
Secure Coding Practices
● OWASP Based Checklist 🌟🌟
● 200+ Test Cases🚀🚀

Contents

1. Input Validation..2

2. Output Encoding...6

3. Authentication and Password Management...8

4. Session Management...16

5. Access Control...20

6. Cryptographic Practices...26

7. Error Handling and Logging... 28

8. Data Protection..34

9. Communication Security.. 38

10. System Configuration... 41

11. Database Security..46

12. File Management... 51

13. Memory Management...55

14. General Coding Practices.. 58

15. Glossary..64

1. Input Validation

The "Input validation" section in your Secure Coding Practices checklist involves
measures to ensure that data coming into your application is safe and free from
potential security risks. It includes practices like conducting validation on trusted
systems, distinguishing between trusted and untrusted data sources, specifying
character sets, validating data types, lengths, and ranges, and being cautious about
potentially hazardous characters. The goal is to prevent malicious data from entering
your application and to handle it safely if it must be allowed. These practices help
safeguard against common security vulnerabilities, such as injection attacks, by
ensuring that only well-formed, expected, and safe data is processed.

No Test Case Scenario Example

1.1 Conduct all
data validation
on a trusted
system

Ensure that all data
validation is performed
on the server, not on
the client side. This
prevents validation
rules from being
bypassed by
manipulating
client-side code.

When a user submits a form,
the server checks the input
data for validity and rejects it
if it doesn't meet the criteria.
Client-side JavaScript should
not be relied upon for
validation.

1.2 Identify all data
sources and
classify them

Classify data sources as
trusted (e.g., internal
databases) or
untrusted (e.g., user
input, external APIs).
Validate all data from
untrusted sources to
prevent malicious
input.

When processing data from
user-submitted forms and
external APIs, ensure that all
input is thoroughly validated,
regardless of its source.

1.3 Centralized
input validation
routine

Implement a
centralized input
validation routine to
ensure consistent and
thorough validation
across the application.

Create a single validation
function that is called for all
user input, ensuring that
every input is consistently
validated according to
predefined rules.

2https://www.linkedin.com/in/hariprasaanth/

1.4 Specify proper
character sets

Define a consistent
character set, such as
UTF-8, for all sources of
input to avoid
encoding mismatches
and potential security
vulnerabilities.

Ensure that all data,
regardless of its source, is
consistently encoded using
UTF-8 to prevent
encoding-related issues.

1.5 Encode data to
a common
character set

Convert data to a
common character set
(e.g., UTF-8) before
validation to ensure
consistent handling
and prevent
encoding-based
attacks.

Before validating user input,
convert it to UTF-8 to
standardize character
encoding.

1.6 All validation
failures result in
input rejection

Upon validation failure,
reject the input and
prevent further
processing. This
prevents malicious
data from entering the
system.

If a user submits invalid
input, the system should
reject it and not proceed with
any further actions.

1.7 Determine
system support
for UTF-8
extended
character sets

Determine if the
system supports UTF-8
extended character
sets. If supported,
validate input after
UTF-8 decoding is
completed.

If the application supports
extended character sets,
ensure that validation occurs
after decoding, addressing
potential encoding-related
vulnerabilities.

1.8 Validate all
client-provided
data

Validate all input from
the client, including
parameters, URLs,
HTTP headers, and
automated postbacks,
to prevent malicious
code injection.

When processing data from
client-side sources, such as
form submissions and HTTP
headers, validate it rigorously
to avoid code injection
vulnerabilities.

3https://www.linkedin.com/in/hariprasaanth/

1.9 Verify header
values contain
only ASCII
characters

Ensure that header
values in both requests
and responses contain
only ASCII characters to
prevent potential
attacks exploiting
character encoding
differences.

Check that header values are
limited to ASCII characters to
prevent security issues
stemming from character
encoding variations.

1.10 Validate data
from redirects

Validate data from
redirects to prevent
malicious content from
being directly
submitted to the
redirect target,
bypassing application
logic.

When handling data from
redirects, ensure that it is
validated to prevent security
bypasses.

1.11 Validate for
expected data
types

Verify that input
matches the expected
data type, such as
integer, string, or date,
to prevent type-related
errors and potential
vulnerabilities.

Check that input is of the
correct data type to avoid
errors and security issues
caused by data type
mismatches.

1.12 Validate data
range

Check that input
values fall within the
expected range to
prevent overflow or
underflow conditions
that could lead to
vulnerabilities.

Ensure that input values are
within specified ranges to
prevent security issues
related to data overflow or
underflow.

1.13 Validate data
length

Limit the length of
input to prevent buffer
overflows and other
length-based attacks.

Restrict the length of input
data to mitigate security risks
associated with buffer
overflows and other
length-based vulnerabilities.

4https://www.linkedin.com/in/hariprasaanth/

1.14 Validate all
input against a
"white" list

Whenever possible,
validate input against a
whitelist of allowed
characters to restrict
the range of
acceptable input and
prevent malicious code
injection.

Ensure that input is validated
against a predefined whitelist
of permissible characters to
minimize security risks.

1.15 Handle
hazardous
characters < > " '
% () & + \ ' "

If potentially hazardous
characters must be
allowed as input,
implement additional
controls like output
encoding and secure
APIs.

If your application requires
the use of hazardous
characters, apply additional
security measures like output
encoding and secure APIs to
mitigate potential risks.

1.16 Check specific
inputs

If standard validation
fails, check for specific
problematic
characters, including
null bytes (%00), new
line characters (%0d,
%0a, \r, \n), path
alteration characters (.. /
or ..), and alternate
representations of
hazardous characters.

If standard validation doesn't
catch certain inputs, inspect
for problematic characters
like null bytes, new line
characters, path alteration
sequences, or alternate
encodings of hazardous
characters.

5https://www.linkedin.com/in/hariprasaanth/

2. Output Encoding

The "output encoding" section in your Secure Coding Practices checklist focuses on
ensuring that data leaving your application is secure and properly formatted. It involves
practices such as conducting encoding on trusted systems, utilizing established
encoding routines, and contextually encoding or sanitizing data before returning it to
clients. This helps prevent security vulnerabilities by ensuring that all data is presented
in a safe and well-structured manner, especially when it originated from untrusted
sources. Proper output encoding safeguards against issues like cross-site scripting
(XSS) and injection attacks by ensuring that data is correctly processed for the
intended interpreter and presentation medium.

No Test Case Scenario Example

2.1 Conduct all
encoding on a
trusted system

Ensure that all
encoding of output
data is performed on
the server, not on the
client side, to prevent
tampering and security
vulnerabilities.

When generating HTML for
a web page, the server
should encode special
characters to prevent
cross-site scripting (XSS)
vulnerabilities.

2.2 Utilize a
standard,
tested routine
for each type of
outbound
encoding

Employ well-tested and
standardized encoding
routines for different
data types, such as
HTML entity encoding,
to ensure consistent
and secure encoding.

Use a trusted library or
built-in functions for
encoding data, such as
HTML entity encoding for
web content.

2.3 Contextually
output encode
all data
returned to the
client

Apply output encoding
to all data that
originates outside the
application's trust
boundary and is
returned to the client.
Use appropriate
encoding based on the
context.

When displaying
user-generated content on a
web page, use HTML entity
encoding to prevent HTML
injection.

6https://www.linkedin.com/in/hariprasaanth/

2.4 Encode all
characters
unless they are
known to be
safe

Encode all characters in
output data unless they
are explicitly known to
be safe for the intended
interpreter to prevent
malicious code
injection or data
manipulation.

Encode special characters
like "<" and ">" in
user-generated content to
prevent XSS attacks.

2.5 Contextually
sanitize output
of untrusted
data to queries

Sanitize all output of
untrusted data to
prevent injection
attacks in queries for
SQL, XML, and LDAP.
Apply contextual
sanitation based on the
query type.

When constructing an SQL
query from user input,
sanitize the input to prevent
SQL injection, ensuring that
the user input doesn't
contain harmful SQL
commands.

2.6 Sanitize output
of untrusted
data to
operating
system
commands

Sanitize all output of
untrusted data before
incorporating it into
operating system
commands to prevent
malicious code
execution or system
compromise.

When executing shell
commands with user input,
sanitize the input to ensure
that it doesn't contain
harmful commands that
could compromise the
system.

7https://www.linkedin.com/in/hariprasaanth/

3. Authentication and Password Management

"Authentication and Password Management" focuses on ensuring secure access to
your application. It includes practices like requiring authentication for most resources,
using standard authentication services, securely storing and handling passwords,
enforcing password complexity and reset policies, and monitoring for suspicious
activities. The goal is to protect user accounts, data, and sensitive functions by
implementing strong authentication and password management practices, ultimately
safeguarding against unauthorized access and security breaches.

No Test Case Scenario Example

3.1 Require
authentication
for all pages
and resources

Ensure that
authentication is
required for all pages
and resources, except
those specifically
intended to be public.

All users accessing the
application should be
required to authenticate
themselves, except for
publicly accessible
information like a
homepage.

3.2 Enforce all
authentication
controls on a
trusted system

Implement all
authentication controls
on the server, not on
the client side, to
prevent tampering with
authentication logic.

Authentication checks
should be performed on the
server to ensure the security
of the process.

3.3 Establish and
use standard,
tested
authentication
services

Utilize established and
tested authentication
services whenever
possible, such as
Google Sign-In or
OAuth, to simplify
secure authentication.

Implementing
authentication through
widely recognized and
tested services like Google
Sign-In enhances security
and user experience.

8https://www.linkedin.com/in/hariprasaanth/

3.4 Use a
centralized
implementatio
n for all
authentication
controls

Implement a
centralized
authentication
mechanism for all
authentication-related
processes, providing a
single point of control
for managing user
credentials and access
permissions.

Authentication should be
handled through a
centralized system that
manages user credentials
and permissions.

3.5 Segregate
authentication
logic from
requested
resources

Separate authentication
logic from the resource
being requested and
use redirection to and
from the centralized
authentication control
to ensure security.

Authentication processes
should not be mixed with
resource processing, and
redirection to a centralized
authentication control
should be used.

3.6 Ensure secure
failure of
authentication
controls

Authentication controls
should fail securely,
with responses not
revealing which part of
the authentication data
was incorrect.

If authentication fails, the
system should provide a
generic message like "Invalid
username and/or password"
without indicating which
part of the authentication
data was incorrect.

3.7 Secure
administrative
and account
management
functions

Apply the same level of
security controls to
administrative and
account management
functions as to the
primary authentication
mechanism to ensure
consistent security.

Administrative actions and
account management
should have the same level
of security as user
authentication.

9https://www.linkedin.com/in/hariprasaanth/

3.8 Secure storage
of password
hashes

If the application
manages a credential
store, ensure that only
cryptographically
strong one-way salted
hashes of passwords
are stored. The table/file
storing the passwords
and keys should be
writable only by the
application.

Passwords should be stored
securely using strong
hashing algorithms, and
access to the storage should
be tightly controlled.

3.9 Implement
password
hashing on a
trusted system

Perform password
hashing on the server,
not on the client side, to
protect the hashing
algorithm and salt
values from exposure.

Password hashing should
occur on the server to
maintain the security of the
hashing process.

3.10 Validate
authentication
data after all
data input

Validate the
authentication data
only after all data input
is complete, especially
for sequential
authentication
implementations.

In a multi-step
authentication process, data
should be validated only
after all steps are completed.

3.11 Secure
authentication
failure
responses

Authentication failure
responses should not
indicate which part of
the authentication data
was incorrect.

Error responses in case of
authentication failure should
provide the samemessage,
such as "Invalid username
and/or password," without
specifying the exact error.

10https://www.linkedin.com/in/hariprasaanth/

3.12 Use
authentication
for
connections to
external
systems

Utilize authentication
for connections to
external systems
involving sensitive
information or
functions.

When accessing external
systems with sensitive data,
ensure that authentication is
required to establish secure
connections.

3.13 Encrypt and
store external
authentication
credentials

Authentication
credentials for
accessing services
external to the
application should be
encrypted and stored in
a protected location on
a trusted system, not in
the source code.

External service credentials
should be securely stored
and not kept in the
application's source code.

3.14 Use only HTTP
POST requests
for
authentication
credentials

Transmit authentication
credentials using only
HTTP POST requests to
prevent exposure in
URL parameters, which
can be easily
intercepted.

User credentials should be
sent using HTTP POST
requests to avoid exposing
them in URLs.

3.15 Send
non-temporary
passwords over
encrypted
connections

Only send
non-temporary
passwords over
encrypted connections
or as encrypted data to
protect them from
interception.

Non-temporary passwords
should be transmitted
securely to prevent
eavesdropping.

3.16 Enforce
password
complexity
requirements

Enforce password
complexity
requirements based on
policy or regulations to
enhance password
security.

Passwords should meet
complexity requirements,
such as including alphabetic,
numeric, and special
characters.

11https://www.linkedin.com/in/hariprasaanth/

3.17 Enforce
password
length
requirements

Enforce password
length requirements
based on policy or
regulations to ensure
stronger passwords.

Passwords should meet
length requirements, which
may include a minimum
length of eight characters or
more.

3.18 Obscure
password
entry on the
user's screen

Password entry should
be obscured on the
user's screen, using
input type "password"
on web forms.

When users enter
passwords, the input should
be masked to prevent visual
observation.

3.19 Enforce
account
disabling after
invalid login
attempts

Implement account
disabling after a set
number of invalid login
attempts to deter brute
force attacks.

After a specified number of
failed login attempts, user
accounts should be
temporarily disabled.

3.20 Secure
password reset
and change
operations

Password reset and
change operations
should have the same
level of security controls
as account creation and
authentication.

The processes for resetting
and changing passwords
should be as secure as initial
account creation and
authentication.

3.21 Use random
security
questions

Password reset
questions should
support sufficiently
random answers to
enhance security.

Instead of using easily
guessable questions like
"favorite book," use questions
that have less predictable
answers.

3.22 Send reset
information to
pre-registered
email
addresses

If using email-based
resets, only send email
to pre-registered
addresses with a
temporary link or
password.

When resetting passwords
via email, send reset
information only to email
addresses that are
pre-registered by the user.

12https://www.linkedin.com/in/hariprasaanth/

3.23 Set short
expiration
times for
temporary
passwords

Temporary passwords
and links should have a
short expiration time to
reduce the risk of
unauthorized access if
they are compromised.

Temporary passwords should
only be valid for a short
period, such as 24 hours.

3.24 Enforce
changing of
temporary
passwords on
first use

Require users to
change temporary
passwords immediately
upon first use to
prevent prolonged use
of insecure temporary
passwords.

Users should be prompted
to change temporary
passwords the first time they
log in.

3.25 Notify users of
password
resets

Inform users when a
password reset occurs
to alert them of
potential unauthorized
access.

Users should receive
notifications when their
passwords are reset to keep
them informed about
security events.

3.26 Prevent
password
reuse

Implement
mechanisms to
discourage users from
reusing old passwords
to promote stronger
and unique passwords.

Users should be prevented
from using their old
passwords when creating
new ones.

3.27 Enforce a
waiting period
for password
changes

Implement a delay
between password
creation and the first
password change to
prevent attackers from
immediately changing
the password.

Users should not be allowed
to change their password
immediately after creating it.

13https://www.linkedin.com/in/hariprasaanth/

3.28 Enforce
periodic
password
changes

Implement a policy
requiring periodic
password changes, with
the time between
resets being
administratively
controlled.

Passwords should be
changed at regular intervals
as specified by the policy.

3.29 Disable
"remember
me"
functionality
for password
fields

Disable the "remember
me" option for
password fields,
especially on public or
shared devices to
enhance security.

Users should not be given
the option to have their
password remembered on
public or shared devices.

3.30 Report last
account
activity to
users

Notify users of the last
successful or
unsuccessful login
attempt to keep them
informed about
account activity.

Users should be aware of the
last login attempts to detect
any suspicious activity.

3.31 Implement
monitoring for
multi-account
attacks

Monitor and identify
attacks against multiple
user accounts using the
same password, a
common pattern used
to bypass standard
lockouts.

The system should detect
and prevent attacks where
multiple accounts are
targeted using the same
password.

3.32 Change
default
passwords and
user IDs

Change all
vendor-supplied default
passwords and user IDs
or disable the
associated accounts to
prevent unauthorized
access.

Vendor-supplied default
credentials should be
replaced or disabled to
prevent unauthorized
access.

14https://www.linkedin.com/in/hariprasaanth/

3.33 Re-authenticat
e users before
critical
operations

Require users to
re-authenticate before
performing critical
operations, adding an
extra layer of security
for sensitive actions.

Users should re-enter their
credentials before
performing critical
operations like changing
account settings.

3.34 Implement
Multi-Factor
Authentication
for sensitive
accounts

Use Multi-Factor
Authentication (MFA)
for highly sensitive or
high-value transactional
accounts to add an
additional layer of
security.

For highly sensitive
accounts, require MFA to
verify the user's identity.

3.35 Inspect
third-party
authentication
code

If using third-party code
for authentication,
inspect the code
carefully to ensure it is
not affected by any
malicious code.

When using third-party
authentication code,
thoroughly review it to check
for vulnerabilities or
malicious code.

15https://www.linkedin.com/in/hariprasaanth/

4. Session Management

"Session Management" is all about ensuring secure and well-controlled user sessions
within your application. It involves practices like using trusted session management
controls, setting appropriate timeout periods, disallowing concurrent logins, and
protecting session data from unauthorized access. The primary goal is to safeguard
user sessions from common threats like session hijacking or Cross-Site Request
Forgery (CSRF) by implementing robust session management practices. These
practices help maintain the integrity and security of user sessions while allowing for
smooth and secure interactions with your application.

No Test Case Scenario Example

4.1 Use Server or
Framework
Session
Management

Utilize the built-in
session management
provided by your web
server or framework.
This ensures that your
application recognizes
and uses valid session
identifiers.

If you're using a web
framework like Express.js in
Node.js, use its session
management features.

4.2 Create Session
Identifiers on a
Trusted System

Generate session
identifiers (like cookies)
on the server to
prevent tampering.

When a user logs in, the
server generates a unique
session ID and sends it to
the user's browser.

4.3 Use Secure
Session
Algorithms

Choose strong, secure
algorithms for
generating session
identifiers. They should
be random and
unpredictable.

Instead of using a simple
incremental number, use a
cryptographically secure
random string as the session
identifier.

4.4 Set Domain
and Path for
Cookies

Limit where cookies
with session IDs can be
used by setting their
domain and path.

If your site is "example.com,"
restrict the cookie's domain
to ".example.com" to prevent
it from being used on other
subdomains.

16https://www.linkedin.com/in/hariprasaanth/

4.5 Properly
Terminate
Sessions on
Logout

Ensure that the logout
function fully
terminates the user's
session or connection.

When a user clicks "Logout,"
their session is invalidated,
and they are redirected to
the login page.

4.6 Accessible
Logout

Provide a logout option
on all pages protected
by authorization, so
users can easily log out.

Include a "Logout" link in the
navigation menu on every
page.

4.7 Session
Timeout

Set a short session
inactivity timeout,
usually a few hours, to
balance security and
user convenience.

Automatically log the user
out after 15 minutes of
inactivity.

4.8 Avoid
Persistent
Logins

Do not allow users to
stay logged in
indefinitely. Log them
out periodically, even
during an active
session.

Prompt the user to re-enter
their password after a set
time, even if they are actively
using the app.

4.9 Close Old
Session on
Login

If a user had a session
before login, close that
session and create a
new one after
successful login.

When a user logs in, their
previous session becomes
invalid.

4.10 Generate New
Session
Identifier on
Re-authenticati
on

Whenever a user
re-authenticates (e.g.,
changing their
password), generate a
new session identifier.

When a user updates their
password, their session ID
changes.

4.11 No Concurrent
Logins with the
Same User ID

Prevent multiple
simultaneous logins
with the same user ID.

If a user is already logged in
and tries to log in again from
a different device, the
previous session is
invalidated.

17https://www.linkedin.com/in/hariprasaanth/

4.12 Hide Session
Identifiers

Do not expose session
identifiers in URLs,
error messages, or logs.
Store them securely in
the HTTP cookie
header.

Avoid displaying session IDs
in the URL like
"example.com?session=123."

4.13 Protect
Server-Side
Session Data

Implement access
controls on the server
to prevent
unauthorized access to
session data by other
users or processes on
the server.

Only authorized server-side
code can access and modify
session data.

4.14 Rotate Session
Identifiers

Periodically generate
new session identifiers
and deactivate the old
ones. This prevents
session hijacking if the
original identifier was
compromised.

Every hour, generate a new
session ID and invalidate the
previous one.

4.15 Switch to
HTTPS

Change the session
identifier if the
connection security
switches from HTTP to
HTTPS. Maintain HTTPS
consistently within
your application.

If a user logs in via an
insecure HTTP connection,
generate a new session ID
when they switch to a
secure HTTPS connection.

4.16 Use Strong
Tokens for
Sensitive
Operations

For sensitive
server-side actions (e.g.,
account management),
use strong random
tokens or parameters
to prevent Cross-Site
Request Forgery
(CSRF) attacks.

When a user requests to
change their password,
generate a unique token to
ensure the request is
legitimate.

18https://www.linkedin.com/in/hariprasaanth/

4.17 Use Strong
Tokens for
Critical
Operations

For highly sensitive or
critical operations, use
per-request, rather
than per-session,
strong random tokens
or parameters.

When processing a financial
transaction, generate a
unique token for each step
of the transaction.

4.18 Set "Secure"
Attribute for
Cookies

Mark cookies as
"secure" when
transmitted over a TLS
(HTTPS) connection to
prevent interception.

Ensure that cookies carrying
session information are
marked as "secure" to be
transmitted only over secure
HTTPS connections.

4.19 Use HttpOnly
for Cookies

Set cookies with the
HttpOnly attribute
unless you specifically
need client-side scripts
to read or set a cookie's
value.

Use HttpOnly to prevent
client-side scripts from
accessing cookies
containing sensitive session
information.

19https://www.linkedin.com/in/hariprasaanth/

5. Access Control

"Access Control" is about ensuring that only authorized users can access specific parts
of your application. This section includes practices such as using trusted system
objects for authorization decisions, enforcing access controls on every request,
segregating privileged logic, and restricting access to files, resources, URLs, functions,
and data. The primary goal is to prevent unauthorized access to sensitive areas of your
application and data by implementing strong access control practices. These practices
help protect your application from security threats, ensuring that users can only access
what they are allowed to and that sensitive information remains secure.

No Test Case Scenario Example

5.1 Use only trusted
system objects for
access
authorization

Use only trusted
system objects, such
as server-side
session objects, for
making access
authorization
decisions.

Access authorization
decisions should be based
on information from trusted
sources within the
application.

5.2 Implement a
single site-wide
component for
access
authorization

Use a single
site-wide
component to
check access
authorization,
including libraries
that call external
authorization
services.

Access to resources should
be controlled consistently
through a central
component.

5.3 Secure failure of
access controls

Access controls
should fail securely,
ensuring that
unauthorized users
cannot gain access
to restricted
resources.

If a user is not authorized to
access a resource, they
should not be able to bypass
the access control
mechanism.

20https://www.linkedin.com/in/hariprasaanth/

5.4 Deny all access if
security
configuration
information is
unavailable

Deny all access if
the application
cannot access its
security
configuration
information,
ensuring that
security settings are
enforced even when
configuration data is
inaccessible.

If the application is unable to
access its security
configuration, it should
default to denying access.

5.5 Enforce
authorization
controls on every
request

Enforce
authorization
controls on every
request, including
those made by
server-side scripts,
"includes," and
requests from rich
client-side
technologies like
AJAX and Flash.

Authorization checks should
be consistently applied to all
types of requests.

5.6 Segregate
privileged logic
from other
application code

Segregate
privileged logic from
other application
code to prevent
unauthorized access
to sensitive
operations.

Critical functionality that
requires elevated
permissions should be
isolated from regular
application code.

5.7 Restrict access to
files and resources
to authorized users

Restrict access to
files and resources,
including those
outside the
application's control,
to only authorized
users.

Only users with the
appropriate permissions
should be able to access files
and resources.

21https://www.linkedin.com/in/hariprasaanth/

5.8 Restrict access to
protected URLs to
authorized users

Ensure that access
to protected URLs is
restricted to only
authorized users.

Users should be required to
authenticate before
accessing protected URLs.

5.9 Restrict access to
protected
functions to
authorized users

Restrict access to
protected functions
to only authorized
users.

Only users with proper
permissions should be able
to execute protected
functions.

5.10 Restrict direct
object references
to authorized users

Limit access to
direct object
references to only
authorized users.

Users should not be able to
access objects directly if they
are not authorized.

5.11 Restrict access to
services to
authorized users

Ensure that access
to services is
restricted to only
authorized users.

Services should not be
accessible to unauthorized
users.

5.12 Restrict access to
application data to
authorized users

Limit access to
application data to
only authorized
users.

Users should have access
only to the data they are
authorized to see or modify.

5.13 Restrict access to
user and data
attributes to
authorized users

Control access to
user and data
attributes and policy
information by
authorized users.

User attributes and sensitive
data should be restricted to
authorized users.

5.14 Restrict access to
security-relevant
configuration
information

Limit access to
security-relevant
configuration
information to
authorized users.

Configuration settings
related to security should
not be accessible to
unauthorized users.

22https://www.linkedin.com/in/hariprasaanth/

5.15 Ensure consistency
between
server-side access
control rules

Ensure that
server-side
implementation
and presentation
layer
representations of
access control rules
match.

Access control rules should
be consistent between
server-side implementation
and the presentation layer.

5.16 Use encryption
and integrity
checking for
client-stored state
data

If state data must be
stored on the client,
use encryption and
integrity checking
on the server side to
prevent tampering.

State data stored on the
client side should be
encrypted and protected to
prevent unauthorized
modifications.

5.17 Enforce
compliance with
business rules in
application logic
flows

Enforce application
logic flows to
comply with
business rules,
ensuring that
application behavior
aligns with business
requirements.

Application logic should
adhere to business rules to
maintain consistency and
security.

5.18 Limit the number
of transactions per
user or device

Limit the number of
transactions a single
user or device can
perform within a
given period to
deter automated
attacks.

Implement transaction limits
to prevent abuse by
automated systems or
malicious users.

5.19 Use the "referer"
header as a
supplemental
check

Use the "referer"
header as a
supplemental
check, but not as
the sole
authorization check,
as it can be spoofed.

The "referer" header can be
used as an additional
security measure but should
not be the only means of
authorization.

23https://www.linkedin.com/in/hariprasaanth/

5.20 Periodically
re-validate user
authorization

If long
authenticated
sessions are allowed,
periodically
re-validate a user's
authorization to
ensure their
privileges have not
changed. Log the
user out and force
re-authentication if
necessary.

Users with long sessions
should have their
authorization periodically
re-validated to ensure that
their privileges have not
changed.

5.21 Implement
account auditing
and disabling of
unused accounts

Implement account
auditing and
enforce the
disabling of unused
accounts, such as
after 30 days from
the expiration of an
account's password.

Accounts that are not
actively used should be
disabled or removed to
maintain security.

5.22 Support disabling
of accounts and
session
termination

The application
must support
disabling of
accounts and
terminating
sessions when
authorization
ceases, such as
changes to roles,
employment status,
or business
processes.

Accounts and sessions
should be disabled when
users no longer have
authorization, such as when
they change roles or leave
the organization.

24https://www.linkedin.com/in/hariprasaanth/

5.23 Assign least
privilege to service
accounts

Service accounts or
accounts used for
connections to
external systems
should have the
least privilege
necessary.

Service accounts should
have only the permissions
required for their specific
tasks.

5.24 Create an Access
Control Policy to
document access
criteria

Create an Access
Control Policy to
document an
application's
business rules, data
types, and access
authorization
criteria or processes
to ensure proper
access provisioning
and control.

An Access Control Policy
should outline the access
requirements for data and
system resources, defining
who can access what and
under what conditions.

25https://www.linkedin.com/in/hariprasaanth/

6. Cryptographic Practices

The "Cryptographic Practices" section in your Secure Coding Practices checklist
revolves around securing data and secrets through proper cryptographic techniques. It
includes practices like implementing cryptographic functions on trusted systems,
safeguarding master secrets, and ensuring cryptographic modules meet recognized
standards like FIPS 140-3. The primary goal is to protect sensitive information by
applying sound cryptographic principles, such as generating secure random values
and effectively managing cryptographic keys. These practices help guard against data
breaches and unauthorized access to confidential data, enhancing the overall security
of your application.

No Test Case Scenario Example

6.1 Implement
cryptographic
functions on a
trusted system

All cryptographic
functions used to
protect secrets from
the application user
must be
implemented on a
trusted system, such
as the server.

Cryptographic operations
should be performed on a
trusted server rather than on
the client side to prevent
potential security risks.

6.2 Protect master
secrets from
unauthorized
access

Protect master
secrets used in
cryptographic
operations from
unauthorized
access, ensuring
they are not
exposed to potential
attackers.

Sensitive cryptographic keys
and master secrets should
be securely stored and
protected against
unauthorized access.

6.3 Ensure
cryptographic
modules fail
securely

Cryptographic
modules should fail
securely to prevent
potential security
vulnerabilities in
case of errors or
attacks.

Cryptographic modules
should be designed to
handle errors or attacks in a
way that doesn't
compromise security.

26https://www.linkedin.com/in/hariprasaanth/

6.4 Use approved
random number
generators for
un-guessable
values

All random
numbers, random
file names, random
GUIDs, and random
strings should be
generated using the
cryptographic
module's approved
random number
generator when
these random
values are intended
to be un-guessable.

To create unpredictable
values, use approved
cryptographic random
number generators rather
than relying on standard
random functions.

6.5 Comply with
cryptographic
standards

Cryptographic
modules used by
the application
should be compliant
with standards such
as FIPS 140-3 or an
equivalent standard.

Cryptographic modules
should meet established
security standards to ensure
their reliability and security.

6.6 Implement key
management
policies and
processes

Establish and utilize
a policy and process
for how
cryptographic keys
will be managed to
maintain the
security and
integrity of
cryptographic
operations.

Clearly defined policies and
processes for managing
cryptographic keys should
be in place to ensure their
proper use and security.

27https://www.linkedin.com/in/hariprasaanth/

7. Error Handling and Logging

"Error Handling and Logging" is essential for maintaining the security and integrity of
your application. This section includes practices like not revealing sensitive information
in error responses, implementing custom error pages, and securely handling errors, as
well as logging important security events and failures. The primary goal is to enhance
application security by carefully managing how errors are handled and logged. Proper
error handling helps prevent attackers from exploiting vulnerabilities and allows you to
monitor and analyze security events effectively to detect and respond to potential
threats.

No Test Case Scenario Example

7.1 Do not disclose
sensitive
information in
error responses

Error responses
should not reveal
sensitive
information like
system details,
session identifiers, or
account information.

Instead of displaying
detailed error messages that
could expose sensitive
information, provide a
generic error message like
"An error occurred, please try
again later."

7.2 Use error handlers
that do not display
debugging or
stack trace
information

Error handlers
should be
configured not to
reveal debugging or
stack trace
information to
potential attackers.

Avoid showing stack trace
information in error
messages, as it can provide
insights into the
application's internal
workings.

7.3 Implement
generic error
messages and use
custom error
pages

Use custom error
pages with generic
error messages to
prevent leaking
sensitive
information to users
or attackers.

Instead of displaying specific
error messages, show
custom error pages with
general messages like "Page
not found" or "Server error."

28https://www.linkedin.com/in/hariprasaanth/

7.4 Handle application
errors without
relying on server
configuration

The application
should handle its
errors
independently
without relying
solely on server
configuration.

Implement custom error
handling logic within the
application to manage and
respond to errors effectively.

7.5 Free allocated
memory properly
when error
conditions occur

Ensure that
allocated memory is
correctly freed when
error conditions
occur to prevent
memory leaks.

When an error is detected,
release memory resources
that were allocated to avoid
memory leaks.

7.6 Security controls in
error handling
logic should deny
access by default

Error handling logic
associated with
security controls
should deny access
by default to avoid
potential security
vulnerabilities.

Configure security controls
to deny access by default
when encountering errors or
unexpected conditions.

7.7 Implement
logging controls
on a trusted
system

All logging controls
should be
implemented on a
trusted system, such
as the server.

Ensure that log entries are
generated and stored on a
secure and trusted system to
prevent tampering or
unauthorized access.

7.8 Support logging
for both success
and failure of
specified security
events

Logging controls
should record both
successful and failed
security events for
comprehensive
security monitoring.

Log successful security
events, like user
authentication, along with
failed events for a complete
audit trail.

29https://www.linkedin.com/in/hariprasaanth/

7.9 Ensure logs
contain important
log event data

Log entries should
contain essential
event data to help in
diagnosing and
understanding
security incidents.

Include relevant information
such as timestamps, user
identities, and event
descriptions in log entries.

7.10 Prevent log entries
with un-trusted
data from
executing as code

Ensure that log
entries containing
untrusted data
cannot execute as
code in log viewing
interfaces or
software.

Implement proper encoding
or escaping to prevent log
entries with user input from
being interpreted as
executable code.

7.11 Restrict access to
logs to authorized
individuals

Only authorized
personnel should
have access to logs,
ensuring the
confidentiality and
integrity of log data.

Control access to log files
and systems containing logs
to limit viewing privileges to
authorized users.

7.12 Utilize a master
routine for all
logging operations

Implement a
centralized routine
for all logging
operations to
maintain
consistency and
reliability.

Use a common function or
routine for logging across
the application to ensure
uniformity and simplify
maintenance.

7.13 Do not store
sensitive
information in logs

Avoid storing
sensitive
information like
system details,
session identifiers, or
passwords in log
entries.

Ensure that logs do not
contain sensitive data that
could be exploited if the logs
were accessed by
unauthorized parties.

30https://www.linkedin.com/in/hariprasaanth/

7.14 Ensure
mechanisms exist
for log analysis

Implement
mechanisms to
conduct log analysis
and monitoring of
security events to
detect anomalies or
potential threats.

Use log analysis tools and
processes to regularly review
and monitor log entries for
security events.

7.15 Log all input
validation failures

Record log entries
for input validation
failures to track and
investigate potential
security issues.

Capture instances where
input data fails validation
checks, which may indicate
security vulnerabilities.

7.16 Log all
authentication
attempts,
especially failures

Record log entries
for authentication
attempts,
particularly failures,
to monitor potential
unauthorized access
attempts.

Keep a record of all
authentication attempts,
with a focus on failed
attempts, to detect and
respond to potential security
threats.

7.17 Log all access
control failures

Record log entries
for access control
failures to monitor
and address
unauthorized access
incidents.

Document cases where
access control mechanisms
fail to prevent unauthorized
access or actions.

7.18 Log all apparent
tampering events,
including
unexpected
changes to state
data

Log events that
indicate potential
tampering or
unexpected
changes to the
application's state
data.

Monitor and log suspicious
events, like unauthorized
changes to data or
configuration settings.

31https://www.linkedin.com/in/hariprasaanth/

7.19 Log attempts to
connect with
invalid or expired
session tokens

Record log entries
for attempts to
connect with invalid
or expired session
tokens to detect
potential
session-related
security threats.

Capture and investigate any
attempts to use session
tokens that are no longer
valid or have been tampered
with.

7.20 Log all system
exceptions

Record log entries
for system
exceptions to
identify and
troubleshoot
potential issues.

Capture and investigate
system exceptions that may
indicate problems within the
application.

7.21 Log all
administrative
functions,
including changes
to security
configuration
settings

Document log
entries for
administrative
functions, especially
changes to security
configuration
settings.

Maintain an audit trail of
administrative actions,
especially those related to
security settings, for
accountability and
monitoring purposes.

7.22 Log backend TLS
connection failures

Record log entries
for backend TLS
(Transport Layer
Security) connection
failures to detect
potential security
issues with secure
communication.

Monitor and log any failures
in secure connections
between components of the
application.

7.23 Log cryptographic
module failures

Document log
entries for
cryptographic
module failures to
identify and respond
to potential
cryptographic
issues.

Capture events indicating
failures or issues related to
cryptographic modules used
by the application.

32https://www.linkedin.com/in/hariprasaanth/

7.24 Use cryptographic
hash functions to
validate log entry
integrity

Employ
cryptographic hash
functions to verify
the integrity of log
entries and detect
tampering.

Use hash functions to create
checksums of log entries
and validate their integrity
during log analysis.

33https://www.linkedin.com/in/hariprasaanth/

8. Data Protection

"Data Protection" is crucial for securing sensitive information within your application.
This section involves practices like implementing the principle of least privilege,
encrypting sensitive data, protecting cached or temporary files, and safeguarding
server-side source code. The primary goal is to ensure the confidentiality and integrity
of data, preventing unauthorized access or data leaks. Effective data protection
practices, like encryption and access controls, help keep sensitive information safe
from threats and unauthorized disclosure, ultimately enhancing the security of your
application.

No Test Case Scenario Example

8.1 Implement least
privilege, restrict
users to only the
required
functionality, data,
and system
information

Restrict users to
only the
functionality, data,
and system
information
necessary for them
to perform their
tasks.

Users in a healthcare
application should only have
access to patient records
they are authorized to view
and not the entire database.

8.2 Protect cached or
temporary copies
of sensitive data
on the server from
unauthorized
access and purge
them when no
longer needed

Ensure that cached
or temporary copies
of sensitive data are
protected from
unauthorized
access, and delete
them as soon as
they are no longer
required.

Delete cached copies of
sensitive user data after the
user logs out or when the
data is no longer needed for
processing.

8.3 Encrypt highly
sensitive stored
information, like
authentication
verification data,
even on the server
side

Use strong
encryption for
highly sensitive
stored information,
such as
authentication
verification data,
even on the server.

Store user passwords using a
secure hashing algorithm
like bcrypt to protect them
from unauthorized access.

34https://www.linkedin.com/in/hariprasaanth/

8.4 Protect server-side
source code from
being downloaded
by a user

Ensure that
server-side source
code is protected
from being
downloaded by
users.

Use appropriate access
controls and server
configurations to prevent
users from accessing
server-side source code.

8.5 Do not store
passwords,
connection
strings, or other
sensitive
information in
clear text or
insecure formats
on the client side

Avoid storing
sensitive
information like
passwords or
connection strings
in clear text or
insecure formats on
the client side, such
as MS ViewState,
Adobe Flash, or
compiled code.

Store sensitive information in
a secure manner using
encryption and secure
storage practices.

8.6 Remove
comments in
user-accessible
production code
that may reveal
sensitive
information

Remove comments
in user-accessible
production code
that could reveal
backend systems or
sensitive
information.

Delete comments in the
code that contain details
about the application's
architecture or system
configurations.

8.7 Remove
unnecessary
application and
system
documentation
that could reveal
information to
attackers

Remove any
unnecessary
documentation
from the application
and system that
may reveal useful
information to
potential attackers.

Avoid publishing
documentation that
provides insights into the
application's internal
workings or configurations.

35https://www.linkedin.com/in/hariprasaanth/

8.8 Do not include
sensitive
information in
HTTP GET request
parameters

Avoid sending
sensitive
information in HTTP
GET request
parameters as it
may be exposed in
URLs or logs.

Instead of sending sensitive
data as parameters in a URL,
use HTTP POST requests or
other secure methods.

8.9 Disable
auto-complete
features on forms
with sensitive
information,
including
authentication

Disable
auto-complete
features on forms
that may contain
sensitive
information,
including login and
authentication
forms.

Prevent browsers from
automatically filling in
sensitive data, such as
usernames and passwords,
to enhance security.

8.10 Disable client-side
caching on pages
with sensitive
information

Disable client-side
caching on pages
containing sensitive
information to
prevent data from
being stored locally.

Set appropriate HTTP
headers like "Cache-Control:
no-store" to instruct
browsers not to cache
sensitive pages.

8.11 Support the
removal of
sensitive data
when no longer
required

Implement
functionality to
delete sensitive data
when it is no longer
needed, such as
personal
information or
certain financial
data.

Allow users to request the
removal of their personal
data from the application
when it's no longer
necessary.

36https://www.linkedin.com/in/hariprasaanth/

8.12 Implement access
controls for
sensitive data
stored on the
server, including
cached data,
temporary files,
and data
accessible only by
specific users

Ensure that
sensitive data stored
on the server,
including cached
data and temporary
files, is protected by
appropriate access
controls.

Implement access controls
to restrict access to cached
data and temporary files to
only specific system users or
roles.

37https://www.linkedin.com/in/hariprasaanth/

9. Communication Security

"Communication Security" is all about safeguarding data as it travels between different
components of your application and external systems. This section includes practices
like implementing encryption for sensitive information transmission, ensuring valid
and up-to-date TLS certificates, and preventing insecure fallback from failed TLS
connections. The main goal is to protect data while it's in transit, ensuring that it
remains confidential and integral during communication. Strong communication
security practices, like TLS encryption and correct certificate management, help
prevent eavesdropping and tampering with sensitive information, ultimately
enhancing your application's overall security.

No Test Case Scenario Example

9.1 Implement
encryption for the
transmission of all
sensitive
information,
including TLS for
protecting the
connection

Ensure that all
sensitive
information is
transmitted using
encryption, such as
TLS (Transport Layer
Security), to protect
the data during
transmission.

When a user logs into an
online banking application,
their username and
password are transmitted
securely using TLS to prevent
eavesdropping.

9.2 Ensure TLS
certificates are
valid, have the
correct domain
name, not expired,
and installed with
intermediate
certificates when
required

Validate that TLS
certificates used for
securing
connections are
valid, have the
correct domain
name, are not
expired, and include
intermediate
certificates when
necessary.

An e-commerce website's
TLS certificate should have
the correct domain name,
should not be expired, and
should include all required
intermediate certificates to
establish a secure
connection.

38https://www.linkedin.com/in/hariprasaanth/

9.3 Prevent failed TLS
connections from
falling back to an
insecure
connection

Ensure that when a
TLS connection fails,
it does not fall back
to an insecure or
unencrypted
connection, which
could expose
sensitive data.

If a client fails to establish a
TLS connection, it should not
proceed with an
unencrypted connection but
should display an error
message instead.

9.4 Use TLS
connections for all
content requiring
authenticated
access and other
sensitive
information

Utilize TLS (or its
equivalent) for
securing
connections to any
content that
requires
authenticated
access or any other
sensitive
information.

When users access their
email accounts, the
connection should use TLS to
protect the login credentials
and email contents from
interception.

9.5 Use TLS for
connections to
external systems
involving sensitive
information or
functions

Employ TLS for
securing
connections to
external systems
that deal with
sensitive
information or
critical functions.

When an application
communicates with a
third-party payment gateway
to process financial
transactions, it should use
TLS to protect the data in
transit.

9.6 Use a single
standard TLS
implementation
that is configured
appropriately

Implement a
consistent and
standard TLS
configuration
throughout the
application to
ensure proper and
secure encryption.

Ensure that the application
uses a well-established TLS
implementation with the
appropriate configuration
settings to guarantee
security.

39https://www.linkedin.com/in/hariprasaanth/

9.7 Specify character
encodings for all
connections

Specify character
encodings for all
data transmitted
over connections to
avoid character
encoding issues
that can lead to
security
vulnerabilities.

When transmitting data
between a web server and a
database, specify UTF-8
character encoding to ensure
compatibility and prevent
encoding-related
vulnerabilities.

9.8 Filter parameters
containing
sensitive
information from
the HTTP referer
when linking to
external sites

Exclude parameters
containing sensitive
information from
the HTTP referer
header when
linking to external
websites to prevent
data leakage.

When a user clicks on an
external link from an
e-commerce website, the
referer header should not
include sensitive parameters
like session tokens or
personal data.

40https://www.linkedin.com/in/hariprasaanth/

10. System Configuration

"System Configuration" is crucial for maintaining a secure environment for your
application. This section includes practices like keeping servers and components
up-to-date, minimizing privileges, removing unnecessary functionality, and securing
HTTP methods. The main goal is to configure your systems in a way that minimizes
vulnerabilities and protects against common attack vectors. Effective system
configuration practices ensure that your application operates in a secure and robust
environment, reducing the risk of security incidents and unauthorized access.

No Test Case Scenario Example

10.1 Ensure servers,
frameworks, and
system
components are
running the latest
approved version

Regularly check and
update servers,
frameworks, and
system components
to the latest
approved versions
to mitigate
vulnerabilities.

An organization should
regularly update its web
server software to the latest
approved version to patch
known security
vulnerabilities.

10.2 Ensure servers,
frameworks, and
system
components have
all patches issued
for the version in
use

Apply all security
patches and
updates issued for
the specific version
of servers,
frameworks, and
system components
in use to address
known
vulnerabilities.

After deploying a web
application using a specific
framework version, apply all
available patches and
updates released for that
version to keep it secure.

10.3 Turn off directory
listings

Disable directory
listings to prevent
exposing sensitive
information about
the web server's
directory structure
to potential
attackers.

When a web server receives a
request for a directory that
doesn't contain a default
document (e.g., index.html),
it should return a "403
Forbidden" error instead of
listing the directory's
contents.

41https://www.linkedin.com/in/hariprasaanth/

10.4 Restrict the web
server, process,
and service
accounts to the
least privileges
possible

Limit the
permissions and
access rights of web
server, process, and
service accounts to
only what is
necessary to
perform their
functions, reducing
the risk of
unauthorized
access.

A web server process should
run with minimal privileges,
granting access only to the
directories and resources
required for serving web
pages, and should not have
write access to sensitive files.

10.5 When exceptions
occur, fail securely

Implement error
handling routines
that ensure the
application fails
securely when
exceptions or errors
occur, preventing
the exposure of
sensitive
information.

If a web application
encounters an unexpected
exception, it should handle it
gracefully by displaying a
user-friendly error message
instead of revealing technical
details or sensitive data.

10.6 Remove all
unnecessary
functionality and
files

Eliminate any
features, functions,
or files that are not
essential for the
application's
operation, reducing
the attack surface.

An e-commerce website
should remove any unused
or unnecessary features, such
as old product listings or
deprecated functions, before
deployment.

10.7 Remove test code
or any
functionality not
intended for
production, prior
to deployment

Ensure that test
code or features not
intended for
production use are
removed from the
application before it
is deployed.

Any test-related functionality
in the application's codebase
should be excluded from the
production release,
preventing unintended
exposure or vulnerabilities.

42https://www.linkedin.com/in/hariprasaanth/

10.8 Prevent disclosure
of your directory
structure in the
robots.txt file

Avoid exposing
directory structures
by isolating
directories not
intended for public
indexing in an
isolated parent
directory and
disallowing the
entire parent
directory in the
robots.txt file.

If a website has directories
containing configuration files
or other sensitive data, these
directories should be placed
within a parent directory that
is disallowed in the robots.txt
file to prevent search engine
indexing.

10.9 Define which
HTTP methods
(GET or POST) the
application will
support and
whether they will
be handled
differently

Clearly specify
which HTTP
methods (e.g., GET
or POST) the
application
supports and
whether they are
handled differently
on different pages.

In a RESTful web service,
define which HTTP methods
are allowed for various
endpoints, indicating
whether a particular
endpoint supports only GET
requests or both GET and
POST requests.

10.10 Disable
unnecessary HTTP
methods, such as
WebDAV
extensions

Deactivate any
unnecessary HTTP
methods, especially
extensions like
WebDAV, and only
use well-vetted
authentication
mechanisms if
required.

If a web application doesn't
require the WebDAV HTTP
extension for file
management, it should
disable this method to
reduce potential security
risks.

43https://www.linkedin.com/in/hariprasaanth/

10.11 Ensure the web
server handles
HTTP 1.0 and 1.1 in
a similar manner
or understands
any differences

Ensure that the web
server is configured
to handle both
HTTP 1.0 and 1.1
consistently or
understands any
distinctions
between the two
versions.

If a web server accepts both
HTTP 1.0 and HTTP 1.1
requests, it should process
them in a consistent manner
to prevent potential
vulnerabilities related to
version handling.

10.12 Remove
unnecessary
information from
HTTP response
headers related to
the OS, web server
version, and
application
frameworks

Minimize the
information
revealed in HTTP
response headers to
avoid disclosing
details about the
server's operating
system, web server
version, or
application
frameworks.

HTTP response headers
should not expose server
details, such as "Server:
Apache/2.4.29 (Unix)
PHP/7.2.15" or "X-Powered-By:
Express."

10.13 The security
configuration
store for the
application should
be output in
human-readable
form to support
auditing

Ensure that the
security
configuration
settings of the
application can be
displayed in a
human-readable
format to facilitate
auditing and review.

A web application's security
settings should be
documented in a way that
allows auditors to easily
understand the
configurations for
verification.

44https://www.linkedin.com/in/hariprasaanth/

10.14 Implement an
asset
management
system and
register system
components and
software

Establish an asset
management
system to catalog
and register all
system components
and software to
monitor and
maintain them
efficiently.

An organization should use
an asset management
system to keep an inventory
of all servers, network
devices, software, and
hardware components used
in the infrastructure.

10.15 Isolate
development
environments
from the
production
network and
provide access
only to authorized
development and
test groups

Segregate
development
environments from
the production
network, restricting
access to authorized
development and
test groups.

Development and testing
environments should be
isolated from the live
production network to
minimize potential security
risks and unauthorized
access.

10.16 Implement a
software change
control system to
manage and
record changes to
the code

Employ a software
change control
system to oversee
and document
changes made to
the code, both in
development and
production.

Any modifications or updates
to the application's source
code should be documented
in a change control system,
including details like who
made the change, when it
was made, and why.

45https://www.linkedin.com/in/hariprasaanth/

11. Database Security

"Database Security" is essential for ensuring the confidentiality and integrity of your
application's data. This section includes practices like using strongly typed
parameterized queries, input validation, and output encoding to prevent SQL injection
attacks. It also emphasizes the importance of utilizing secure credentials for database
access, storing connection strings securely, and minimizing privileges when interacting
with the database. The primary goal is to protect your database from unauthorized
access and data breaches, ensuring that sensitive information remains secure and
confidential. Effective database security practices help safeguard your application's
most critical asset – its data.

No Test Case Scenario Example

11.1 Use strongly typed
parameterized
queries

Employ
parameterized
queries with
strongly typed
parameters to
interact with the
database,
preventing SQL
injection attacks.

When querying a database
for user authentication, use
parameterized queries with
strongly typed parameters
like integers or strings to
avoid SQL injection.

11.2 Utilize input
validation and
output encoding
and be sure to
address meta
characters. If these
fail, do not run the
database
command

Apply input
validation and
output encoding to
sanitize data,
ensuring that meta
characters are
addressed to
protect against
security
vulnerabilities. If
validation fails,
reject the database
command.

When processing
user-generated input for a
search query, validate the
input and ensure that it
doesn't contain any
unescaped meta characters
such as single quotes. If
validation fails, reject the
query.

46https://www.linkedin.com/in/hariprasaanth/

11.3 Ensure that
variables are
strongly typed

Ensure that
variables used in
database operations
are strongly typed
to prevent
type-related
vulnerabilities.

When passing variables to a
database query, ensure that
their data types match the
expected data types in the
database schema to avoid
type conversion issues or
unexpected behavior.

11.4 The application
should use the
lowest possible
level of privilege
when accessing
the database

Limit the privileges
granted to the
application when
interacting with the
database to
minimize the
potential impact of
security breaches.

When connecting to the
database, use a database
user account with the
minimum necessary
privileges to perform the
required operations, rather
than a superuser account.

11.5 Use secure
credentials for
database access

Implement strong
and secure
credentials when
connecting to the
database to protect
against
unauthorized
access.

Use complex and unique
passwords for database user
accounts, and consider
implementing multi-factor
authentication for added
security.

47https://www.linkedin.com/in/hariprasaanth/

11.6 Connection strings
should not be hard
coded within the
application.
Connection strings
should be stored in
a separate
configuration file
on a trusted
system and they
should be
encrypted.

Avoid hardcoding
database
connection strings
in the application
code. Store
connection strings
in a separate,
encrypted
configuration file on
a trusted system.

Instead of directly
embedding database
connection strings in the
code, store them in an
encrypted configuration file
external to the application
for better security.

11.7 Use stored
procedures to
abstract data
access and allow
for the removal of
permissions to the
base tables in the
database

Utilize stored
procedures to
access data,
providing an
abstraction layer
and enabling the
removal of
permissions to base
tables.

Implement stored
procedures in the database
to abstract data access,
ensuring that applications
interact with the data
through these procedures.

11.8 Close the
connection as soon
as possible

Close the database
connection as soon
as it is no longer
needed to reduce
the risk of
unauthorized access
or data exposure.

After executing a database
query, promptly close the
database connection to
minimize the window of
opportunity for potential
attackers.

48https://www.linkedin.com/in/hariprasaanth/

11.9 Remove or change
all default
database
administrative
passwords. Utilize
strong
passwords/phrases
or implement
multi-factor
authentication

Eliminate or update
default
administrative
passwords for the
database, replacing
them with strong
passwords or
implementing
multi-factor
authentication for
added security.

When deploying a new
database, change the default
administrative passwords to
strong, unique passwords, or
implement multi-factor
authentication to enhance
access security.

11.10 Turn off all
unnecessary
database
functionality (e.g.,
unnecessary stored
procedures or
services, utility
packages, install
only the minimum
set of features and
options required)

Disable unnecessary
database
functionality and
features, such as
stored procedures
or services, to
reduce the attack
surface.

When configuring a
database server, only enable
the features and options
required for the application's
functionality, turning off or
uninstalling unnecessary
components.

11.11 Remove
unnecessary
default vendor
content (e.g.,
sample schemas)

Eliminate
unnecessary default
content provided by
the database
vendor, such as
sample schemas or
data, which can
pose security risks.

After installing a database
system, remove sample
schemas, tables, or data
provided by the vendor, as
they might contain security
vulnerabilities or
unnecessary data.

49https://www.linkedin.com/in/hariprasaanth/

11.12 Disable any default
accounts that are
not required to
support business
requirements

Deactivate or
disable any default
user accounts that
are not needed to
fulfill business
requirements.

If the database system
includes default user
accounts that are not
essential for the application's
functionality, disable or
remove them to reduce
potential security risks.

11.13 The application
should connect to
the database with
different
credentials for
every trust
distinction (e.g.,
user, read-only
user, guest,
administrators)

Use distinct
credentials for
database
connections based
on trust levels, such
as separate
credentials for
regular users,
read-only access,
guests, and
administrators, to
limit privileges as
necessary.

Implement role-based
database access, providing
different user roles with
unique credentials and
access rights to match their
trust levels, ensuring that
administrators have more
privileges than regular users.

50https://www.linkedin.com/in/hariprasaanth/

12. File Management

"File Management" is all about handling files securely within your application. This
section includes practices like not passing user-supplied data directly to dynamic
include functions, authenticating file uploads, validating file types, and avoiding saving
files in the same web context as the application. The primary goal is to prevent
malicious file uploads, limit access to files, and ensure that files are handled safely to
avoid security vulnerabilities. Effective file management practices help maintain the
integrity and security of your application's file system and protect it from potential
threats.

No Test Case Scenario Example

12.1 Do not pass user
supplied data
directly to any
dynamic include
function

Avoid directly
passing
user-supplied data
to dynamic include
functions to prevent
code execution
vulnerabilities.

Instead of using user input
to dynamically include a file,
use a predefined and
validated list of files to
include.

12.2 Require
authentication
before allowing a
file to be uploaded

Ensure that users
are authenticated
before they are
allowed to upload
files to the
application to
prevent
unauthorized file
uploads.

Only authenticated users
should have the privilege to
upload files.

12.3 Limit the type of
files that can be
uploaded to only
those types that
are needed for
business purposes

Allow only specific
types of files to be
uploaded that are
relevant to the
application's
business
requirements.

If your application only
requires image uploads,
restrict file uploads to image
file types (e.g., JPEG, PNG)
and reject other file types.

51https://www.linkedin.com/in/hariprasaanth/

12.4 Validate uploaded
files are the
expected type by
checking file
headers. Checking
for file type by
extension alone is
not sufficient

Verify the file type of
uploaded files by
examining their
headers to ensure
they match the
expected format, as
relying solely on file
extensions is
insufficient.

When processing an
uploaded file, check its
header information to
confirm its actual format
rather than solely relying on
the file extension provided
by the user.

12.5 Do not save files in
the same web
context as the
application. Files
should either go to
the content server
or in the database.

Store uploaded files
in a location
separate from the
web application's
context to avoid
security risks.
Uploaded files
should be placed in
a content server or
database.

Store uploaded files in a
directory outside the web
server's root directory to
prevent direct access from
the web.

12.6 Prevent or restrict
the uploading of
any file that may
be interpreted by
the web server.

Avoid uploading
files that can be
interpreted as code
by the web server,
as this may
introduce security
vulnerabilities.

Do not allow users to upload
files like PHP, HTML, or
JavaScript files that could be
executed by the server.

12.7 Turn off execution
privileges on file
upload directories

Disable execution
privileges on
directories where
files are uploaded to
prevent the
execution of
uploaded files.

Modify directory permissions
to prevent any uploaded files
from being executed by the
web server.

52https://www.linkedin.com/in/hariprasaanth/

12.8 Implement safe
uploading in UNIX
by mounting the
targeted file
directory as a
logical drive using
the associated
path or the
chrooted
environment

Secure file
uploading in UNIX
environments by
mounting the
target directory as a
logical drive or
using the chrooted
environment to
isolate the uploaded
files.

When dealing with file
uploads on UNIX systems,
ensure that the uploaded
files are placed in an isolated
directory or chroot
environment to enhance
security.

12.9 When referencing
existing files, use a
white list of
allowed file names
and types. Validate
the value of the
parameter being
passed and if it
does not match
one of the
expected values,
either reject it or
use a hard coded
default file value
for the content
instead

Employ a white list
of permitted file
names and types
when referencing
existing files,
validating the
parameters being
passed. If an
unexpected value is
encountered, reject
it or use a
predefined default
value.

When referencing files
provided by users or external
sources, validate the file
names and types against a
predefined white list, and
only allow those that match
the expected values.

12.10 Do not pass user
supplied data into
a dynamic
redirect. If this
must be allowed,
then the redirect
should accept only
validated, relative
path URLs

Avoid passing
user-supplied data
into dynamic
redirects. If
necessary, ensure
that the redirect
accepts only
validated, relative
path URLs to
prevent open
redirect
vulnerabilities.

If your application allows
dynamic redirects, ensure
that the redirect URLs are
either predefined and
validated or accept only
relative path URLs, reducing
the risk of open redirect
attacks.

53https://www.linkedin.com/in/hariprasaanth/

12.11 Do not pass
directory or file
paths, use index
values mapped to
pre-defined list of
paths

Avoid passing
directory or file
paths as user input,
and instead, use
index values
associated with a
predefined list of
paths to enhance
security.

When handling user input
for file or directory paths, use
predefined index values to
reference specific paths
rather than directly
accepting arbitrary paths
provided by users.

12.12 Never send the
absolute file path
to the client

Avoid disclosing
absolute file paths
to clients, as this
information can
potentially be
exploited by
attackers.

When returning file paths or
URLs to the client, ensure
that they are relative paths
and do not reveal the
absolute file system
structure of the server.

12.13 Ensure application
files and resources
are read-only

Set appropriate file
permissions to
make application
files and resources
read-only,
preventing
unauthorized
modification.

Configure file permissions on
application files and
resources to disallow write
access, ensuring their
integrity and preventing
tampering.

12.14 Scan user
uploaded files for
viruses and
malware

Implement virus
and malware
scanning for files
uploaded by users
to prevent malicious
content from
entering the
application.

When users upload files,
automatically scan the files
for viruses and malware to
safeguard the application
and its users from potential
threats.

54https://www.linkedin.com/in/hariprasaanth/

13. Memory Management

"Memory Management" involves handling memory securely in your application. This
section emphasizes practices like input and output control for untrusted data,
checking buffer sizes to prevent buffer overflows, and avoiding known vulnerable
functions. The goal is to ensure that your application efficiently manages memory,
mitigates memory-related vulnerabilities, and avoids potential security risks associated
with memory handling. Proper memory management contributes to the overall
security and reliability of your software.

No Test Case Scenario Example

13.1 Utilize input and
output control for
un-trusted data

Employ input and
output controls to
manage data from
untrusted sources,
ensuring that the
data is processed
safely and securely.

When accepting user input,
apply input controls such as
input validation to validate
and sanitize the data before
using it in the application.
Similarly, use output controls
like output encoding to
prevent data from being
executed as code when
displayed to users.

13.2 Double check that
the buffer is as
large as specified

Verify that buffer
sizes match the
expected size to
prevent buffer
overflows and
memory corruption
vulnerabilities.

When using functions that
copy data into a buffer,
double-check that the
destination buffer is of the
specified size and that it can
accommodate the data to
be copied.

55https://www.linkedin.com/in/hariprasaanth/

13.3 When using
functions that
accept a number
of bytes to copy,
such as strncpy(),
be aware that if
the destination
buffer size is equal
to the source
buffer size, it may
not
NULL-terminate
the string

Exercise caution
when using
functions like
strncpy() and
understand that if
the destination
buffer size is the
same as the source
buffer size, the string
may not be
NULL-terminated,
which can lead to
unexpected
behavior.

When using strncpy(), be
aware of its behavior and
make sure to manually
NULL-terminate the string if
necessary to avoid issues
with string manipulation.

13.4 Check buffer
boundaries if
calling the
function in a loop
and make sure
there is no danger
of writing past the
allocated space

Ensure that buffer
boundaries are
validated when
calling functions in
loops, preventing
potential buffer
overflows and data
corruption.

When using functions in
loops that copy data into
buffers, always check and
control the loop's iteration to
avoid writing data past the
allocated buffer space.

13.5 Truncate all input
strings to a
reasonable length
before passing
them to the copy
and concatenation
functions

Limit the length of
input strings to a
reasonable size
before using copy
and concatenation
functions to prevent
buffer overflows.

Before using copy or
concatenation functions,
truncate input strings to a
predefined reasonable
length to ensure they fit
within the buffer's allocated
space.

13.6 Specifically close
resources, don’t
rely on garbage
collection. (e.g.,
connection
objects, file
handles, etc.)

Explicitly close
resources such as
connection objects
and file handles
instead of relying on
garbage collection
to ensure timely
resource
deallocation.

When managing resources
like database connections or
file handles, always use
explicit methods to close
these resources once they
are no longer needed to
avoid resource leaks.

56https://www.linkedin.com/in/hariprasaanth/

13.7 Use
non-executable
stacks when
available

Employ
non-executable
stacks when
possible to enhance
security and prevent
stack-based
vulnerabilities.

If your operating system or
platform supports
non-executable stacks,
enable this feature to reduce
the risk of stack-based buffer
overflow attacks.

13.8 Avoid the use of
known vulnerable
functions (e.g.,
printf, strcat, strcpy
etc.)

Steer clear of using
functions that are
known to be
vulnerable to
security issues, such
as printf, strcat, and
strcpy.

Instead of using functions
like printf, strcat, or strcpy,
opt for safer alternatives that
do not exhibit known
vulnerabilities, such as
printf-safe functions or string
manipulation functions with
boundary checks.

13.9 Properly free
allocated memory
upon the
completion of
functions and at all
exit points

Ensure that
dynamically
allocated memory is
correctly deallocated
at the end of
functions and at all
exit points to
prevent memory
leaks.

When allocating memory
dynamically (e.g., with
malloc), always include code
to release (free) the allocated
memory in the function's
exit paths to avoid memory
leaks.

57https://www.linkedin.com/in/hariprasaanth/

14. General Coding Practices

"General Coding Practices" encompass a set of guidelines for writing secure and
reliable code. These practices encourage the use of approved managed code,
task-specific APIs, and explicit variable initialization. They also emphasize avoiding
direct interaction with the operating system and preventing concurrent access issues
in multi-threaded applications. Additionally, the checklist promotes safe calculation
handling, secure privilege management, and safeguarding against code injection and
unsafe code alterations. Following these practices helps ensure that your code is
robust, secure, and free from common vulnerabilities.

No Test Case Scenario Example

14.1 Use tested and
approved
managed code
rather than
creating new
unmanaged code
for common tasks

Prefer using
well-tested
managed code
libraries and APIs for
common tasks over
developing custom
unmanaged code.

Instead of implementing
custom unmanaged code for
file I/O operations, use a
widely accepted managed
code library or API like .NET's
File class for safe and
efficient file operations.

14.2 Utilize
task-specific
built-in APIs to
conduct
operating system
tasks. Do not
allow the
application to
issue commands
directly to the
Operating
System, especially
through the use
of
application-initiat
ed command
shells

Employ built-in APIs
specific to the task
at hand to perform
operating
system-related
actions. Avoid
allowing the
application to
execute commands
directly on the OS,
especially through
command shells
initiated by the
application.

When interacting with the
operating system, use APIs
like
System.Diagnostics.Process
in C# to manage and execute
external processes instead of
invoking shell commands
through the application.

58https://www.linkedin.com/in/hariprasaanth/

14.3 Use checksums or
hashes to verify
the integrity of
interpreted code,
libraries,
executables, and
configuration files

Verify the integrity
of interpreted code,
libraries,
executables, and
configuration files
using checksums or
cryptographic
hashes to detect
unauthorized
modifications.

Before loading a dynamically
linked library, verify its
integrity by comparing its
hash value with a
precomputed hash to ensure
it has not been tampered
with.

14.4 Utilize locking to
prevent multiple
simultaneous
requests or use a
synchronization
mechanism to
prevent race
conditions

Employ locking
mechanisms to
prevent multiple
simultaneous
requests or utilize
synchronization to
avoid race
conditions in
multi-threaded
applications.

When managing shared
resources, use locks or
synchronization primitives
such as mutexes to ensure
that only one thread can
access the shared resource at
a time, preventing
concurrent access issues.

14.5 Protect shared
variables and
resources from
inappropriate
concurrent access

Safeguard shared
variables and
resources to prevent
inappropriate
concurrent access
that could lead to
data corruption or
inconsistency.

Protect shared data
structures in a
multi-threaded application
by using proper locking
mechanisms to ensure that
multiple threads do not
access or modify the data
simultaneously.

59https://www.linkedin.com/in/hariprasaanth/

14.6 Explicitly initialize
all your variables
and other data
stores, either
during
declaration or just
before the first
usage

Ensure that all
variables and data
stores are explicitly
initialized either
during declaration
or right before their
first usage to
prevent the use of
uninitialized or
unpredictable
values.

Initialize variables with
appropriate default values
during declaration or
initialize them just before
their first use. For instance,
initialize an integer variable
with zero (0) to avoid using
uninitialized data.

14.7 In cases where
the application
must run with
elevated
privileges, raise
privileges as late
as possible, and
drop them as
soon as possible

If the application
needs to run with
elevated privileges,
elevate those
privileges only when
necessary and
reduce them to the
least privilege level
as soon as they are
no longer needed.

If your application requires
elevated privileges to
perform a specific task, raise
those privileges only when
executing that task, and
promptly lower the privileges
once the task is completed.

60https://www.linkedin.com/in/hariprasaanth/

14.8 Avoid calculation
errors by
understanding
your
programming
language's
underlying
representation
and how it
interacts with
numeric
calculation. Pay
close attention to
byte size
discrepancies,
precision,
signed/unsigned
distinctions,
truncation,
conversion and
casting between
types,
"not-a-number"
calculations, and
how your
language handles
numbers that are
too large or too
small for its
underlying
representation

Prevent calculation
errors by having a
deep
understanding of
your programming
language's numeric
representation and
how it handles
various numeric
operations and data
types. Pay attention
to issues like
precision,
signed/unsigned
distinctions, byte
size limitations, type
conversion, and
handling extreme
values.

When performing
mathematical calculations in
a programming language, be
aware of issues like integer
overflow, floating-point
precision, and type
conversion. Always ensure
that numeric operations are
consistent with your
expectations and the
language's behavior.

14.9 Do not pass
user-supplied
data to any
dynamic
execution
function

Avoid passing data
provided by users to
functions that
dynamically execute
code, as this can
lead to code
injection
vulnerabilities.

Do not allow users to provide
input that is directly passed
to functions capable of
executing code dynamically,
such as eval() or dynamic
SQL execution. This can
prevent code injection
attacks.

61https://www.linkedin.com/in/hariprasaanth/

14.10 Restrict users
from generating
new code or
altering existing
code

Prevent users from
generating or
modifying code to
maintain control
over the
application's
behavior and
security.

Avoid providing users with
the capability to write or
execute arbitrary code within
the application, as this can
lead to security risks.

14.11 Review all
secondary
applications,
third-party code,
and libraries to
determine
business
necessity and
validate safe
functionality, as
these can
introduce new
vulnerabilities

Conduct a thorough
review of secondary
applications,
third-party code,
and libraries to
assess their
necessity and
ensure that their
functionality does
not introduce
security
vulnerabilities.

Before integrating
third-party code or libraries
into your application,
carefully review and validate
the code to confirm that it is
both necessary for your
business requirements and
free from security
vulnerabilities.

62https://www.linkedin.com/in/hariprasaanth/

14.12 Implement safe
updating. If the
application will
utilize automatic
updates, then use
cryptographic
signatures for
your code and
ensure your
download clients
verify those
signatures. Use
encrypted
channels to
transfer the code
from the host
server

Implement secure
update
mechanisms,
especially if your
application
supports automatic
updates. Utilize
cryptographic
signatures to verify
code authenticity,
and ensure
download clients
validate these
signatures.
Additionally, use
encrypted channels
to transfer code
updates from the
host server.

When delivering automatic
updates for your application,
ensure that the updates are
digitally signed with a
cryptographic signature to
guarantee their authenticity.
The download client should
verify these signatures before
applying updates. Encrypt
the communication channel
between the host server and
the client to protect the code
updates from interception.

63https://www.linkedin.com/in/hariprasaanth/

15. Glossary

★ Abuse Case: Describes the intentional and unintentional misuses of the
software. Abuse cases should challenge the assumptions of the system design.

★ Access Control: A set of controls that grant or deny a user, or other entity, access
to a system resource. This is usually based on hierarchical roles and individual
privileges within a role, but also includes system to system interactions.

★ Authentication: A set of controls that are used to verify the identity of a user, or
other entity, interacting with the software.

★ Availability: A measure of a system's accessibility and usability.

★ Canonicalize: To reduce various encodings and representations of data to a
single simple form.

★ Communication Security: A set of controls that help ensure the software
handles the sending and receiving of information in a secure manner.

★ Confidentiality: To ensure that information is disclosed only to authorized
parties.

★ Contextual Output Encoding: Encoding output data based on how it will be
utilized by the application. The specific methods vary depending on the way the
output data is used. If the data is to be included in the response to the client,
account for inclusion scenarios like: the body of an HTML document, an HTML
attribute, within JavaScript, within a CSS or in a URL. You must also account for
other use cases like SQL queries, XML and LDAP.

★ Cross Site Request Forgery: An external website or application forces a client to
make an unintended request to another application that the client has an active
session with. Applications are vulnerable when they use known, or predictable,
URLs and parameters; and when the browser automatically transmits all
required session information with each request to the vulnerable application.
(This is one of the only attacks specifically discussed in this document and is only
included because the associated vulnerability is very common and poorly
understood.)

★ Cryptographic Practices: A set of controls that ensure cryptographic operations
within the application are handled securely.

★ Data Protection: A set of controls that help ensure the software handles the
storing of information in a secure manner.

★ Database Security: A set of controls that ensure that software interacts with a
database in a secure manner and that the database is configured securely.

64https://www.linkedin.com/in/hariprasaanth/

★ Error Handling and Logging: A set of practices that ensure the application
handles errors safely and conducts proper event logging.

★ Exploit: To take advantage of a vulnerability. Typically this is an intentional action
designed to compromise the software's security controls by leveraging a
vulnerability.

★ File Management: A set of controls that cover the interaction between the code
and other system files.

★ General Coding Practices: A set of controls that cover coding practices that do
not fit easily into other categories.

★ Hazardous Character: Any character or encoded representation of a character
that can affect the intended operation of the application or associated system by
being interpreted to have a special meaning, outside the intended use of the
character. These characters may be used to:

○ Alter the structure of existing code or statements
○ Insert new unintended code
○ Alter paths
○ Cause unexpected outcomes from program functions or routines
○ Cause error conditions
○ Have any of the above effects on downstream applications or systems

★ HTML Entity Encode: The process of replacing certain ASCII characters with their
HTML entity equivalents. For example, encoding would replace the less-than
character "<" with the HTML equivalent "<". HTML entities are 'inert' in most
interpreters, especially browsers, which can mitigate certain client-side attacks.

★ Impact: Ameasure of the negative effect on the business that results from the
occurrence of an undesired event; what would be the result of a vulnerability
being exploited.

★ Input Validation: A set of controls that verify the properties of all input data
match what is expected by the application, including types, lengths, ranges,
acceptable character sets, and does not include known hazardous characters.

★ Integrity: The assurance that information is accurate, complete, and valid and
has not been altered by an unauthorized action.

65https://www.linkedin.com/in/hariprasaanth/

★ Log Event Data: This should include the following:

○ Time stamp from a trusted system component
○ Severity rating for each event
○ Tagging of security-relevant events if they are mixed with other log entries
○ Identity of the account/user that caused the event
○ Source IP address associated with the request
○ Event outcome (success or failure)
○ Description of the event

★ Memory Management: A set of controls that address memory and buffer usage.

★ Mitigate: Steps taken to reduce the severity of a vulnerability. These can include
removing a vulnerability, making a vulnerability more difficult to exploit, or
reducing the negative impact of a successful exploitation.

★ Multi-Factor Authentication: An authentication process that requires the user
to produce multiple distinct types of credentials. Typically, this is based on
something they have (e.g., a smart card), something they know (e.g., a pin), or
something they are (e.g., data from a biometric reader).

★ Output Encoding: A set of controls addressing the use of encoding to ensure
data output by the application is safe.

★ Parameterized Queries (prepared statements): Keeps the query and data
separate through the use of placeholders. The query structure is defined with
placeholders, the SQL statement is sent to the database and prepared, and then
the prepared statement is combined with the parameter values. This prevents
the query from being altered because the parameter values are combined with
the compiled statement, not a SQL string.

★ Sanitize Data: The process of making potentially harmful data safe through the
use of data removal, replacement, encoding, or escaping of the characters.

★ Security Controls: An action that mitigates a potential vulnerability and helps
ensure that the software behaves only in the expected manner.

★ Security Requirements: A set of design and functional requirements that help
ensure the software is built and deployed in a secure manner.

★ Sequential Authentication:When authentication data is requested on
successive pages rather than being requested all at once on a single page.

★ Session Management: A set of controls that help ensure web applications
handle HTTP sessions in a secure manner.

★ State Data:When data or parameters are used by the application or server to
emulate a persistent connection or track a client's status across a multi-request
process or transaction.

66https://www.linkedin.com/in/hariprasaanth/

★ System: A generic term covering the operating systems, web server, application
frameworks, and related infrastructure.

★ System Configuration: A set of controls that help ensure the infrastructure
components supporting the software are deployed securely.

★ Threat Agent: Any entity that may have a negative impact on the system. This
may be a malicious user who wants to compromise the system's security
controls; however, it could also be an accidental misuse of the system or a more
physical threat like fire or flood.

★ Trust Boundaries: Typically, a trust boundary constitutes the components of the
system under your direct control. All connections and data from systems outside
of your direct control, including all clients and systems managed by other parties,
should be considered untrusted and be validated at the boundary before
allowing further system interaction.

★ Vulnerability: A weakness that makes the system susceptible to attack or
damage.

67https://www.linkedin.com/in/hariprasaanth/

