_ MEMORY ANALYSIS'
FOR FUN AND PROFIT

y

Deep Dive Into Memory For Fun & Profit

Delve into the thrilling realm of memory analysis where each byte tells a story. This
comprehensive guide explores the fascinating techniques of memory forensics, a field where the
ephemeral traces of digital interactions are captured and decoded. From unearthing incognito
browsing sessions to dissecting malware footprints, discover how experts turn volatile memory
into a treasure trove of information. Whether for cybersecurity, legal investigations, or academic
research, this article unveils the power and potential of memory analysis, turning transient data

into valuable insights.

ID Attacks

1 Process
Injection

22 Rootkit
Detection

3 Credential
Dumping

4 Network
Spoofing

5 Keylogger
Detection

6 Fileless
Malware

7 Code
Injection in
Browsers

8 Stealthy
Malware via
PEB

9 Suspicious
Parent-Child
Process
Relationship

(0] Unauthorized
Remote
Access

Mem
Address/Keys

Process
memory
space

Kernel
memory

LSASS
process
memory

Network
stack memory

Keyboard
buffer

System RAM

Browser
process
memory

Process
Environment
Block

Process
metadata

Remote

desktop
process
memory

Clipboard is Everything

Commands

volatility -f
memdump. img ——
profile=Win10x64 pslist

volatility -f
memdump.img ——
profile=Win10x64 malfind

volatility -f
memdump. img ——
profile=Win10x64
ldrmodules

volatility -f
memdump.img ——
profile=Win10x64 netscan

Custom scripts/commands
based on anomaly detection

volatility -f
memdump. img ——
profile=Win10x64 malfind

volatility -f
memdump.img —
profile=Win10x64 ——
plugin=chromehistory

volatility -f
memdump.img —
profile=Win10x64 —
plugin=check_peb_spoof

volatility -f
memdump.img —
profile=Win10x64 ——
plugin=check_parent_spoof

volatility -f
memdump.img —
profile=Win10x64 —
plugin=anydesk

Example

Malware injects
code into a
legitimate process;
detected via
Volatility pslist.

Hidden rootkit in
kernel memory;
revealed by malfind
plugin.

Extracting
passwords from
LSASS; detected via
Idrmodules plugin.

Spoofed network
connections;
netscan shows
irregular
connections.

Keylogging activity;
detected by
analyzing unusual
keyboard interrupts.

Malware executing
directly in memory;
malfind shows
suspicious memory
segments.

Injected script in
browser process;
detected via
browser history
plugin.

Malware altering
PEB; detected with
check_peb_spoof
plugin.

Unusual parent
process; detected
by
check_parent_spoof
plugin.

Unauthorized
AnyDesk access;
detected via
AnyDesk plugin.

The copy-paste functionality in Windows is a fundamental feature used for transferring data,
especially text and strings, between applications or within an application. It utilizes the Windows
Clipboard, a special location in memory where data is temporarily stored during the copy-paste

Clipboard in Windows

Basic Operation

* Copy: When text is copied, it is stored in the Clipboard.
« Paste: Pasting retrieves the data from the Clipboard and inserts it into the target location.

Data Formats

« The Clipboard can store data in multiple formats, such as plain text, rich text, HTML, and
others.

Tools for Clipboard Management

1. Clipboard Viewer: A utility to view the contents of the Clipboard.

2. Clip.exe: A command-line tool introduced in later versions of Windows for redirecting output
to the Clipboard.

3. PowerShell Cmdlets: For advanced Clipboard operations, like accessing history.

Accessing Clipboard History

* Windows 10 (Version 1809 and later) introduced a Clipboard history feature, allowing users
to access a history of items that were copied.

Enabling Clipboard History

e Use Win + V to open Clipboard history.
¢ Enable it in system settings: Settings > System > Clipboard > Clipboard History .

Accessing History via Code

¢ Use Windows APIs or PowerShell scripts to programmatically access Clipboard history.

Commands and Code Snippets

For Basic Clipboard Operations

e Copy: Ctrl + C or Right—click > Copy
e Paste: Ctrl + V or Right-click > Paste

PowerShell Command to Access Clipboard

Get-Clipboard # Retrieves the current Clipboard content. Set-Clipboard # Sets or
clears the Clipboard content.

Using Clip.exe in Command Prompt
dir | clip # Copies the output of 'dir' command to Clipboard.
Clipboard in Different Windows Versions

Windows XP

¢ Basic Clipboard functionality.
* No built-in history or advanced management tools.

Windows 7

¢ Introduced Clip.exe for command-line operations.

Windows 10 (Build 1809 and later)

¢ Clipboard history feature added.
« Enhanced Clipboard settings in system settings.

Windows 11

» Continued improvements in Clipboard history and synchronization features.

Windows 10 (Build 1809 and later)
Clipboard History Storage

« Clipboard data is temporarily stored in memory.
¢ History is stored in %LOCALAPPDATA%\Microsoft\Windows\Clipboard .

Clipboard History Duration

« Items remain in the Clipboard history until the system is restarted or the history is manually
cleared.

Advanced Tools

e Get-Clipboard and Set-Clipboard in PowerShell for programmatic access.
« Third-party tools like Ditto for extended clipboard functionalities.

Accessing Clipboard History

Get-Clipboard —-Format Text -TextFormatType UnicodeText # Fetches clipboard content
in a specific format.

Windows 11

¢ Similar to Windows 10 with additional synchronization features via cloud.

macOS Clipboard Management

Clipboard Storage

« Data copied to the clipboard is stored in memory.

Clipboard History Duration

* macOS does not natively support clipboard history; items are replaced upon new copy
action.

Advanced Tools

» Third-party applications like Paste or CopyClip for clipboard history management.

Accessing Clipboard Data
¢ Use AppleScript or Automator for advanced clipboard operations.

set the clipboard to "Your text" # Sets the clipboard content.
get the clipboard # Retrieves the current clipboard content.

Linux Clipboard Management

X Window System (X11)
Clipboard Storage

* X11 has multiple clipboards: PRIMARY, SECONDARY, and CLIPBOARD.
« Data is stored in memory.

Clipboard History Duration

« Typically, clipboard managers like xclip or Klipper are used to maintain history.

Advanced Clipboard Management

xclip -selection clipboard -o # Outputs the content of the CLIPBOARD. echo "Text"
| xclip —-selection clipboard # Copies text to the CLIPBOARD.

Wayland

¢ I00IS lIkKe wl—Cllpboara are used i1or Clipooara operations.

wl-copy < "Text file.txt" # Copies file content to clipboard. wl-paste > "Output
file.txt" # Pastes clipboard content to a file.

Clipboard History Location and Duration

e Windows: %LOCALAPPDATA%\Microsoft\Windows\Clipboard , until system restart.
* macOS: No native history; third-party apps determine storage.
¢ Linux (X11): Managed by clipboard managers; varies by tool.

Insights into Browser Incognito Mode and Memory Forensics

This guide delves into the advanced aspects of browser incognito modes across various browsers
and operating systems, focusing on memory forensics and the extraction of browsing data. We
cover the specifics for Chrome, Firefox, and Edge on Windows, macOS, and Linux, detailing the
memory locations, forensic tools, and techniques for data retrieval.

Windows

Google Chrome Incognito

« Memory Location: Volatile; data resides in RAM during active session.
» Forensic Tools & Commands:
» WinHex or Magnet RAM Capture for RAM imaging.
« Volatility framework for analysis: volatility —f [MEMORY DUMP] —-profile=
[PROFILE] chrome .

Mozilla Firefox Incognito

* Memory Location: Similar to Chrome, data held in RAM.
« Forensic Approach:
» Capture RAM using tools like FTK Imager.
» Analyze with Volatility: volatility —f [MEMORY DUMP] —-profile=[PROFILE]

firefox.

Microsoft Edge Incognito

* Memory Location: Stored in RAM, similar to Chrome.
« Forensic Methodology:
» Use Belkasoft RAM Capturer.
» Analyze with Volatility or Belkasoft Evidence Center.

Fetching Incognito Data

e Command: .\winpmem_mini_x64.exe —o memorydump.raw

macOS

All Browsers (Chrome, Firefox, Edge)

« Memory Location: Data in RAM, purged after session ends.
 Forensic Tools:

» MacQuisition for live data acquisition.

» BlackLight for analysis.

Fetching Incognito Data

e Command: sudo /usr/bin/hdiutil create —srcdevice /dev/diskX memdump.dmg

Linux

All Browsers (Chrome, Firefox, Edge)

« Memory Location: Resides in system RAM.

« Forensic Tools:
o LiME (Linux Memory Extractor) for RAM capture.
» Analyze with tools like Volatility.

e Command: sudo lime-forensics-dkms /proc/lime_mem.mem "path=tcp format=1ime
timeout=0"

uninstallinfo.py
Scenario

You are investigating a corporate environment where a suspected data leak occurred through
unauthorized software. Your task is to identify if any suspicious software was installed and then
removed from a company computer.

Using uninstallinfo.py

« Prerequisite: You have a memory dump (comp_memory.dmp) from the suspect's Windows
machine.
« Volatility Profile: Identified as Win2012R2x64 (example profile).

Commands and Analysis

=

. Load the Plugin:

volatility ——plugins=I[path_to_plugin_folder] —f comp_memory.dmp ——
profile=Win2012R2x64 uninstallinfo

2. Output: The plugin scans the memory for traces of uninstalled programs, specifically looking
at Windows Registry keys related to installed applications.

3. Sample Output:

Program Name: SuspiciousVPNClient Uninstall Key:
HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall\SuspiciousVPN Install
Date: 2022-05-15 Uninstall Date: 2022-05-20

4. Interpretation: This output indicates that SuspiciousVPNClient was installed and then
uninstalled within a short timeframe, aligning with the suspected data leak period.

2. firefoxhistory.py
Scenario
In a legal investigation, you need to determine if a suspect accessed specific websites that could
be related to the case, even if they used Firefox's private browsing mode.
Using firefoxhistory.py
* Prerequisite: Memory dump (user_memory.dmp) from the suspect's Linux-based computer.
« Volatility Profile: Identified as LinuxUbuntu20x64 (example profile).

Commands and Analysis

1. Load the Plugin:

volatility ——plugins=I[path_to_plugin_folder] —f user_memory.dmp ——
profile=LinuxUbuntu20x64 firefoxhistory

2. Output: The plugin searches for instances of Firefox processes and extracts browsing
history, even from private sessions.

3. Sample Output:

URL: http://example-sensitive-website.com Title: Sensitive Content Last Visit
Time: 2022-07-05 10:23:45 Visit Count: 3

4. Interpretation: This data suggests the suspect visited a sensitive website multiple times,
which could be crucial for the investigation.

3. chromehistory.py

Purpose: Extracts browsing history from Google Chrome.

Scenario: Investigating a corporate espionage case where the suspect might have used Chrome
to access sensitive information.

Usage:

¢ Load the plugin with: volatility —-f [MEMORY_DUMP] —-profile=[PROFILE] —-plugins=
[PLUGIN_PATH] chromehistory
« The plugin scans memory addresses where Chrome process artifacts might reside,

4. malfinddeep.py

Purpose: Identifies potentially malicious code segments hidden in the process memory space.
Scenario: Analyzing a compromised system to identify hidden or injected malware.
Usage:

e Run: volatility —f [MEMORY_DUMP] ——profile=[PROFILE] ——plugins=[PLUGIN_PATH]
malfinddeep

« |t investigates memory segments for anomalies, providing memory addresses of suspicious
code.

5. openssh_sessionkeys

Purpose: Recovers OpenSSH session keys from memory.
Scenario: Retrieving SSH session keys in an incident response to a data breach.
(VEET.[H

e Execute: volatility —f [MEMORY_DUMP] —-profile=[PROFILE] --plugins=
[PLUGIN_PATH] openssh_sessionkeys
« The plugin searches for specific memory patterns associated with SSH keys.

6. prefetch

Purpose: Analyzes Windows Prefetch files from memory, which can provide information on
executed programs.

Scenario: Determining program execution history on a suspect's Windows machine.
Usage:

e Command: volatility -f [MEMORY_DUMP] —-profile=[PROFILE] —-plugins=
[PLUGIN_PATH] prefetch
« Extracts Prefetch file details like application name and last run time.

7. passwordmanagers

Purpose: Extracts information from memory related to password manager applications.
Scenario: Investigating a data leak potentially caused by compromised password manager data.
Usage:

e Use: volatility —-f [MEMORY_DUMP] —-profile=[PROFILE] —-plugins=[PLUGIN_PATH]
passwordmanagers
« Searches for memory artifacts related to popular password managers.

8.richheader

Purpose: Analyzes the Rich Header in executables loaded in memory, useful for identifying the
compiler and linker versions.

Scenario: Assessing if a piece of malware was compiled using a specific toolset.
(VEET.[H

e Run: volatility —f [MEMORY_DUMP] ——profile=[PROFILE] —-plugins=[PLUGIN_PATH]
richheader

e Extracts Rich Header data from executable files in memory.

9. zoneid

Purpose: Extracts the Zone.ldentifier stream from memory, which can indicate the origin of
downloaded files.
Scenario: Tracing the source of downloaded malware or suspicious files on a system.

Usage:

e Command: volatility —-f [MEMORY_DUMP] —-profile=[PROFILE] —-plugins=
[PLUGIN_PATH] zoneid
« |dentifies the security zone from which a file was downloaded.

P T o DL Py

Purpose: Searches for API function calls in memory, useful for analyzing malware behavior.
Scenario: Investigating the behavior of a suspected malware by looking at its API calls.
(VEETe[H

e Execute: volatility —f [MEMORY_DUMP] —-profile=[PROFILE] —-plugins=
[PLUGIN_PATH] apisearch
« Finds memory addresses where specific API calls are made.

11. evix.py (EVTX Log Extraction)

« Functionality: This plugin is designed to extract Windows Event Log (EVTX) records from
memory dumps. It scans the memory dump for EVTX chunks and extracts records from
these chunks.

* Methodology:

* Memory Mapping: It uses mmap for memory mapping the dump file for efficient
access.

» Chunk Identification: Finds EVTX chunks within the mapped memory.

» Record Extraction: Extracts individual records from these chunks and decodes them
into XML format.

» Data Parsing: Parses the XML to extract meaningful data like event IDs, channel,
process IDs, etc.

« Example Use Case: This can be used in forensic investigations to retrieve event logs that
provide insights into system activities, errors, and security-related events that occurred prior
to the memory dump.

12. CryptoScan

« Functionality: CryptoScan scans memory for cryptocurrency transactions, particularly
focusing on Bitcoin (BTC), Ethereum (ETH), and Ripple (XRP).
« Methodology:
» Process Analysis: Targets specific process IDs (PIDs) for analysis.
» Transaction Signature Scanning: Looks for patterns or signatures in memory that are
indicative of cryptocurrency transactions.
« Example Use Case: In cases of financial fraud investigations or tracing illegal transactions,
this plugin can be used to find evidence of cryptocurrency usage on a system.

13. check_spoof

¢ Functionality: Check_peb_spoof and Check_parent_spoof are designed to detect
process spoofing by comparing PEB (Process Environment Block) data or analyzing parent-
child process relationships.
« Methodology:
» PEB Analysis (check_peb_spoof): Compares the process name in the PEB against the
process name in the EPROCESS structure to detect mismatches.
» Parent-Child Relationship Analysis (check_parent_spoof): Identifies discrepancies in
parent-child process relationships that could indicate spoofing.
* Example Use Case: These plugins are crucial in identifying malware or processes that are
attempting to disguise themselves as legitimate system processes.

14. anydesk.py (AnyDesk Artifact Analysis)

« Functionality: Parses artifacts related to the AnyDesk remote desktop application.
« Methodology:
« File Scanning: Identifies and parses AnyDesk trace files (ad.trace , ad_svc.trace)
in the memory dump.
» Data Extraction: Extracts and decodes log entries from these files to provide insights
into AnyDesk usage.
« Example Use Case: Useful in investigations involving unauthorized remote access where
AnyDesk might have been used.

15. keepass.py (KeePass Password Recovery)

« Functionality: Attempts to recover potential password matches from the KeePass password
manager.
« Methodology:
» Process Targeting: Focuses on the KeePass process, identified by PID.
» Memory Analysis: Scans the process memory for patterns that could represent

¢ Fatucrilviaterning. vuaiZes a Ppatlciil mdictiing approqacti to COrstuct poteritdi
passwords from memory data.

« Example Use Case: In forensic scenarios where access to password-protected information
is necessary, this plugin can help in recovering passwords from KeePass.

References

o https://github.com/volatilityfoundation/community3
o https://github.com/ZarKyo/awesome-volatility
« https://github.com/f-block/volatility-plugins

