI & Dependency Scanning
v
[GitHub Actions] —containerize & orchestrate-——> [Docker & Amazon EKS] @
I
| (5) Containerization & Orchestration
%
[Amazon EKS] --monitor & respond--> [Datadog & IBM QRadar] E
|
| (6) Monitoring & Incident Response
v
[Operational Environment] --compliance & assessment—-> [Nessus & AWS Security Hub] &

|
| (7) Compliance & Vulnerability Management
v

[Feedback] —back to planning—> [Team]

CIA Triangle for Compliance
« Confidentiality (Rating: 9/10) &
» Proof: HashiCorp Vault ensures the confidentiality of secrets. Git provides secure code storage.
« Integrity (Rating: 9/10) @
» Proof: CodeQL and Dependabot maintain code and dependency integrity. GitHub Actions ensures CI
process integrity.

» Availability (Rating: 8.5/10) @
= Proof: Amazon EKS ensures high availability. Datadog and IBM QRadar provide comprehensive monitoring
and incident response.

Scenario: DevSecOps in a Cloud-Based Payment Processing System

1. Project Planning & Risk Assessment

» Tools: ClickUp, ThreatModeler

« Security Control: Agile project management with integrated security tasks, automated threat modeling

« Security Rule: "Incorporate security risk assessments in all project phases."

« Solution: Use ClickUp for sprint planning with security tasks. ThreatModeler for automated threat modeling.
« Attack Simulation: N/A (Planning tools do not involve attack simulations)

2. Secure Development & Code Analysis &

» Tools: Visual Studio Code, SonarCloud

« Security Control: Secure coding practices, static code analysis

« Security Rule: "All code must pass SonarCloud analysis before merging."

» Solution: Visual Studio Code for development. SonarCloud for static code analysis.
» Command/Code:

SonarCloud analysis command

sonar-scanner \
-Dsonar.projectKey=payment_system \
-Dsonar.organization=myorganization \
-Dsonar.sources=, \
-Dsonar.host.url=https://sonarcloud.io

Attack Simulation: SQL Injection Attack

SELECT * FROM users WHERE username = 'admin' --' AND password = 'password';

3. Version Control & Secret Management isf
» Tools: GitHub, AWS Secrets Manager
« Security Control: Secure source code management, secret protection
= Security Rule: "No hard-coded secrets; use AWS Secrets Manager for all secrets."
» Solution: GitHub for version control. AWS Secrets Manager for secret management.

» Command/Code:

AWS Secrets Manager secret retrieval
aws secretsmanager get-secret-value ——secret-id /payment/apikey

Attack Simulation: Git Repository Secrets Leak

git log -p -G 'password|apikey'

4. Continuous Integration & Dependency Scanning @

« Tools: Jenkins, OWASP Dependency-Check

» Security Control: Cl pipeline security, open-source vulnerability scanning
= Security Rule: "Scan all dependencies for vulnerabilities in each ClI build."
= Solution: Jenkins for Cl, integrating OWASP Dependency-Check.

+« Command/Code:

// Jenkins pipeline stage for OWASP Dependency-Check
pipeline {
agent any
stages {
stage('Dependency Check') {
steps {
sh 'dependency-check —project "Payment System" --scan ./src ——out .'

Attack Simulation: Dependency Confusion Attack

npm install fake-payment-sdk@latest

5. Containerization & Orchestration @
« Tools: Docker, Kubernetes
» Security Control: Secure containerization, cloud-based orchestration
» Security Rule: "Use Docker for containerization and Kubernetes for orchestration."
« Solution: Docker for containerizing the application. Kubernetes for managing container deployment.
» Command/Code:

Dockerfile for the payment system
FROM node:14

WORKDIR /app

COPY package.json .

RUN npm install

Falalo\"4

CMD ["node", "server.js"]
Attack Simulation: Container Escape Attack

docker run -v /:/host —rm -it alpine chroot /host

6. Monitoring & Incident Response

= Tools: Prometheus, Grafana, ELK Stack

= Security Control: Real-time monitoring, alerting, and incident management

« Security Rule: "Implement comprehensive monitoring and incident response."

» Solution: Prometheus and Grafana for monitoring. ELK Stack for log management.
» Command/Code:

Prometheus configuration for monitoring
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'payment-service'
static_configs:
- targets: ['localhost:9090']

Attack Simulation: DDoS Attack Simulation

ab -n 10000 -c 100 http://payment-service.example.com/

7. Compliance & Vulnerability Management @

« Tools: Nessus, AWS Config
» Security Control: Regular vulnerability assessments, compliance monitoring
» Security Rule: "Regularly assess vulnerabilities and ensure compliance."

« Solution: Nessus for vulnerability scanning. AWS Config for compliance monitoring.
» Command/Code:

Nessus scan initiation command

nessuscli scan new —template "advanced" ——name "Payment System Scan" —targets
"service.example.com"

Attack Simulation: Vulnerability Exploitation

searchsploit [vulnerability details from Nessus scan]
Textual System Diagram

[Team] ——-plan & model-—> [ClickUp & ThreatModeler] M
I
| (1) Project Planning & Risk Assessment
v
[Developers] —-develop & analyze-—> [VS Code & SonarCloud] @&
|
| (2) Secure Development & Code Analysis
%
[Code Repository] —--version control & secrets—-> [GitHub & AWS Secrets Manager] &%
|
| (3) Version Control & Secret Management
v

I 2atd.. L INPRS IR O s S Y SO HESEIO X S S Y W ok . T STt o S fhe 1.1 BB

|
| (4) Continuous Integration & Dependency Scanning
%
[Jenkins] --containerize & orchestrate-—> [Docker & Kubernetes] @
I
| (5) Containerization & Orchestration
v
[Kubernetes] —--monitor & respond--> [Prometheus, Grafana & ELK Stack] #®
|
| (6) Monitoring & Incident Response
v
[Operational Environment] --compliance & assessment——> [Nessus & AWS Config] @
I
| (7) Compliance & Vulnerability Management
v
[Feedback] —back to planning—> [Team]

CIA Triangle for Compliance

= Confidentiality (Rating: 9/10) @&
» Proof: AWS Secrets Manager ensures the confidentiality of secrets. GitHub provides secure code storage.
« Integrity (Rating: 9/10) @
« Proof: SonarCloud and OWASP Dependency-Check maintain code and dependency integrity. Jenkins
ensures Cl process integrity.
« Availability (Rating: 8.5/10) @
» Proof: Kubernetes ensures high availability. Prometheus, Grafana, and ELK Stack provide comprehensive
monitoring.

