
25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 1/139

Hacking with Go

This is my attempt at filling the gap in Go security tooling. When starting to learn Go, I learned from

a lot of tutorials but I could find nothing that is geared towards security professionals.

These documents are based on the Gray/Black Hat Python/C# series of books. I like their style.

Join me as I learn more about Go and attempt to introduce Go to security denizens without fluff and

through practical applications.

Table of Contents

01 - Setting up a Go development environment

02 - Basics

02.1 - Packages, functions, variables, basic types, casting and constants

02.2 - for, if, else, switch and defer

02.3 - Pointers, structs, arrays, slices and range

02.4 - Methods and interfaces

02.5 - Printf, Scanf, bufio readers and maps

02.6 - Goroutines and channels

02.7 - Error handling

03 - Useful Go packages - WIP

03.1 - flag package

03.2 - log package

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 2/139

04.1 - Basic TCP and UDP clients

04.2 - TCP servers

04.3 - TCP proxy

04.4 - SSH clients

04.5 - SSH Harvester

05 - Parsing Files

05.1 - Extracting PNG Chunks

06 - Go-Fuzz

06.1 - Go-Fuzz Quickstart

06.2 - Fuzzing iprange with Go-Fuzz

06.2 - Fuzzing goexif2 with Go-Fuzz

FAQ

Why not use Python?

Python reigns supreme in security and for good reason. It's a powerful programming language.

There are a lot of supporting libraries out there both in security and for general use. However, I

think Go has its merits and can occupy a niche.

Why not use other tutorials?

There are a lot of tutorials for Go out there. None are geared towards security professionals. Our

needs are different, we want to write quick and dirty scripts that work (hence Python is so

successful). Similar guides are available in Python and other programming languages.

Why not just use Black Hat Go?

There's a book named Black Hat Go by No Starch in production. Looking at the author list, I cannot

compete with them in terms of experience and knowledge. That is a proper book with editors and a

publisher while I am just some rando learning as I go. It does not take a lot of CPU power to decide

the book will be better.

But the book is not out yet. Today is December 6th 2017 and the book is marked for release in

August 2018. The book page does not have any released chapters or material. We can assume it's

going to be similar to the other gray|black hat books. This repository and that book are

inevitably going to have a lot of overlap. Think of this as warm up while we wait.

Update February 2020: Black Hat Go has been released. Please see the code samples at

https://github.com/blackhat-go/bhg.

Rewrite in Rust/Haskell

Honestly I will be very much interested in a similar guide for Rust/Haskell geared for security

people. Please let me know if you create one.

Feedback

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 3/139

I am always interested in feedback. There will be errors and there are always better ways to code.

Please create an issue here. If this has helped you please let me know, it helps with the grind.

Other resources

There are tons of Go resources online. I am going to try not to re-hash what has been already

created. Hacking with Go is not meant to be self-contained. When in doubt, use one of these

resources or just search.

The following links helped me get started:

GoDoc: https://godoc.org/

A Tour of Go: https://tour.golang.org/

Go by Example: https://gobyexample.com/

Go playground: https://play.golang.org/

Effective Go: https://golang.org/doc/effective_go.html

Similar resources to Hacking with Go :

Security with Go published by Packt: https://github.com/PacktPublishing/Security-with-Go

goHackTools : https://github.com/dreddsa5dies/goHackTools

Go programming language secure coding practices guide

License

Code in this repository is licensed under GPLv3.

Non-code content is licensed under Creative Commons Attribution-NonCommercial 4.0 (CC

BY-NC 4.0).

01 - Setting up a Go development
environment

I am going to use a Windows 10 x64 Virtual Machine (VM) but Go is available for most popular

platforms. I can already hear the infosec pros grunt. The Getting Started section on Go website has

how-tos for most popular platforms. You can find binaries and building instructions.

You can get free Windows VMs from modern.ie. Make a snapshot after you everything is set up.

They expire in 90 days and you can only re-arm them multiple times.

Installation on Windows 10 VM

GOPATH

Test application

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 4/139

Editor

Go playground

Offline coding

gofmt

Starting curly brace

Installation on Windows 10 VM

1. Go to https://golang.org/doc/install and download the MSI binary.

2. Install the MSI, choose the default location.

3. Choose a development directory. I have created a shared directory in my VM. This way I can

code in host and run the guest. In my case it 's Z:\Go where Z is the shared drive/directory.

4. Set the following environmental variables (installer might have already set some up):
GOROOT : C:\Go

GOPATH : Z:\Go or the directory from step 3.

5. Add C:\Go\Bin to PATH.

6. Open a new cmd and run go env . You should see what you have setup.

Output of go env in my Windows 10 VM is:

$ go env
set GOARCH=amd64
set GOBIN=
set GOEXE=.exe
set GOHOSTARCH=amd64
set GOHOSTOS=windows
set GOOS=windows
set GOPATH=Z:\Go\
set GORACE=
set GOROOT=C:\Go
set GOTOOLDIR=C:\Go\pkg\tool\windows_amd64
set GCCGO=gccgo
set CC=gcc
set GOGCCFLAGS=-m64 -mthreads -fmessage-length=0
 -fdebug-prefix-map=C:\Users\IEUser\AppData\Local\Temp\go-build352203231=/tmp/go-build
 -gno-record-gcc-switches
set CXX=g++
set CGO_ENABLED=1
set CGO_CFLAGS=-g -O2
set CGO_CPPFLAGS=
set CGO_CXXFLAGS=-g -O2
set CGO_FFLAGS=-g -O2
set CGO_LDFLAGS=-g -O2
set PKG_CONFIG=pkg-config

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 5/139

GOPATH

You can write Go code anywhere but only code in a GOPATH directory can be executed with go
run .

Go to the development path in step 3 of last section and create three directories inside it:

src : Source code.

bin : Compiled files.

pkg : Executables.

You can clone this repository in src and then run everything in code . The directory structure
looks like in the Windows 10 VM:

Z:\Go>tree /F

Z:.
├───bin
├───pkg
└───src
 └───Hacking-with-Go
 └───code
 └───01
 01-01-HelloWorld.go

Test application

Let's write a quick "Hello World" application and run it.

package main

import "fmt"

func main() {

 fmt.Println("Hello World!")
}

And we can run it with go run 01-01-HelloWorld.go .

Z:\Go\src\hacking-with-go\code\01>go run 01-01-HelloWorld.go
Hello World!

Editor

2

okanyildiz

okanyildiz

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 6/139

Choose whatever you like. There are many editors with Go support (you will see below) to choose

from. Some in no particular order are:

SublimeText using GoSublime package.

Atom via go-plus package.

Visual Studio Code with Go extension.

Vim-go.

Emacs go-mode.

I personally use Sublime Text 3 and GoSublime.

Go playground

The online go playground at https://play.golang.org/ is good for prototyping/testing and sharing

quick scripts. It's pretty useful when Go is not installed on the machine. For more information read

Inside the Go Playground.

Offline coding

It's possible to run both the playground and documentation server offline.

godoc -http :1234 will run the the documentation server at localhost:1234 .

go tool tour will start an offline version of Tour of Go at localhost:3999 . This allows
coding offline in browser in Go playground.

gofmt

gofmt is Go's official formatting tool. It automatically modifies source code. The main reason

behind choosing an editor with Go support is running gofmt automatically on your code.

I personally do not agree with gofmt . For example it uses tabs (I like spaces). Tab-width is fixed at
four (I like two). But it's better if our code adheres to language standards.

For more information read go fmt your code. For usage see Command gofmt.

Starting curly brace

The starting curly brace needs to be on the same line as the the keyword starting the block (e.g.

for or if). This is a Go standard enforced by the compiler. It's explained in the Go FAQ.

This is wrong:

func main()
{

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 7/139

 fmt.Println("Hello World!")
}

This is correct:

func main() {
 fmt.Println("Hello World!")
}

Continue reading ⇒ 02 - Basics

02 - Basics

This is a quick introduction to Go. This section assumes you know other programming languages

(most likely Python) and are familiar with basic programming structures.

These notes were originally created during the tutorials at Tour of Go and some other sources.

Then more were added to make it a reference/cheat sheet.

Table of Contents

02.1 - Packages, functions, variables, basic types, casting and constants

02.2 - for, if, else, switch and defer

02.3 - Pointers, structs, arrays, slices and range

02.4 - Methods and interfaces

02.5 - Printf, Scanf, bufio readers and maps

02.6 - Goroutines and channels

02.7 - Error handling

02.1 - Packages, functions, variables, basic
types, casting and constants

Packages

Exported names

Functions

Functions can return multiple values

Named return values

init function

Variables

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 8/139

Initialization

Initialization Values

Short variable declarations

Basic types

Casting

Constants

Raw strings

Packages

Go is divided into packages. Packages are the equivalent of modules in Python. Only the main

package can be executed with go run .

We can import packages with import . The Hello World application imported the fmt package.

Multiple imports are similar:

import (
 "fmt"
 "math/rand"
 "otherimport"
)

Exported names

In Go, a name is exported if it begins with a capital letter.

When importing a package, you can refer only to its exported names. Unexported names are not

accessible from outside the package.

Functions

Unlike C, type comes after variable name except for pointers.

// 02.1-01-multiply.go
package main

import "fmt"

func multiply(x int, y int) int {
 return x * y
}

func main() {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 9/139

 fmt.Println(multiply(10,20))
}

https://play.golang.org/p/jZrNpGAEWds

Functions can return multiple values

A function can return any number of values. Gone are the days when we had to use pointers in

function parameters as extra return values.

// 02.1-02-addTwo.go
package main

import "fmt"

func addTwo(x int, y int) (int, int) {
 return x+2, y+2
}

func main() {
 fmt.Println(addTwo(10,20))
}

https://play.golang.org/p/sH0LeYIBpOM

If multiple variables have the same type we can declare them like this:

func addTwo(x, y int) (int, int) {
 return x+2, y+2
}

https://play.golang.org/p/Dwl94tWctK8

Named return values

Return values can be named. If so, they are treated as variables defined in the function.

A return statement without arguments returns the named return values. This is known as a "naked"

return. Using named return values and naked return is frowned upon unless it helps readability.

// 02.1-03-addTwo2.go
package main

import "fmt"

func addTwo2(x int, y int) (xPlusTwo int, yPlusTwo int) {
 xPlusTwo = x + 2

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 10/139

 yPlusTwo = y + 2

 return xPlusTwo, yPlusTwo
}

func main() {
 fmt.Println(addTwo2(20,30))
}

https://play.golang.org/p/wiC9HJ0uxDN

init function

init function is used to set up the state. A common practice is to declare flags in it.

1. Imported packages are initialized.

2. Variable declarations evaluate their initializers.

3. init function executes.

// 02.1-09-init.go
package main

import "fmt"

func init() {
 fmt.Println("Executing init function!")
}

func main() {
 fmt.Println("Executing main!")
}

https://play.golang.org/p/HfL8YjGMsmw

Resulting in:

$ go run 02.1-09-init.go
Executing init function!
Executing main!

Like any other function, variables declared in init are only valid there.

Variables

Use var .

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 11/139

var x int

Can be combined for multiple variables:

var x,y int == var x int, y int

Initialization

Variables can be initialized.

var a, b int = 10, 20

or

var a int = 10

var b int = 20

If initialized value is present during declaration, type can be omitted:

var sampleInt, sampleBoolean, sampleString = 30, true, "Hello"

or

var sampleInt = 30

var sampleBoolean = true

var sampleString = "Hello"

// 02.1-04-variables.go
package main

import "fmt"

func main() {
 var a, b int = 10, 20
 var sampleInt, sampleBoolean, sampleString = 30, true, "Hello"

 fmt.Println(a, b , sampleInt, sampleBoolean, sampleString)
}

https://play.golang.org/p/TnRrIC43-NR

Initialization Values

If no initial value is assigned to a declared variable, it will get a zero value:

0 for numeric types (int, float, etc.).

false for the boolean type.

"" (the empty string) for strings.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 12/139

Short variable declarations

Inside a function (including main), the := short assignment statement can be used in place of a
var declaration with implicit type.

Outside a function, every statement begins with a keyword (var , func) so the := construct is

not available.

// 02.1-05-short-declaration.go
package main

import "fmt"

func main() {
 sampleInt, sampleBoolean, sampleString := 30, true, "Hello"

 fmt.Println(sampleInt, sampleBoolean, sampleString)
}

https://play.golang.org/p/RMC-9h4eBLD

var statements can be put in different lines (increases readability):

var (
 sampleInt = 30
 sampleBoolean = true
 sampleString = "Hello"
)

Several other Go constructs use the same format. For example import and const .

Basic types

bool

string

int int8 int16 int32 int64 // use int unless you want a specific size
uint uint8 uint16 uint32 uint64 uintptr // ditto, use uint

byte // alias for uint8

rune // alias for int32
 // represents a Unicode char

float32 float64

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 13/139

complex64 complex128

Casting

Casting needs to be explicit, unlike C where some castings worked out of the box.

// 02.1-06-casting.go
package main

import (
 "fmt"
)

func main() {
 var a, b int = 20, 30
 // Need to convert a and b to float32 before the division
 var div float32 = float32(a) / float32(b)
 // Cast float32 to int
 var divInt = int(div)
 fmt.Println(div, divInt)
}

https://play.golang.org/p/wKtudyE9f8q

Constants

Declared with const keyword. Can be character, string, boolean or numeric. Cannot use := .
Coding standard requires constants to start with a capital letter.

// 02.1-07-const.go
package main

import "fmt"

const Whatever = "whatever"

func main() {
 fmt.Println(Whatever)

 const One = 1
 fmt.Println(One)
}

https://play.golang.org/p/RaNzEnRlFZ4

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 14/139

Multiple constants can be declared together:

const (
 Const1 = "Constant String"
 Int1 = 12345
 True = true
)

Raw strings

Go has two types of strings:

Interpreted strings: The typical string type created with " . Can contain anything except
new line and unescaped " .

Raw strings: Encoded between "`" (backticks) can contain new lines and other artifacts.

// 02.1-08-rawstring.go
package main

import "fmt"

func main() {

 rawstr :=

 `First line

some new lines

more new lines

"double quotes"
 `

 fmt.Print(rawstr)
}

https://play.golang.org/p/D8TwnBhwM0o

Continue reading ⇒ 02.2 - for, if, else, switch and defer

02.2 - for, if, else, switch and defer

For

++ and --

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 15/139

if

Short statements

else

switch

defer

For

Similar to C with two differences:

No parenthesis around the three components. Having parenthesis will give result in an error.

Curly braces { } are always required and the first one needs to be in the same line as for, if,

etc.

It has three components:

for init; condition; post { }

// 02.2-01-for1.go
package main

import "fmt"

func main() {
 // var sum int
 sum := 0
 for i := 0; i < 20; i++ {
 sum += i
 }

 fmt.Println(sum)
}

Init and post (first and last) components are optional and turn for into while :

// 02.2-02-for2.go
package main

import "fmt"

func main() {
 // var sum int
 sum, i := 0
 for i < 20 { // while (i<20)
 sum += i
 i++
 }

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 16/139

 fmt.Println(sum)
}

Without the condition it turns into for(;;) or while(1)

for { // while(1)
 ...
}

++ and --

Don't be fooled by their use in for examples. According to the FAQ, they are "statements" and not

"expressions." In other words we can use them to increase or decrease a variable by one but

cannot assign the result to a different one.

This will not work:

// 02.2-03-incdec.go
package main

import "fmt"

func main() {
 // var sum int
 sum, i := 0
 // This will not work
 sum = i++
 fmt.Println(sum)
}

Z:\Go\src\Hacking-with-Go\code\02>go run 02.2-03-incdec.go
command-line-arguments
.\02.2-03-incdec.go:9:9: syntax error: unexpected ++ at end of statement

if

Does not need parenthesis but needs curly braces.

// 02.2-04-if1.go
package main

import "fmt"

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 17/139

func main() {

 a := 10
 b := 20

 if b > a {
 fmt.Println(b, ">", a)
 }
}

Short statements

Short statements are interesting. They are statements that are executed before the condition. It's

not a unique idea to Go because we have already seen them in for constructs in almost every

language.

They can be used in if s.

// 02.2-05-if2.go
package main

import "fmt"

func main() {

 if var1 := 20; var1 > 10 {
 fmt.Println("Inside if:", var1)
 }
 // Cannot use the variable var1 here
}

In this code var1 := 20 is executed before the if condition. Any variables declared in the short

statement are only in scope in the if block and are destroyed after.

Short statements are usually used for executing a function and checking the return value with an
if .

else

else is similar to C else.

If the corresponding if has a short statement then any variables declared in the short statement

are also in scope in the else block.

// 02.2-06-else.go
package main

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 18/139

import "fmt"

func main() {

 if var1 := 20; var1 > 100 {
 fmt.Println("Inside if:", var1)
 } else {
 // Can use var1 here
 fmt.Println("Inside else:", var1)
 }
 // Cannot use var1 here
}

switch

Similar to C switch with some differences:

Doesn't automatically go to the next switch statement unless you have fallthrough in the

end. The fallthrough only works if it's the last statement in the case.

Can have a short statement like if .

// 02.2-07-switch1.go
package main

import (
 "fmt"
 "math/rand" // This is not cryptographically secure!
 "time"
)

func main() {
 // Seeding rand
 rand.Seed(time.Now().UnixNano())
 fmt.Println("Choosing a random number:")

 switch num := rand.Intn(3); num {
 case 1:
 fmt.Println("1")
 case 2:
 fmt.Println("2")
 default:
 fmt.Println("3")
 }
}

Cases can have if conditions if we use a switch with an empty value:

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 19/139

// 02.2-08-switch2.go
package main

import (
 "fmt"
 "math/rand" // This is not cryptographically secure!
 "time"
)

func main() {
 // Seeding rand
 rand.Seed(time.Now().UnixNano())
 fmt.Println("Choosing a random number:")

 switch num := rand.Intn(100); {
 case num < 50:
 fmt.Println("Less than 50")
 default:
 fmt.Println("More than 50")
 }
}

The short statement does not have to be part of the switch:

// 02.2-09-switch3.go
package main

import (
 "fmt"
 "math/rand" // This is not cryptographically secure!
 "time"
)

func main() {
 // Seeding rand
 rand.Seed(time.Now().UnixNano())
 fmt.Println("Choosing a random number:")

 num := rand.Intn(100)
 switch {
 case num < 50:
 fmt.Println("Less than 50")
 default:
 fmt.Println("More than 50")
 }
}

defer

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 20/139

defer is another interesting feature in Go. It defers the execution of a function until the calling

function returns.

It works like a stack, every time program reaches a defer , it will push that function with its
argument values. When surrounding function returns, deferred functions are popped from the

stack and executed.

// 02.2-10-defer1.go
package main

import "fmt"

func main() {
 defer fmt.Println("This runs after main")

 fmt.Println("Main ended")
}

Results in:

Z:\Go\src\Hacking-with-Go\code\02>go run 02.2-10-defer1.go
Main ended
This runs after main

Argument values are saved when the defer statement is reached but it is executed later.

// 02.2-11-defer2.go
package main

import "fmt"

func main() {
 num := 1
 defer fmt.Println("After main returns", num)

 num++
 fmt.Println("Inside main", num)
}

$ go run 02.2-11-defer2.go
Inside main 2
After main returns 1

The value of num was 1 when the print was deferred.

Continue reading ⇒ 02.3 - Pointers, structs, arrays, slices and range

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 21/139

02.3 - Pointers, structs, arrays, slices and
range

Pointers

Function arguments: variables vs. pointers

Structs

Arrays

Slices

Slice length and capacity

make

append

range

Pointers

Similar to C:

Point with * : var p *int == int *p;

Generate pointer (get address of) with & : i := 1 and p = &i

No pointer arithmetic.

Function arguments: variables vs. pointers

Functions/methods accept both variables and pointers. The golden rule is:

Pass pointers when function/method needs to modify the parameter.

When a variable is passed, the function/method gets a copy and the original copy is not modified.

With pointers the underlying value is modified.

Structs

Go does not have classes. It has structs like C.

Exported field names need to be uppercase to be visible outside the defining package.

// 02.3-01-structs.go
package main

import "fmt"

type Student struct {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 22/139

 FirstName string
 LastName string
}

func main() {
 // Make an instance
 studentOne := Student{"Ender", "Wiggin"}

 // Now we can access fields
 fmt.Println(studentOne.FirstName)

 // We can just assign fields using names, anything not assigned will be
 // initialized with "zero" as we have seen before
 studentTwo := Student{FirstName: "Petra"}

 // We will print "{Petra }" notice the space after Petra which is supposed
 // to be the delimiter between the fields, LastName is nil because it is not
 // given a value
 fmt.Println(studentTwo)

 // Can also make a pointer to a struct
 p := &studentOne

 // Now instead of *p.LastName (doesn't work) we can just use p.LastName
 // fmt.Println((*p).LastName) will not work with error message: invalid indirect o
 fmt.Println(p.LastName)

 // Which is the same as
 fmt.Println(studentOne.LastName)

 // We can just create a pointer out of the blue
 p2 := &Student{"Hercule", "Poirot"}
 fmt.Println(p2)
}

Tour of Go says, we have to create a pointer to a struct to access fields while we can just do it

directly as we saw in the code.

Arrays

var a [10]int == int a[10]; .

Arrays cannot be resized.

// 02.3-02-array.go
package main

import "fmt"

func main() {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 23/139

 var a [5]int
 a[0] = 10
 a[4] = 20

 fmt.Println(a) // [10 0 0 0 20]

 // Array can be initialized during creation
 // characters[2] is empty
 characters := [3]string{"Ender", "Pentra"}

 fmt.Println(characters) // [Ender Pentra]
}

Slices

Slice is a dynamic view of an array. Slices don't store anything by themselves, they reference an

array. If we change something via the slice, the array is modified.

Think of slices as dynamic arrays. When a slice is created out of the blue, an underlying array is

also initialized and can be modified by the slice.

// 02.3-03-slice1.go
package main

import "fmt"

func main() {

 // Create an array of strings with 3 members
 characters := [3]string{"Ender", "Petra", "Mazer"}

 // Last index is exclusive
 // allMembers []string := characters[0:3]
 var allMembers []string = characters[0:3]
 fmt.Println("All members", allMembers)

 var lastTwo []string = characters[1:3]
 fmt.Println("Last two members", lastTwo)

 // Replace Mazer with Bean
 fmt.Println("Replacing Mazer with Bean")
 allMembers[2] = "Bean"

 fmt.Println("All members after Bean swap", characters)

 fmt.Println("Last two members after Bean swap", lastTwo)
}

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 24/139

We can create array and slice literals. Meaning we can just initialize them by their members instead

of assigning a length and then add more members. If a slice literal is created, the underlying array is

also created.

// 02.3-04-slice2.go
package main

import "fmt"

func main() {

 // Slice literal of type struct, the underlying array is created automatically
 sliceStruct := []struct {
 a, b int
 }{
 {1, 2},
 {3, 4},
 {5, 6}, // need this comma in the end otherwise it will not work
 }

 fmt.Println(sliceStruct)
}

If a length is not specified during array creation, the result is a slice literal as seen above.

If we do not want to specify a length we can use [...] .

// 02.3-05-slice3.go
package main

import "fmt"

func main() {

 characters := [...]string{"Ender", "Petra", "Mazer"}

 fmt.Println(characters)
}

Slice length and capacity

Slices have length and capacity.

Length is the current number of items in the slice. Returned by len(slice) .

Capacity is the maximum number of items in the slice. Returned by cap(slice) . Capacity is
determined by the number of items in the original array from the start of the slice and not the

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 25/139

size of array. For example if the slice starts from the second item (index 1) of an array, slice

capacity is len(array)-1 . This ensures that the slice cannot go past the array.

In most cases, we do not care about capacity. Create slices and append to them.

// 02.3-06-slice4.go
package main

import "fmt"

func main() {

 ints := [...]int{0, 1, 2, 3, 4, 5}
 fmt.Println(ints)

 slice1 := ints[2:6]

 // len=4 and cap=4 (from 3rd item of the array until the end)
 printSlice(slice1)

 slice1 = ints[2:4]

 // len=2 but cap will remain 4
 printSlice(slice1)
}

// Copied from the tour
func printSlice(s []int) {
 fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}

make

To create dynamically-sized arrays use make . make creates a zero-ed array and returns a slice

pointing to it.

slice1 := make([]int, 10) creates an int array of length 10.

slice2 := make([]int, 5, 10) creates an int array of length 5 and capacity of 10.

We can append stuff to slices and it grows as needed:

slice1 = append(slice1, 1)

We can append multiple elements:

slice1 = append(slice1, 1, 2, 3)

append

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 26/139

In order to append one slice to another (obviously they should be of the same type), we have to use
... as follows:

slice1 = append(slice1, slice2...)

append is a variadic function, meaning it can an arbitrary number of arguments. By passing
slice2... , we are essentially passing each member of slice2 one by one to append .

This is pretty useful later on when we want to append two byte slices together.

// 02.3-07-slice-append.go
package main

import "fmt"

func main() {

 // Create a slice pointing to an int array
 s1 := make([]int, 5)

 fmt.Println(s1) // [0 0 0 0 0]

 for i := 0; i < len(s1); i++ {
 s1[i] = i
 }

 fmt.Println(s1) // [0 1 2 3 4]

 s2 := make([]int, 3)

 for i := 0; i < len(s2); i++ {
 s2[i] = i
 }

 fmt.Println(s2) // [0 1 2]

 s3 := append(s1, s2...)

 fmt.Println(s3) // [0 1 2 3 4 0 1 2]
}

range

range iterates over slices. It returns an index and a copy of the item stored at that index.

for index, value := range slice

value is optional but index is not. Ignore either with _ .

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 27/139

// 02.3-08-range.go
package main

import "fmt"

func main() {
 characters := [3]string{"Ender", "Petra", "Mazer"}
 for i, v := range characters {
 fmt.Println(i, v)
 }

 // 0 Ender
 // 1 Petra
 // 2 Mazer

 fmt.Println("-----------")

 // Only using index
 for i := range characters {
 fmt.Println(i, characters[i])
 }

 fmt.Println("-----------")

 // Ignoring index
 for _, v := range characters {
 // No non-elaborate way to get index here
 fmt.Println(v)
 }

 // Ender
 // Petra
 // Mazer
}

Continue reading ⇒ 02.4 - Methods and interfaces# 02.4 - Methods and interfaces

Methods

Create methods for slices

Value vs. pointer receivers

Pointer Receivers

When to use methods vs. functions

Interfaces

Type switch

Stringers

Solution to the Stringers exercise

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 28/139

Methods

Methods can be defined for types (e.g. structs). A method is a function with a special receiver,

receiver is the type that a method is defined for.

Create methods for slices

Let's say want to create a method for a string array that prints the members. First problem is that

we cannot create a method for type []string because it's an unnamed type and they cannot be

method receivers. The trick is to declare a new type for []string and then define the method for

that type.

// 02.4-01-method1.go
package main

import "fmt"

// Create a new type for []string
type StringSlice []string

// Define the method for StringSlice
func (x StringSlice) PrintSlice() {
 for _, v := range x {
 fmt.Println(v)
 }
}

func main() {

 // Create an array of strings with 3 members
 characters := [3]string{"Ender", "Petra", "Mazer"}

 // Create a StringSlice
 var allMembers StringSlice = characters[0:3]

 // Now we can call the method on it
 allMembers.PrintSlice()

 // Ender
 // Petra
 // Mazer

 // allMembers.PrintSlice()
 // allMembers.PrintSlice undefined (type []string has no field or method PrintSlic
}

Note that we cannot call PrintSlice() on []string although they are essentially the same type.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 29/139

Value vs. pointer receivers

In the previous example we created a value receiver. In methods with value receivers, the method

gets a copy of the object and the initial object is not modified.

We can also designate a pointer as receiver. In this case, any changes on the pointer inside the

method are reflected on the referenced object.

Pointer receivers are usually used when a method changes the object or when it's called on a large

struct. Because value receivers copy the whole object, a large struct will consume a lot of memory

but pointer receivers do not have this overhead.

Pointer Receivers

Pointer receivers get a pointer instead of a value but can modify the referenced object.

In the following code, Tuple's fields will be modified by ModifyTuplePointer() but not by
ModifyTupleValue() .

However, this is not the case for slices (e.g. IntSlice in the code). Both value and pointer

receivers modify the slice.

Pointer receivers are more efficient because they do not copy the original object.

All methods for one type should either have value receivers or pointer receivers, do not mix and

match like the code below :).

// 02.4-02-method2.go
package main

import "fmt"

// Tuple type
type Tuple struct {
 A, B int
}

// Should not change the value of the object as it works on a copy of it
func (x Tuple) ModifyTupleValue() {
 x.A = 2
 x.B = 2
}

// Should change the value of the object
func (x *Tuple) ModifyTuplePointer() {
 x.A = 3
 x.B = 3
}

type IntSlice []int

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 30/139

func (x IntSlice) PrintSlice() {
 fmt.Println(x)
}

// Modifies the IntSlice although it's by value
func (x IntSlice) ModifySliceValue() {
 x[0] = 1
}

// Modifies the IntSlice
func (x *IntSlice) ModifySlicePointer() {
 (*x)[0] = 2
}

func main() {

 tup := Tuple{1, 1}

 tup.ModifyTupleValue()
 fmt.Println(tup) // {1 1} - Does not change

 tup.ModifyTuplePointer()
 fmt.Println(tup) // {3 3} - Modified by pointer receiver

 var slice1 IntSlice = make([]int, 5)
 slice1.PrintSlice() // [0 0 0 0 0]

 slice1.ModifySliceValue()
 slice1.PrintSlice() // [1 0 0 0 0]

 slice1.ModifySlicePointer()
 slice1.PrintSlice() // [2 0 0 0 0]
}

When to use methods vs. functions

Methods are special functions. In general use methods when:

The output is based on the state of the receiver. Functions do not care about states.

The receiver must to be modified.

The method and receiver are logically connected.

Interfaces

An interface is not Generics! An interface can be one type of a set of types that implement a set of

specific methods.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 31/139

For example we will define an interface which has the method MyPrint() . If we define and
implement MyPrint() for type B, a variable of type B can be assigned to an interface of that type.

// 02.4-03-interface1.go
package main

import "fmt"

// Define new interface
type MyPrinter interface {
 MyPrint()
}

// Define a type for int
type MyInt int

// Define MyPrint() for MyInt
func (i MyInt) MyPrint() {
 fmt.Println(i)
}

// Define a type for float64
type MyFloat float64

// Define MyPrint() for MyFloat
func (f MyFloat) MyPrint() {
 fmt.Println(f)
}

func main() {

 // Define interface
 var interface1 MyPrinter

 f1 := MyFloat(1.2345)
 // Assign a float to interface
 interface1 = f1
 // Call MyPrint() on interface
 interface1.MyPrint() // 1.2345

 i1 := MyInt(10)
 // Assign an int to interface
 interface1 = i1
 // Call MyPrint() on interface
 interface1.MyPrint() // 10
}

Empty Interface is interface {} and can hold any type. We are going to use empty interfaces a

lot in functions that handle unknown types.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 32/139

// 02.4-04-interface2.go
package main

import "fmt"

var emptyInterface interface{}

type Tuple struct {
 A, B int
}

func main() {

 // Use int
 int1 := 10
 emptyInterface = int1
 fmt.Println(emptyInterface) // 10

 // Use float
 float1 := 1.2345
 emptyInterface = float1
 fmt.Println(emptyInterface) // 1.2345

 // Use custom struct
 tuple1 := Tuple{5, 5}
 emptyInterface = tuple1
 fmt.Println(emptyInterface) // {5 5}
}

We can access the value inside the interface after casting. But if the interface does not contain a

float, it will trigger a panic:

myFloat := myInterface(float64)

In order to prevent panic we can check the error returned by casting and handle the error.

myFloat, ok := myInterface(float64) .

If the interface has a float, ok will be true and otherwise false .

// 02.4-05-interface3.go
package main

import "fmt"

func main() {
 var interface1 interface{} = 1234.5

 // Only print f1 if cast was successful
 if f1, ok := interface1.(float64); ok {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 33/139

 fmt.Println("Float")
 fmt.Println(f1) // 1234.5
 }

 f2 := interface1.(float64)
 fmt.Println(f2) // 1234.5 No panic but not recommended

 // This will trigger a panic
 // i1 = interface1.(int)

 i2, ok := interface1.(int) // No panic
 fmt.Println(i2, ok) // 0 false
}

Type switch

Type switches are usually used inside functions that accept empty interfaces. They are used to

determine the type of data that inside the interface and act accordingly.

A type switch is a switch on interface.(type) and some cases.

// 02.4-06-typeswitch.go
package main

import "fmt"

func printType(i interface{}) {
 // Do a type switch on interface
 switch val := i.(type) {
 // If an int is passed
 case int:
 fmt.Println("int")
 case string:
 fmt.Println("string")
 case float64:
 fmt.Println("float64")
 default:
 fmt.Println("Other:", val)
 }
}

func main() {
 printType(10) // int
 printType("Hello") // string
 printType(156.32) // float64
 printType(nil) // Other: <nil>
 printType(false) // Other: false
}

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 34/139

Stringers

Stringers overload print methods. A Stringer is a method named String() that returns a string

and is defined with a specific type as receiver (usually a struct).

type Stringer interface {
 String() string
}

After the definition, if any Print function is called on the struct, the Stringer will be invoked

instead. For example if a struct is printed with %v format string verb (we will see later that this verb

prints the value of an object), Stringer is invoked.

// 02.4-07-stringer1.go
package main

import "fmt"

// Define a struct
type Tuple struct {
 A, B int
}

// Create a Stringer for Tuple
func (t Tuple) String() string {
 // Sprintf is similar to the equivalent in C
 return fmt.Sprintf("A: %d, B: %d", t.A, t.B)
}

func main() {

 tuple1 := Tuple{10, 10}
 tuple2 := Tuple{20, 20}
 fmt.Println(tuple1) // A: 10, B: 10
 fmt.Println(tuple2) // A: 20, B: 20
}

Solution to the Stringers exercise

Make the IPAddr type implement fmt.Stringer to print the address as a dotted quad. For

instance, IPAddr{1, 2, 3, 4} should print as 1.2.3.4 .

// 02.4-08-stringer2.go
package main

import "fmt"

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 35/139

type IPAddr [4]byte

// TODO: Add a "String() string" method to IPAddr.
func (ip IPAddr) String() string {
 return fmt.Sprintf("%v.%v.%v.%v", ip[0], ip[1], ip[2], ip[3])
}

func main() {
 hosts := map[string]IPAddr{
 "loopback": {127, 0, 0, 1},
 "googleDNS": {8, 8, 8, 8},
 }
 for name, ip := range hosts {
 fmt.Printf("%v: %v\n", name, ip)
 }
}

Continue reading ⇒ 02.5 - Printf, Scanf, bufio readers and maps

02.5 - Printf, Scanf, bufio readers and maps

Print

Print verbs

Decimals

Floats

Value

Strings

Others

Print verbs in action

Scan

Scan verbs

Reading user input with Scanln

What's wrong with Scanln?

bufio.Reader

Maps

Print

The fmt package contains printf . It's very similar to the C equivalent.

These three need a format string:

fmt.Sprintf returns a string.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 36/139

fmt.Fprintf takes any objects that implements io.Writer for example os.Stdout and
os.Stderr .

fmt.Printf prints to stdout.

The following are similar but do not need a format string:

fmt.Print and fmt.Println

fmt.Fprint

fmt.Sprint

Print verbs

To format strings we can use verbs (also known as switches). For more information on switches,

see the fmt package source.

Decimals

%d : digits = numbers.

%nd : n = width of number. Right justified and padded with spaces. To left justify use - like %-
nd . If n is less than the number of digits nothing happens.

%b : number in binary.

%c : chr(int) , prints the character corresponding to the number.

%x : hex.

Floats

%f : float.

%n.mf : n = decimal width, m = float width. Right justified. To left justify use - like %-n.mf . If
n is less than the number of digits nothing happens.

%e and %E : scientific notation (output is a bit different from each other).

Value

%v or value: catch all format. Will print based on value.

%+v : will print struct's field names if we are printing a struct. Has no effect on anything else.

%#v : prints code that will generate that output. For example for a struct instance it will give
code that creates such a struct instance and initializes it with the current values of the struct

instance.

Strings

%q : double-quotes the strings before printing and also prints any invisible characters.

%s : string.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 37/139

%ns : control width of string. Right justified, padded with spaces. To left justify use - like %-
ns . If n is less than the length of the string, nothing happens.

Others

%t : boolean.

%T : prints the type of a value. For example int or main.myType .

Print verbs in action

// 02.5-01-print-verbs.gos
package main

import "fmt"

type myType struct {
 field1 int
 field2 string
 field3 float64
}

func main() {

 // int
 fmt.Println("int:")
 int1 := 123
 fmt.Printf("%v\n", int1) // 123
 fmt.Printf("%d\n", int1) // 123
 fmt.Printf("|%6d|\n", int1) // | 123|
 fmt.Printf("|%-6d|\n", int1) // |123 |
 fmt.Printf("%T\n", int1) // int
 fmt.Printf("%x\n", int1) // 7b
 fmt.Printf("%b\n", int1) // 1111011
 fmt.Printf("%e\n", int1) // %!e(int=123)
 fmt.Printf("%c\n", int1) // { - 0x7B = 123
 fmt.Println()

 // float
 fmt.Println("float:")
 float1 := 1234.56
 fmt.Printf("%f\n", float1) // 1234.560000
 fmt.Printf("|%3.2f|\n", float1) // |1234.56|
 fmt.Printf("|%-3.2f|\n", float1) // |1234.56|
 fmt.Printf("%e\n", float1) // 1.234560e+03
 fmt.Printf("%E\n", float1) // 1.234560E+03
 fmt.Println()

 // string
 fmt.Println("string:")
 string1 := "Petra"
 fmt.Printf("%s\n", string1) // Petra

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 38/139

 fmt.Printf("|%10s|\n", string1) // | Petra|
 fmt.Printf("|%-10s|\n", string1) // |Petra |
 fmt.Printf("%T\n", string1) // string
 fmt.Println()

 // boolean
 fmt.Println("boolean:")
 boolean1 := true
 fmt.Printf("%t\n", boolean1) // true
 fmt.Printf("%T\n", boolean1) // bool
 fmt.Println()

 // struct type
 fmt.Println("struct:")
 struct1 := myType{10, "Ender", -10.2}
 fmt.Printf("%v\n", struct1) // {10 Ender -10.2}
 fmt.Printf("%+v\n", struct1) // {field1:10 field2:Ender field3:-10.2}
 fmt.Printf("%#v\n", struct1) // main.myType{field1:10, field2:"Ender", field3:-10.
 fmt.Printf("%T\n", struct1) // main.myType
}

Scan

As expected Go has Scan functions for reading input. Like Printf the package description is

comprehensive.

The functions read from standard input (os.Stdin):

Scan : treats new lines as spaces.

Scanf : parses arguments according to a format string.

Scanln : reads one line.

These read from io.Reader s:

Fscan

Fscanf

Fscanln

These read from an argument string:

Sscan

Sscanf

Sscanln

As you can guess, the following stop at the first new line or EOF:

Scanln

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 39/139

Fscanln

Sscanln

While these treat new lines as spaces:

Scan

Fscan

Sscan

Similar to Printf we can use format strings with these functions:

Scanf

Fscanf

Sscanf

Scan verbs

Scan verbs are the same as Print . %p , %T and # + flags are not implemented.

Apart from %c every other verb discards leading whitespace (except new lines).

Reading user input with Scanln

Let's start by something simple like reading a line from input:

// 02.5-02-scan1.go
package main

import "fmt"

func main() {

 var s string
 n, err := fmt.Scanln(&s)
 if err != nil {
 panic(err)
 }

 fmt.Printf("Entered %d word(s): %s", n, s)
}

All is well when input does not have any whitespace (e.g. space):

$ go run 02.5-02-scan1.go
HelloHello
Entered 1 word(s): HelloHello

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 40/139

But When input has whitespace:

$ go run 02.5-02-scan1.go
Hello Hello
panic: expected newline

goroutine 1 [running]:
main.main()
 Z:/Go/src/Hacking-with-Go/code/02/02.5/02.5-02-scan1.go:10 +0x1ae
exit status 2

What's wrong with Scanln?

1. Scan does not return the number of characters as we expect from the C equivalent. It returns

the number of words entered.

2. Scan and friends separate words by whitespace. Meaning when we entered Hello Hello ,
they are counted as two words. Scanln stored the first Hello in s and was expecting a new

line or EOF to finish that. Instead it got a new word and panicked.

If we wanted to just read a number or anything without whitespace, it would have worked.

If we replace Scanln with Scan in the code, the program will not panic but will ignore anything

after the first whitespace.

Lesson learned Don't use Scan for reading user input with whitespace.

bufio.Reader

An easier way to read user input is through bufio readers. We are looking for the quickest ways to

get things done after all.

// 02.5-03-bufioreadstring.go
package main

import (
 "bufio"
 "fmt"
 "os"
)

func main() {

 reader := bufio.NewReader(os.Stdin)
 // ReadString will read until first new line
 input, err := reader.ReadString('\n') // Need to pass '\n' as char (byte)
 if err != nil {
 panic(err)

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 41/139

 }

 fmt.Printf("Entered %s", input)
}

ReadString reads until the first occurrence of its argument (delimiter). The delimiter should be a
byte hence we need to pass a char using single quotes (\n). "\n" is a string and will not work.

bufio.Reader has more methods for reading different types. For example we can directly read

user input and convert it to bytes with [ReadBytes][bufio-readbytes].

// 02.5-04-bufioreadbytes.go
package main

import (
 "bufio"
 "fmt"
 "os"
)

func main() {

 reader := bufio.NewReader(os.Stdin)
 // Read bytes until the new line
 input, err := reader.ReadBytes('\n') // Need to pass '\n' as char (byte)
 if err != nil {
 panic(err)
 }

 // Print type of "input" and its value
 fmt.Printf("Entered type %T, %v\n", input, input)
 // Print bytes as string
 fmt.Printf("Print bytes as string with %%s %s", input)
}

We are printing the type of input and its value as-is first. Then we print the bytes as string with
%s .

$ go run 02.5-04-bufioreadbytes.go
Hello 0123456789
Entered type []uint8, [72 101 108 108 111 32 48 49 50 51 52 53 54 55 56 57 13 10]
Print bytes as string with %s Hello 0123456789

As you can see bytes are just uint8 (unsigned ints) and printing them yields decimal values and

not hex. Don't worry about bytes and strings now. We will have a byte manipulation chapter.

Maps

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 42/139

Fast lookup/add/delete. Each key is associated with a value (similar to Python dict).

Declare an initialized map:

mapName := make(map[KeyType]ValueType) .

KeyType needs to be a comparable type. ValueType can be anything.

If a key does not exist, the result is a zero value. For example 0 for int .

To check if a key exists or not (0 might be a valid value in the map) use:

value, ok := mapName[key]

If ok is true then the key exists (and false if the key is not there).

To test for a key without getting the value drop the value like this _, ok := mapName[key] and

then just check ok .

range iterates over the contents of a map like arrays/slices. But we get keys instead of indexes.

Typically we use the range with a for :

for key, value := range mapName

We can create a map using data:

m := map[string]int{"key0": 0, "key1": 1}

Delete a key/value pair with delete :

delete(m, "key0")

// 02.5-05-maps.go
package main

import "fmt"

type intMap map[int]int

// Create a Stringer for this map type
func (i intMap) String() string {

 var s string
 s += fmt.Sprintf("Map type %T\n", i)
 s += fmt.Sprintf("Length: %d\n", len(i))

 // Iterate through all key/value pairs
 for k, v := range i {
 s += fmt.Sprintf("[%v] = %v\n", k, v)
 }
 return s

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 43/139

}

func main() {

 // Create a map
 map1 := make(intMap)

 // Add key/value pairs
 map1[0] = 10
 map1[5] = 20

 // Print map - Stringer will be called
 fmt.Println(map1)
 // Map type main.intMap
 // Length: 2
 // [0] = 10
 // [5] = 20

 // Delete a key/value pair
 delete(map1, 0)

 fmt.Println(map1)
 // Map type main.intMap
 // Length: 1
 // [5] = 20

 // Create a map on the spot using members
 map2 := map[string]string{"key1": "value1", "key2": "value2"}

 fmt.Println(map2)
 // map[key1:value1 key2:value2]
}

Continue reading ⇒ 02.6 - Goroutines and channels

[bufio-readbytes]: https://golang.org/pkg/bufio/#Reader.ReadBytes# 02.6 - Goroutines and

channels

Goroutines

Spawning anonymous goroutines

Channels

Buffered channels

Closing channels

Checking channel status

Reading from channels with range

select

Directed channels

Synching goroutines

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 44/139

sync.WaitGroup

Goroutines

Concurrency is not parallelism

Rob "Commander" Pike

With that said, let's look at one of Go's main selling points, the goroutine . go function(a, b)

runs the function in parallel and continues with the rest of the program.

// 02.6-01-goroutine1.go
package main

import "fmt"

func PrintMe(t int, count int) {
 for i := 0; i < count; i++ {
 fmt.Printf("Printing from %d\n", t)
 }
}

func main() {

 go PrintMe(0, 100)

 fmt.Println("Main finished!")
}

But we never see anything printed. main returns before goroutine is spun up and start printing:

$ go run 02.6-01-goroutine1.go
Main finished!

Lesson learned: Always wait for goroutines to finish! (if applicable).

Continuing the C tradition, we can wait for a key-press before ending main .

// 02.6-02-goroutine2.go
package main

import "fmt"

func PrintMe(t int, count int) {
 for i := 0; i < count; i++ {
 fmt.Printf("Printing from %d\n", t)
 }

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 45/139

}

func main() {

 go PrintMe(0, 10)

 // Wait for a keypress
 fmt.Scanln()
 fmt.Println("Main finished!")
}

This time we can see the goroutine's output:

$ go run 02.6-02-goroutine2.go
Printing from 0
Printing from 0
Printing from 0
Printing from 0
Printing from 0
Printing from 0
Printing from 0
Printing from 0
Printing from 0
Printing from 0
e
Main finished!

Spawning anonymous goroutines

We can also spawn new goroutines on the spot:

// 02.6-03-goroutine3.go
package main

import "fmt"

func main() {

 go func() {
 for i := 0; i < 10; i++ {
 fmt.Printf("Printing from %d\n", 0)
 }
 }()

 // Wait for a keypress
 fmt.Scanln()
 fmt.Println("Main finished!")
}

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 46/139

Channels

Channels go hand-in-hand with gorotuines. They are typed. For example if we create a channel of

type int , we can only use it to transfer int s. Values are transfered using <- . Channels must be
created before use.

Let's make a channel in honor of famous hacker 4chan and use it to transfer some numbers around:

// 02.6-04-channel1.go
// This will not run
package main

import "fmt"

func main() {

 fourChan := make(chan int)

 i1 := 10

 // Send i1 to channel
 fourChan <- i1
 fmt.Printf("Sent %d to channel\n", i1)

 // Receive int from channel
 i2 := <-fourChan
 fmt.Printf("Received %d from channel\n", i2)
}

But it doesn't work:

$ go run 02.6-04-channel1.go
fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan send]:
main.main()
 Z:/Go/src/Hacking-with-Go/code/02/02.6/02.6-04-channel1.go:12 +0x75
exit status 2

[Unbuffered] Channels will not start until the other side is ready.

Our channel's "other side" is also in main and the channel is unbuffered (we will talk about it in a

bit). Meaning there's nothing on the other side listening.

We can either send or receive the data in a goroutine (or both):

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 47/139

// 02.6-05-channel2.go
package main

import "fmt"

func main() {

 fourChan := make(chan int)

 go func() {
 // Send i1 to channel
 i1 := 10
 fourChan <- i1 // fourChan <- 10
 fmt.Printf("Sent %d to channel\n", i1)
 }()

 go func() {
 // Receive int from channel
 i2 := <-fourChan
 fmt.Println(i2)
 fmt.Printf("Received %d from channel\n", i2)
 }()

 // Wait for goroutines to finish
 fmt.Scanln()
 fmt.Println("Main Finished!")
}

This time we have another goroutine listening on the other side:

$ go run 02.6-05-channel2.go
10
Received 10 from channel
Sent 10 to channel
e
Main Finished!

Buffered channels

Buffered channels have capacity and only block when the buffer is full. Buffer size (as far as I know)

is specified during declaration:

bc := make(chan int, 10) makes an int channel with size 10 .

Using buffered channels we can send and receive in main:

// 02.6-06-channel3.go
package main

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 48/139

import "fmt"

func main() {

 fourChan := make(chan int, 2)

 // Send 10 to channel
 fourChan <- 10
 fmt.Printf("Sent %d to channel\n", 10)

 // Receive int from channel
 // We can also receive directly
 fmt.Printf("Received %d from channel\n", <-fourChan)
}

If the channel goes over capacity, we get the same fatal runtime error as before.

Closing channels

Channels can be closed. To close a channel we can use close(fourChan) .

Sending items to a closed channel will cause a panic.

Checking channel status

When reading from channels, we can also get a second return value:

i1, ok := <- fourChan

If channel is open ok will be true . false means channel is closed.

Reading from a closed channel will return a zero value (e.g. 0 for most number types). See this

example. i2 is 10 before reading something from a closed channel. After it's 0 .

// 02.6-07-channel4.go
package main

import "fmt"

func main() {

 fourChan := make(chan int, 2)

 close(fourChan)

 i2 := 10
 fmt.Println("i2 before reading from closed channel", i2) // 10
 i2, ok := <-fourChan

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 49/139

 fmt.Printf("i2: %d - ok: %t", i2, ok) // i2: 10 - ok: false
}

Reading from channels with range

Use a range in a for to receive values from the channel in a loop until it closes like for i:=
range fourChan .

// 02-08-channel5.go
package main

import "fmt"

func main() {

 fourChan := make(chan int, 10)

 go func() {
 // Send 0-9 to channel
 for i := 0; i < 10; i++ {
 fourChan <- i
 }
 }()

 go func() {
 // Receive from channel
 for v := range fourChan {
 fmt.Println(v)
 }
 }()

 // Wait for goroutines to finish
 fmt.Scanln()
 fmt.Println("Main Finished!")
}

If we attempt to read something from an open channel and there's nothing there, the program will

block and wait until it gets something. We can use channels to sync goroutines instead of waiting

for Scanln . Here's our example from 02.6-03-goroutine3.go :

// 02.6-09-channel6.go
package main

import "fmt"

func main() {

 c := make(chan bool)

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 50/139

 go func() {
 for i := 0; i < 10; i++ {
 fmt.Printf("Printing from %d\n", 0)
 }

 // Send true to channel when we are done
 c <- true
 }()

 // Main will wait until it receives something from c
 <-c
}

select

Another way to wait for channels to be ready is using select . select has some case s. It will
block until one of the cases is ready and runs it. If multiple are ready, it will choose one at random.

// 02.6-10-channel7.go
package main

import "fmt"

func main() {

 c := make(chan int, 2)

 for i := 0; i < 10; i++ {

 select {
 case c <- i:
 // If we can write to channel, send something to it
 fmt.Println("Sent to channel", i)
 case i2 := <-c:
 // If we can read from channel, read from it and print
 fmt.Println("Received from channel", i2)
 default:
 // This is run when nothing else can be done
 }
 }
}

Break is never reached because there's always something to do. Increase the size of the channel

and re-run the program a few times to see select 's randomness when multiple choices are valid.

$ go run 02.6-10-channel7.go
Sent to channel 0
Received from channel 0
Sent to channel 2

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 51/139

Sent to channel 3
Received from channel 2
Received from channel 3
Sent to channel 6
Received from channel 6
Sent to channel 8
Sent to channel 9

If channel is unbuffered, default is always triggered because there's nothing listening on the

other side.

Directed channels

Channels can be directed. Meaning you can only read or write to them.

c1 := make(chan<- int) : write-only int channel.

c2 := make(<-chan int) : read-only int channel.

However, declaring directed channels is not useful. Because if we can never write to a read-only

channel, it will never have data. Instead they are used when passing channels to

functions/goroutines.

Rewriting 02.6-05-channel2.go using directed channels:

// 02.6-11-channel8.go
package main

import "fmt"

// Directed write-only channel
func Sender(c chan<- int) {
 for i := 0; i < 10; i++ {
 fmt.Println("Sent", i)
 c <- i
 }
}

func Receiver(c <-chan int) {
 for i := range c {
 fmt.Println("Received", i)
 }
}

func main() {

 fourChan := make(chan int)

 go Sender(fourChan)
 go Receiver(fourChan)

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 52/139

 // Wait for goroutines to finish
 fmt.Scanln()
 fmt.Println("Main Finished!")
}

$ go run 02.6-11-channel8.go
Sent 0
Sent 1
Received 0
Received 1
Sent 2
Sent 3
Received 2
Received 3
Sent 4
Sent 5
Received 4
Received 5
Sent 6
Sent 7
Received 6
Received 7
Sent 8
Sent 9
Received 8
Received 9
d
Main Finished!

Synching goroutines

In our previous example, we used both Scanln and a blocking channel to force main wait for

goroutines to finish. There's a better way of doing this using sync.WaitGroup.

Let's assume we are generating a list of strings that need to processed. To take advantage of Go's

concurrency model, we spawn a goroutine to generate the list and send each to a channel. Then we

read from the channel and spawn a new goroutine for each string and process it.

This way we can start processing the generated strings as they are being generated and we do not

have to create a large string slice to hold the results.

// 02.6-12-waitgroup1.go
package main

import "fmt"

// generateStrings generated n strings and sends them to channel.
// Channel is closed when string generation is done.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 53/139

func generateStrings(n int, c chan<- string) {

 // Close channel when done
 defer close(c)
 // Generate strings
 for i := 0; i < n; i++ {
 c <- fmt.Sprintf("String #%d", i)
 }
}

// consumeString reads strings from channel and prints them.
func consumeString(s string) {
 fmt.Printf("Consumed %s\n", s)
}

func main() {
 // Create channel
 c := make(chan string)
 // Generate strings
 go generateStrings(10, c)

 for {
 select {
 // Read from channel
 case s, ok := <-c:
 // If channel is closed stop processing and return
 if !ok {
 fmt.Println("Processing finished")
 return
 }
 // Consume the string read from channel
 go consumeString(s)
 }
 }
}

This looks correct but it's not. Not all strings are consumed. Because the channel is closed and we

return from main when generateStrings is done. However, not all consumerString goroutines are

done when by then. We need to find a way to signal main to wait until all goroutines have returned.

sync.WaitGroup

We accomplish this with sync.WaitGroup . Before spawning each consumerString goroutine we
wg.Add(1) to it. Every time a consumerString goroutine is finished, we subtract the counter by one

with wg.Done() and then we wait before returning with wg.Wait() which blocks execution until

the counter is zero.

package main

import (

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 54/139

 "fmt"
 "sync"
)

var wg sync.WaitGroup

// generateStrings generated n strings and sends them to channel.
// Channel is closed when string generation is done.
func generateStrings(n int, c chan<- string) {

 // Close channel when done
 defer close(c)
 // Generate strings
 for i := 0; i < n; i++ {
 c <- fmt.Sprintf("String #%d", i)
 }
}

// consumeString reads strings from channel and prints them.
func consumeString(s string) {
 // Decrease waitgroup's counter by one
 defer wg.Done()
 fmt.Printf("Consumed %s\n", s)
}

func main() {
 // Create channel
 c := make(chan string)
 // Generate strings
 go generateStrings(10, c)

 for {
 select {
 // Read from channel
 case s, ok := <-c:
 // If channel is closed stop processing and return
 if !ok {
 // Wait for all goroutines to finish
 wg.Wait()
 // Return
 fmt.Println("Processing finished")
 return
 }
 // Increase wg counter by one for each goroutine
 // Note this is happening inside main before spawning the goroutine
 wg.Add(1)
 // Consume the string
 go consumeString(s)
 }
 }
}

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 55/139

Continue reading ⇒ 02.7 - Error handling

sync-waitgroup: https://golang.org/pkg/sync/#WaitGroup# Error handling

Error handling

Errors

Avoiding if err != nil fatigue

Solution to the Errors exercise

Error handling

Go does not have try/catch or try/except. Instead almost every function returns (or should return)

an error value. It's good practice to return an error value in every function and also check it after

reading values from functions/channels/etc. As a result it's very common to see if err != nil

code blocks.

Go's error handling is very controversial. Some call it genius and others not so much. For more

information read the Error handling and Go blog.

Errors

error type is similar to Stringer() .

type error interface {
 Error() string
}

Create a method for the struct type named Error() to return error codes/messages.

func (e MyType) Error() string {
 return fmt.Sprintf("error message")
}

According to Go docs, errors strings should not be capitalized. Most built-in and package methods

return an error value if an error occurs, otherwise they will return nil for error which means no

error.

Avoiding if err != nil fatigue

Checking for errors after every function call will result in a lot of if err != nil blocks. One good

way is to create a function to check the error and perform actions based on it. For example:

func checkError(err) {
 if err != nil {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 56/139

 // Do something
 }
}

Solution to the Errors exercise

The errors exercise is part of tour of go.

// 02.7-01-errors1.go
package main

import (
 "fmt"
 "math"
)

type ErrNegativeSqrt float64

func (e ErrNegativeSqrt) Error() string {
 return fmt.Sprintf("cannot Sqrt negative number: %v", float64(e))
}

func Sqrt(x float64) (float64, error) {

 if x < 0 {
 return 0, ErrNegativeSqrt(x)
 }

 // Don't need else here - why?
 return math.Sqrt(x), nil
}

func main() {
 fmt.Println(Sqrt(2))
 fmt.Println(Sqrt(-2))
}

Instead of creating an Error() method, we could create a new error type and return that using
fmt.Errorf :

// 02.7-02-errors2.go
package main

import (
 "fmt"
 "math"
)

func Sqrt(x float64) (float64, error) {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 57/139

 if x < 0 {
 return 0, fmt.Errorf("cannot Sqrt negative number: %v", float64(x))
 }

 return math.Sqrt(x), nil
}

func main() {
 fmt.Println(Sqrt(2))
 fmt.Println(Sqrt(-2))
}

Continue reading ⇒ 03 - Useful Go packages

03 - Useful Go packages

This is where this repo is going to divert a bit from BH books. This section is going to be simple

guides to Go packages that will be used later. For example the flag package is used to create and

process command line parameters and is a building block of almost every security script that hopes

to be re-used. Some packages like net are more complex and better learned in action while

building/using tools.

As I move forward and learn more, I will return and add more tutorials here.

03.1 - flag package: Parsing command line parameters.

03.2 - log package: Logging.

flag package

flag package is the Go equivalent of Python argparse. While not as powerful, it does what we

expect it to do. It simplifies adding and parsing command line parameters, leaving us to

concentrate on the tools. Most of our tools will need them to be actually useful (hardcoding URLs

and IPs get old too fast).

Alternative community packages

Basic flags

Flag use

Declaring flags in the init function

Custom flag types and multiple values

Required flags

Alternate and shorthand flags

Non-flag arguments

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 58/139

Subcommands

Alternative community packages

Some community packages offer what flag does and more. In this guide I am trying to stick to the

standard library. Some of these packages are:

Cobra: A Commander for modern Go CLI interactions

cli: A simple, fast, and fun package for building command line apps in Go

Basic flags

Declaring basic flags is easy. We can create basic types such as: string , bool and int .

A new flag is easy to add:

ipPtr := flag.String("ip", "127.0.0.1", "target IP")
String : Flag type.

ipPtr : Pointer to flag's value.

ip : Flag name, meaning flag can be called with -ip .

127.0.0.1 : Flag's default value if not provided.

target IP : Flag description, displayed with -h switch.

It's also possible to pass a pointer directly:

var port int

flag.IntVar(&port, "port", 8080, "Port")

// 03.1-01-flag1.go
package main

import (
 "flag"
 "fmt"
)

func main() {

 // Declare flags
 // Remember, flag methods return pointers
 ipPtr := flag.String("ip", "127.0.0.1", "target IP")

 var port int
 flag.IntVar(&port, "port", 8080, "Port")

 verbosePtr := flag.Bool("verbose", true, "verbosity")

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 59/139

 // Parse flags
 flag.Parse()

 // Hack IP:port
 fmt.Printf("Hacking %s:%d!\n", *ipPtr, port)

 // Display progress if verbose flag is set
 if *verbosePtr {
 fmt.Printf("Pew pew!\n")
 }
}

This program contains a mistake! Can you spot it? If not, don't worry.

-h/-help print usage:

$ go run 03.1-01-flag1.go -h
Usage of ... _obj\exe\03.1-01-flag1.exe:
 -ip string
 target IP (default "127.0.0.1")
 -port int
 Port (default 8080)
 -verbose
 verbosity (default true)
exit status 2

Without any flags, default values are used:

$ go run 03.1-01-flag1.go
Hacking 127.0.0.1:8080!
Pew pew!

Flag use

Flag use is standard.

$ go run 03.1-01-flag1.go -ip 10.20.30.40 -port 12345
Hacking 10.20.30.40:12345!
Pew pew!

The problem is the default value of our boolean flag. A boolean flag is true if it occurs and false

if it. We set the default value of verbose to true meaning with our current knowledge we cannot

set verbose to false (we will see how below but it's not idiomatic).

Fix that line and run the program again:

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 60/139

$ go run 03.1-02-flag2.go -ip 10.20.30.40 -port 12345
Hacking 10.20.30.40:12345!

$ go run 03.1-02-flag2.go -ip 10.20.30.40 -port 12345 -verbose
Hacking 10.20.30.40:12345!
Pew pew!

= is allowed. Boolean flags can also be set this way (only way to set verbose to false in our

previous program):

$ go run 03.1-02-flag2.go -ip=20.30.40.50 -port=54321 -verbose=true
Hacking 20.30.40.50:54321!
Pew pew!

$ go run 03.1-02-flag2.go -ip=20.30.40.50 -port=54321 -verbose=false
Hacking 20.30.40.50:54321!

--flag is also possible:

$ go run 03.1-02-flag2.go --ip 20.30.40.50 --port=12345 --verbose
Hacking 20.30.40.50:12345!
Pew pew!

Declaring flags in the init function

init function is a good location to declare flags. init function is executed after variable

initialization values and before main . There's one little catch, variables declared in init are out of

focus outside (and in main) hence we need to declare variables outside and use *Var methods:

package main

import (
 "flag"
 "fmt"
)

// Declare flag variables
var (
 ip string
 port int
 verbose bool
)

func init() {
 // Declare flags
 // Remember, flag methods return pointers

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 61/139

 flag.StringVar(&ip, "ip", "127.0.0.1", "target IP")

 flag.IntVar(&port, "port", 8080, "Port")

 flag.BoolVar(&verbose, "verbose", false, "verbosity")
}

func main() {

 // Parse flags
 flag.Parse()

 // Hack IP:port
 fmt.Printf("Hacking %s:%d!\n", ip, port)

 // Display progress if verbose flag is set
 if verbose {
 fmt.Printf("Pew pew!\n")
 }
}

Custom flag types and multiple values

Custom flag types are a bit more complicated. Each custom type needs to implement the flag.Value

interface. This interface has two methods:

type Value interface {
 String() string
 Set(string) error
}

In simple words:

1. Create a new type mytype .

2. Create two methods with *mytype receivers named String() and Set() .
String() casts the custom type to a string and returns it.

Set(string) has a string argument and populates the type and returns an error if

applicable.

3. Create a new flag without an initial value:

Call flag.NewFlagSet(&var, instead of flag.String(.

Call flag.Var(instead of flag.StringVar(or flag.IntVar(.

Now we can modify our previous example to accept multiple comma-separated IPs. Note, we are

using the same structure of generateStrings and consumeString from section 02.6 -

sync.WaitGroup. In short, we are going to generate all permutations of IP:ports and then "hack"

each of them in one goroutine.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 62/139

The permutation happens in its own goroutine and is results are sent to channel one by one. When

all permutations are generated, channel is closed.

In main, we read from channel and spawn a new goroutine to hack each IP:port. When channel is

closed, we wait for all goroutines to finish and then return.

package main

import (
 "errors"
 "flag"
 "fmt"
 "strings"
 "sync"
)

// 1. Create a custom type from a string slice
type strList []string

// 2.1 implement String()
func (str *strList) String() string {
 return fmt.Sprintf("%v", *str)
}

// 2.2 implement Set(*strList)
func (str *strList) Set(s string) error {
 // If input was empty, return an error
 if s == "" {
 return errors.New("nil input")
 }
 // Split input by ","
 *str = strings.Split(s, ",")
 // Do not return an error
 return nil
}

// Declare flag variables
var (
 ip strList
 port strList
 verbose bool
)

var wg sync.WaitGroup

func init() {
 // Declare flags
 // Remember, flag methods return pointers
 flag.Var(&ip, "ip", "target IP")

 flag.Var(&port, "port", "Port")

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 63/139

 flag.BoolVar(&verbose, "verbose", false, "verbosity")
}

// permutations creates all permutations of ip:port and sends them to a channel.
// This is preferable to returing a []string because we can spawn it in a
// goroutine and process items in the channel while it's running. Also save
// memory by not creating a large []string that contains all permutations.
func permutations(ips strList, ports strList, c chan<- string) {

 // Close channel when done
 defer close(c)
 for _, i := range ips {
 for _, p := range ports {
 c <- fmt.Sprintf("%s:%s", i, p)
 }
 }
}

// hack spawns a goroutine that "hacks" each target.
// Each goroutine prints a status and display progres if verbose is true
func hack(target string, verbose bool) {

 // Reduce waitgroups counter by one when hack finishes
 defer wg.Done()
 // Hack the planet!
 fmt.Printf("Hacking %s!\n", target)

 // Display progress if verbose flag is set
 if verbose {
 fmt.Printf("Pew pew!\n")
 }
}

func main() {

 // Parse flags
 flag.Parse()

 // Create channel for writing and reading IP:ports
 c := make(chan string)

 // Perform the permutation in a goroutine and send the results to a channel
 // This way we can start "hacking" during permutation generation and
 // not create a huge list of strings in memory
 go permutations(ip, port, c)

 for {
 select {
 // Read a string from channel
 case t, ok := <-c:
 // If channel is closed
 if !ok {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 64/139

 // Wait until all goroutines are done
 wg.Wait()
 // Print hacking is finished and return
 fmt.Println("Hacking finished!")
 return
 }
 // Otherwise increase wg's counter by one
 wg.Add(1)
 // Spawn a goroutine to hack IP:port read from channel
 go hack(t, verbose)
 }
 }
}

Result:

$ go run 03.1-04-flag4.go -ip 10.20.30.40,50.60.70.80 -port 1234
Hacking 50.60.70.80:1234!
Hacking 10.20.30.40:1234!
Hacking finished!

$ go run 03.1-04-flag4.go -ip 10.20.30.40,50.60.70.80 -port 1234,4321
Hacking 10.20.30.40:4321!
Hacking 10.20.30.40:1234!
Hacking 50.60.70.80:4321!
Hacking 50.60.70.80:1234!
Hacking finished!

$ go run 03.1-04-flag4.go -ip 10.20.30.40,50.60.70.80 -port 1234,4321 -verbose
Hacking 10.20.30.40:4321!
Pew pew!
Hacking 50.60.70.80:4321!
Pew pew!
Hacking 10.20.30.40:1234!
Pew pew!
Hacking 50.60.70.80:1234!
Pew pew!
Hacking finished!

Required flags

flag does not support this. In Python we can use parser.add_mutually_exclusive_group() .
Instead we have to manually check if a flag is set. This can be done by comparing a flag with it's

default value or the initial zero value of type in case it does not have a default value.

This can get complicated when the flag can contain the zero value. For example an int flag could

be set with value 0 which is the same as the default value for int s. Something that can help is

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 65/139

the number of flags after parsing available from flag.NFlag() . If number of flags is less than
expected, we know something is wrong.

Alternate and shorthand flags

flag does not have support for shorthand or alternate flags. They need to be declared in a

separate statement.

flag.BoolVar(&verbose, "verbose", false, "verbosity")
flag.BoolVar(&verbose, "v", false, "verbosity")

Non-flag arguments

After flag.Parse() it's possible to read other arguments passed to the application with
flag.Args() . The number of them is available from flag.NArg() and they individually can be

accessed by index using flag.Arg(i) .

// 03.1-05-args.go
package main

import (
 "flag"
 "fmt"
)

func main() {
 // Set flag
 _ = flag.Int("flag1", 0, "flag1 description")
 // Parse all flags
 flag.Parse()
 // Enumererate flag.Args()
 for _, v := range flag.Args() {
 fmt.Println(v)
 }
 // Enumerate using flag.Arg(i)
 for i := 0; i < flag.NArg(); i++ {
 fmt.Println(flag.Arg(i))
 }
}

Running the program with non-flag arguments results in:

$ go run 03.1-05-flag5.go -flag1 12 one two 3
one
two
3

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 66/139

one
two
3

Subcommands

Subcommands are possible using flag.NewFlagSet.

func NewFlagSet(name string, errorHandling ErrorHandling) *FlagSet

We can decide what happens if parsing that subcommand fails with the second parameter:

const (
 ContinueOnError ErrorHandling = iota // Return a descriptive error.
 ExitOnError // Call os.Exit(2).
 PanicOnError // Call panic with a descriptive error.
)

After that we need to parse the subcommand. This is usually done by reading os.Args[1] (second

argument after program name should be subcommand) and parsing the detected subcommand.

// 03.1-06-subcommand.go
package main

import (
 "flag"
 "fmt"
 "os"
)

var (
 sub1 *flag.FlagSet
 sub2 *flag.FlagSet

 sub1flag *int
 sub2flag1 *string
 sub2flag2 int

 usage string
)

func init() {
 // Declare subcommand sub1
 sub1 = flag.NewFlagSet("sub1", flag.ExitOnError)
 // int flag for sub1
 sub1flag = sub1.Int("sub1flag", 0, "subcommand1 flag")

 // Declare subcommand sub2

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 67/139

 sub2 = flag.NewFlagSet("sub2", flag.ContinueOnError)
 // string flag for sub2
 sub2flag1 = sub2.String("sub2flag1", "", "subcommand2 flag1")
 // int flag for sub2
 sub2.IntVar(&sub2flag2, "sub2flag2", 0, "subcommand2 flag2")
 // Create usage
 usage = "sub1 -sub1flag (int)\nsub2 -sub2flag1 (string) -sub2flag2 (int)"
}

func main() {
 // If subcommand is not provided, print error, usage and return
 if len(os.Args) < 2 {
 fmt.Println("Not enough parameters")
 fmt.Println(usage)
 return
 }

 // Check the sub command
 switch os.Args[1] {

 // Parse sub1
 case "sub1":
 sub1.Parse(os.Args[2:])

 // Parse sub2
 case "sub2":
 sub2.Parse(os.Args[2:])

 // If subcommand is -h or --help
 case "-h":
 fallthrough
 case "--help":
 fmt.Printf(usage)
 return
 default:
 fmt.Printf("Invalid subcommand %v", os.Args[1])
 return
 }

 // If sub1 was provided and parse, print the flags
 if sub1.Parsed() {
 fmt.Printf("subcommand1 with flag %v\n", *sub1flag)
 return
 }

 // If sub2 was provided and parse, print the flags
 if sub2.Parsed() {
 fmt.Printf("subcommand2 with flags %v, %v\n", *sub2flag1, sub2flag2)
 return
 }
}

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 68/139

As you can see there's a lot of manual work in sub commands and they are not as elegant as

normal flags.

Continue reading ⇒ 03.2 - log package

log package

log package is used for logging. The examples (unlike some other packages) are not very helpful.

It's very bare bones and has only two logging levels.

For anything complicated use Google's glog package.

Basic logging

Custom logger

Log to file

Logging to multiple files/streams

Flag

Prefix

Logging levels

Basic logging

Basic logging is similar to other languages.

// 03.2-01-basic-logging.go
package main

import (
 "log"
)

func main() {

 a, b := 10, 20

 log.Print("Use Print to log.")
 log.Println("Ditto for Println.")
 log.Printf("Use Printf and format strings. %d + %d = %d", a, b, a+b)
}

Each log is on a new line:

$ go run 03.2-01-basic-logging.go
2017/12/25 22:18:38 Use Print to log.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 69/139

2017/12/25 22:18:38 Ditto for Println.
2017/12/25 22:18:38 Use Printf and format strings. 10 + 20 = 30

We can also forward the output to a file (or any number of io.Writer s) with [log.SetOutput]
[setoutput1-log-pkg].

logFile, err := os.Create("log1.txt")
if err != nil {
 panic("Could not open file")
}

log.SetOutput(logFile)

Custom logger

We can setup a custom logger with logger.New.

func New(out io.Writer, prefix string, flag int) *Logger

out : Log destination. Any io.Writer like files.

prefix : Appears before each log entry. Think Warning/Info/Error .

flag : Defines logging properties (e.g. the date time format).

Log to file

Using out we can log to files.

// 03.2-02-log-file.go
package main

import (
 "log"
 "os"
)

func main() {

 // Create a file
 logFile, err := os.Create("log1.txt")
 if err != nil {
 panic("Could not open file")
 }

 // Close the file after main returns
 defer logFile.Close()

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 70/139

 a, b := 10, 20

 // We will not use the other options
 myLog := log.New(logFile, "", 0)

 myLog.Print("Use Print to log.")
 myLog.Println("Ditto for Println.")
 myLog.Printf("Use Printf and format strings. %d + %d = %d", a, b, a+b)
}

log1.txt will contain:

Use Print to log.
Ditto for Println.
Use Printf and format strings. 10 + 20 = 30

After New , mylog.SetOutput(w io.Writer) can redirect the logger.

Logging to multiple files/streams

It's also possible to log to multiple files (or io.Writer s) with io.MultiWriter. This is useful when we
want to both output to stdout and to files.

// 03.2-03-log-multiple-files.go
package main

import (
 "bytes"
 "fmt"
 "io"
 "log"
 "os"
)

func main() {

 // Create a file
 logFile, err := os.Create("log1.txt")
 if err != nil {
 panic("Could not open file")
 }

 // Close the file after main returns
 defer logFile.Close()

 // Create a second file
 logFile2, err := os.Create("log2.txt")
 if err != nil {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 71/139

 panic("Could not open file2")
 }

 defer logFile2.Close()

 // Create a buffer
 var buflog bytes.Buffer

 multiW := io.MultiWriter(logFile, logFile2, &buflog, os.Stdout)

 a, b := 10, 20

 // Log to multiW
 myLog := log.New(multiW, "", 0)

 myLog.Print("Use Print to log.")
 myLog.Println("Ditto for Println.")
 myLog.Printf("Use Printf and format strings. %d + %d = %d", a, b, a+b)

 // Print buffer
 fmt.Println("Buffer:")
 fmt.Println(buflog.String())
}

We can see what we logged in both stdout and buffer:

$ go run 03.2-03-log-multiple-files.go
Use Print to log.
Ditto for Println.
Use Printf and format strings. 10 + 20 = 30
Buffer:
Use Print to log.
Ditto for Println.
Use Printf and format strings. 10 + 20 = 30

Flag

Prefix should be next but by discussing flag we can see if it appears before flag format or not.
flag is an integer and is a collection of bits (like FLAGS CPU register). The flags are defined as

constants:

// https://godoc.org/log#pkg-constants

const (
 // Bits or'ed together to control what's printed.
 // There is no control over the order they appear (the order listed
 // here) or the format they present (as described in the comments).
 // The prefix is followed by a colon only when Llongfile or Lshortfile
 // is specified.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 72/139

 // For example, flags Ldate | Ltime (or LstdFlags) produce,
 // 2009/01/23 01:23:23 message
 // while flags Ldate | Ltime | Lmicroseconds | Llongfile produce,
 // 2009/01/23 01:23:23.123123 /a/b/c/d.go:23: message
 Ldate = 1 << iota // the date in the local time zone: 2009/01/23
 Ltime // the time in the local time zone: 01:23:23
 Lmicroseconds // microsecond resolution: 01:23:23.123123. assumes
 Llongfile // full file name and line number: /a/b/c/d.go:23
 Lshortfile // final file name element and line number: d.go:23.
 LUTC // if Ldate or Ltime is set, use UTC rather than the
 LstdFlags = Ldate | Ltime // initial values for the standard logger
)

There's only room for a few bits of customization (see what I did there?).

// 03.2-04-log-flags.go
package main

import (
 "log"
 "os"
)

func main() {

 a, b := 10, 20

 // New logger will output to stdout with flags
 // Only log date and file
 myLog := log.New(os.Stdout, "", log.Ldate|log.Lshortfile)

 myLog.Print("Use Print to log.")
 myLog.Println("Ditto for Println.")
 myLog.Printf("Use Printf and format strings. %d + %d = %d", a, b, a+b)
}

We log date and filename:

$ go run 03.2-04-log-flags.go
2017/12/26 03.2-04-log-flags.go:25: Use Print to log.
2017/12/26 03.2-04-log-flags.go:26: Ditto for Println.
2017/12/26 03.2-04-log-flags.go:27: Use Printf and format strings. 10 + 20 = 30

Prefix

prefix adds a string to the beginning of each log line.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 73/139

// 03.2-05-log-prefix.go
package main

import (
 "log"
 "os"
)

func main() {

 a, b := 10, 20

 // New logger will output to stdout with prefix "Log1: " and flags
 // Note the space in prefix
 myLog := log.New(os.Stdout, "Log1: ", log.Ldate|log.Lshortfile)

 myLog.Print("Use Print to log.")
 myLog.Println("Ditto for Println.")
 myLog.Printf("Use Printf and format strings. %d + %d = %d", a, b, a+b)
}

Prefix is printed before flags:

$ go run 03.2-05-log-prefix.go
Log1: 2017/12/26 03.2-05-log-prefix.go:16: Use Print to log.
Log1: 2017/12/26 03.2-05-log-prefix.go:17: Ditto for Println.
Log1: 2017/12/26 03.2-05-log-prefix.go:18: Use Printf and format strings. 10 + 20 = 30

Logging levels

log only supports two logging levels:

Fatal: log.Print and calls os.Exit(1) .

[Panic][panic-log-pkg]: log.Print and calls panic() .

Both of these support ln and f variants (e.g. Fatalf , Panicln).

Continue reading ⇒ 04 - Go networking

[panic-log-pkg]: https://godoc.org/log#Panic# 04 - Go networking Now that we are done with the

basics and packages, we can start learning about networking. Following Black Hat Python, let's

start with networking basics and then move on.

Go's networking capabilities are in the net package and its sub-packages like net/http. The Python

equivalent to net is socket and net/http can be compared to the 3rd party Requests module.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 74/139

Table of Contents

04.1 - Basic TCP and UDP clients

04.2 - TCP servers

04.3 - TCP proxy

04.4 - SSH clients

04.5 - SSH Harvester

04.1 - Basic TCP and UDP clients

TCP client

net.Dial - TCP

net.DialTCP

UDP client

net.Dial - UDP

net.DialUDP

Lessons learned

TCP client

The building blocks for the basic TCP client is explained in the net package overview.

net.Dial - TCP

net.Dial is the general-purpose connect command.

First parameter is a string specifying the network. In this case we are using tcp .

Second parameter is a string with the address of the endpoint in format of host:port .

// 04.1-01-basic-tcp1.go
package main

import (
 "bufio"
 "flag"
 "fmt"
 "net"
)

var (
 host, port string
)

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 75/139

func init() {
 flag.StringVar(&port, "port", "80", "target port")
 flag.StringVar(&host, "host", "example.com", "target host")
}

func main() {

 flag.Parse()

 // Converting host and port to host:port
 t := net.JoinHostPort(host, port)

 // Create a connection to server
 conn, err := net.Dial("tcp", t)
 if err != nil {
 panic(err)
 }

 // Write the GET request to connection
 // Note we are closing the HTTP connection with the Connection: close header
 // Fprintf writes to an io.writer
 req := "GET / HTTP/1.1\r\nHost: example.com\r\nConnection: close\r\n\r\n"
 fmt.Fprintf(conn, req)

 // Another way to do it to directly write bytes to conn with conn.Write
 // However we must first convert the string to bytes with []byte("string")
 // reqBytes := []byte(req)
 // conn.Write(reqBytes)

 // Reading the response

 // Create a new reader from connection
 connReader := bufio.NewReader(conn)

 // Create a scanner
 scanner := bufio.NewScanner(connReader)

 // Combined into one line
 // scanner := bufio.NewScanner(bufio.NewReader(conn))

 // Read from the scanner and print
 // Scanner reads until an I/O error
 for scanner.Scan() {
 fmt.Printf("%s\n", scanner.Text())
 }

 // Check if scanner has quit with an error
 if err := scanner.Err(); err != nil {
 fmt.Println("Scanner error", err)
 }
}

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 76/139

The only drawback with scanner is having to close the HTTP connection with the Connection:
close header. Otherwise we have to manually kill the application.

$ go run 04.1-01-basic-tcp1.go -host example.com -port 80
HTTP/1.1 200 OK
Cache-Control: max-age=604800
Content-Type: text/html
Date: Sat, 16 Dec 2017 05:21:33 GMT
Etag: "359670651+gzip+ident"
Expires: Sat, 23 Dec 2017 05:21:33 GMT
Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
Server: ECS (dca/53DB)
Vary: Accept-Encoding
X-Cache: HIT
Content-Length: 1270
Connection: close

<!doctype html>
<html>
<head>
 <title>Example Domain</title>

 <meta charset="utf-8" />
...

Instead of using a scanner we can use ReadString(0x00) and stop when we reach an error (in

this case EOF):

// 04.1-02-basic-tcp2.go

...
// Read until a null byte (not safe in general)
// Response will not be completely read if it has a null byte
if status, err := connReader.ReadString(byte(0x00)); err != nil {
 fmt.Println(err)
 fmt.Println(status)
}
...

Using 0x00 as delimiter is not ideal. If the response payload contains NULL bytes, we are not

reading everything. But it works in this case.

net.DialTCP

net.DialTCP is the TCP specific version of Dial . It's a bit more complicated to call:

func DialTCP(network string, laddr, raddr *TCPAddr) (*TCPConn, error)

network is the same as net.Dial but can only be tcp , tcp4 and tcp6 .

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 77/139

laddr is local address and can be chosen. If nil , a local address is automatically chosen.

raddr is remote address and is the endpoint.

The type for both local and remote address is *TCPAddr :

type TCPAddr struct {
 IP IP
 Port int
 Zone string // IPv6 scoped addressing zone
}

We can pass the network (e.g. "tcp") along with host:port or ip:port string to

net.ResolveTCPAddr to get a *TCPAddr .

DialTCP returns a *TCPConn. It's a normal connection but with extra methods like SetLinger ,
SetKeepAlive or SetKeepAlivePeriod .

Let's re-write the TCP client with TCP-specific methods:

// 04.1-03-basic-tcp-dialtcp.go
// Basic TCP client using TCPDial and TCP specific methods
package main

import (
 "bufio"
 "flag"
 "fmt"
 "net"
)

var (
 host, port string
)

func init() {
 flag.StringVar(&port, "port", "80", "target port")
 flag.StringVar(&host, "host", "example.com", "target host")
}

// CreateTCPAddr converts host and port to *TCPAddr
func CreateTCPAddr(target, port string) (*net.TCPAddr, error) {
 return net.ResolveTCPAddr("tcp", net.JoinHostPort(host, port))
}

func main() {

 // Converting host and port
 a, err := CreateTCPAddr(host, port)
 if err != nil {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 78/139

 panic(err)
 }

 // Passing nil for local address
 tcpConn, err := net.DialTCP("tcp", nil, a)
 if err != nil {
 panic(err)
 }

 // Write the GET request to connection
 // Note we are closing the HTTP connection with the Connection: close header
 // Fprintf writes to an io.writer
 req := "GET / HTTP/1.1\r\nHost: example.com\r\nConnection: close\r\n\r\n"
 fmt.Fprintf(tcpConn, req)

 // Reading the response

 // Create a scanner
 scanner := bufio.NewScanner(bufio.NewReader(tcpConn))

 // Read from the scanner and print
 // Scanner reads until an I/O error
 for scanner.Scan() {
 fmt.Printf("%s\n", scanner.Text())
 }

 // Check if scanner has quit with an error
 if err := scanner.Err(); err != nil {
 fmt.Println("Scanner error", err)
 }
}

This is a bit better.

UDP client

Similar to TCP, we can make a UDP client with both net.Dial and net.DialUDP .

net.Dial - UDP

Creating a UDP client is very similar. We will just call net.Dial("udp", t) . Being UDP, we will use
net.DialTimeout to pass a timeout value.

// 04.1-04-basic-udp.go

// Create a connection to server with 5 second timeout
conn, err := net.DialTimeout("udp", t, 5*time.Second)
if err != nil {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 79/139

 panic(err)
}

Each second is one time.Second (remember to import the time package).

net.DialUDP

net.DialUDP is similar to the TCP equivalent:

func DialUDP(network string, laddr, raddr *UDPAddr) (*UDPConn, error)

*UDPAddr is acquired through net.ResolveUDPAddr.

network should be udp .

// 04.1-05-udp-dialudp.go
package main

import (
 "bufio"
 "flag"
 "fmt"
 "net"
)

var (
 host, port string
)

func init() {
 flag.StringVar(&port, "port", "80", "target port")
 flag.StringVar(&host, "host", "example.com", "target host")
}

// CreateUDPAddr converts host and port to *UDPAddr
func CreateUDPAddr(target, port string) (*net.UDPAddr, error) {
 return net.ResolveUDPAddr("udp", net.JoinHostPort(host, port))
}

func main() {

 // Converting host and port to host:port
 a, err := CreateUDPAddr(host, port)
 if err != nil {
 panic(err)
 }

 // Create a connection with DialUDP
 connUDP, err := net.DialUDP("udp", nil, a)
 if err != nil {
 panic(err)
 }

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 80/139

 // Write the GET request to connection
 // Note we are closing the HTTP connection with the Connection: close header
 // Fprintf writes to an io.writer
 req := "UDP PAYLOAD"
 fmt.Fprintf(connUDP, req)

 // Reading the response

 // Create a scanner
 scanner := bufio.NewScanner(bufio.NewReader(connUDP))

 // Read from the scanner and print
 // Scanner reads until an I/O error
 for scanner.Scan() {
 fmt.Printf("%s\n", scanner.Text())
 }

 // Check if scanner has quit with an error
 if err := scanner.Err(); err != nil {
 fmt.Println("Scanner error", err)
 }
}

Lessons learned

1. Convert int to string using strconv.Itoa. strconv.Atoi does the opposite (note Atoi also

returns an err so check for errors after using it.

2. String(int) converts the integer to corresponding Unicode character.

3. Create TCP connections with net.Dial.

4. We can read/write bytes directly to connections returned by net.Dial or create a Scanner .

5. Convert a string to bytes with []byte("12345") .

6. Get seconds of type Duration with time.Second .

7. net package has TCP and UDP specific methods.

Continue reading ⇒ 04.2 - TCP servers

04.2 - TCP servers

Now we will create TCP and UDP servers.

net.Listen

No logging with io.Copy()

Logging with extra goroutines

net.TCPListen

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 81/139

Lessons learned

net package overview also shows us how to create a generic TCP server. When creating a server

we can take advantage of goroutines and spawn one for each connection.

net.Listen

The generic net.Listen method is capable of doing both TCP and UDP.

No logging with io.Copy()

Building on the example from net package we can build a simple TCP server:

// 04.2-01-tcpserver1.go
package main

import (
 "flag"
 "fmt"
 "io"
 "net"
)

var (
 host, port string
)

func init() {
 flag.StringVar(&port, "port", "12345", "target port")
 flag.StringVar(&host, "host", "example.com", "target host")
}

// handleConnectionNoLog echoes everything back without logging (easiest)
func handleConnectionNoLog(conn net.Conn) {

 rAddr := conn.RemoteAddr().String()
 defer fmt.Printf("Closed connection from %v\n", rAddr)

 // This will accomplish the echo if we do not want to log
 io.Copy(conn, conn)
}

func main() {

 flag.Parse()

 // Converting host and port to host:port
 t := net.JoinHostPort(host, port)

 // Listen for connections on BindIP:BindPort

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 82/139

 ln, err := net.Listen("tcp", t)
 if err != nil {
 // If we cannot bind, print the error and quit
 panic(err)
 }

 // Wait for connections
 for {
 // Accept a connection
 conn, err := ln.Accept()
 if err != nil {
 // If there was an error, print it and go back to listening
 fmt.Println(err)
 continue
 }

 fmt.Printf("Received connection from %v\n", conn.RemoteAddr().String())

 // Spawn a new goroutine to handle the connection
 go handleConnectionNoLog(conn)
 }
}

Most of the code in main is similar to Python. We listen on a host:port and then accept each

connection. With each new connection, a new goroutine is spawned to handle it.

// handleConnectionNoLog echoes everything back without logging (easiest)
func handleConnectionNoLog(conn net.Conn) {

 rAddr := conn.RemoteAddr().String()
 defer fmt.Printf("Closed connection from %v\n", rAddr)

 // This will accomplish the echo if we do not want to log
 io.Copy(conn, conn)
}

This is where the magic happens:

io.Copy(conn, conn)

You copy one connection to the other. It's super easy! And it works.

We can telnet to the server and see.

TCP server 1 test

Logging with extra goroutines

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 83/139

Things become complicated when we want to log info that we have received. The main structure of

the program is the same but we spawn two extra goroutines inside the handleConnection

goroutine.

// 04.2-02-tcpserver2.go
// handleConnectionLog echoes everything back and logs messages received
func handleConnectionLog(conn net.Conn) {

 // Create buffered channel to pass data around
 c := make(chan []byte, 2048)

 // Spawn up two goroutines, one for reading and another for writing

 go readSocket(conn, c)
 go writeSocket(conn, c)

}

A buffered channel is created and passed to each goroutine. As you can imagine readSocket

reads from the connection and writes to channel. Note the argument is a directed channel (this

prevents from accidentally reading from it instead of writing):

// readSocket reads data from socket if available and passes it to channel
// Note the directed write-only channel designation
func readSocket(conn net.Conn, c chan<- []byte) {

 // Create a buffer to hold data
 buf := make([]byte, 2048)
 // Store remote IP:port for logging
 rAddr := conn.RemoteAddr().String()

 for {
 // Read from connection
 n, err := conn.Read(buf)
 // If connection is closed from the other side
 if err == io.EOF {
 // Close the connction and return
 fmt.Println("Connection closed from", rAddr)
 return
 }
 // For other errors, print the error and return
 if err != nil {
 fmt.Println("Error reading from socket", err)
 return
 }
 // Print data read from socket
 // Note we are only printing and sending the first n bytes.
 // n is the number of bytes read from the connection
 fmt.Printf("Received from %v: %s\n", rAddr, buf[:n])
 // Send data to channel

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 84/139

 c <- buf[:n]
 }
}

This is pretty straightforward. The only important part is n . n is the number of bytes read from

the socket after conn.Read . When sending the data to the channel we are only interested in the
first n bytes (if we send the whole buffer, the other side will get 2048 bytes every time).

// writeSocket reads data from channel and writes it to socket
func writeSocket(conn net.Conn, c <-chan []byte) {

 // Create a buffer to hold data
 buf := make([]byte, 2048)
 // Store remote IP:port for logging
 rAddr := conn.RemoteAddr().String()

 for {
 // Read from channel and copy to buffer
 buf = <-c
 // Write buffer
 n, err := conn.Write(buf)
 // If connection is closed from the other side
 if err == io.EOF {
 // Close the connction and return
 fmt.Println("Connection closed from", rAddr)
 return
 }
 // For other errors, print the error and return
 if err != nil {
 fmt.Println("Error writing to socket", err)
 return
 }
 // Log data sent
 fmt.Printf("Sent to %v: %s\n", rAddr, buf[:n])
 }
}

writeSocket is easier. We use a directed channel to read data into a buffer and send it off. This

server is also not echo-ing back the first character.

TCP server 2 test

net.TCPListen

As we have seen, there are TCP specific methods in the net package. The code is pretty much the

same. We just use TCPListen and pass a *TCPAddr to it. The result is a TCPConn which is
net.Conn under the hoods. Everything else remains the same.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 85/139

// 04.2-03-tcpserver3.go

// CreateTCPAddr converts host and port to *TCPAddr
func CreateTCPAddr(host, port string) (*net.TCPAddr, error) {
 return net.ResolveTCPAddr("tcp", net.JoinHostPort(host, port))
}

func main() {

 // Converting host and port to TCP address
 t, err := CreateTCPAddr(bindHost, bindPort)
 ...

 // Listen for connections on bindHost:bindPort
 ln, err := net.ListenTCP("tcp", t)
 ...

 for {
 conn, err := ln.AcceptTCP()
 ...

 go handleConnectionLog(conn)
 }
...

Lessons learned

1. io.Copy(conn, conn) is magic.

2. Goroutines are pretty easy to spawn for socket read/writes.

Continue reading ⇒ 04.3 - TCP proxy# 04.3 - TCP Proxy

Building a non-TLS terminating TCP proxy is pretty easy. It's very similar to the TCP server we have

already created.

We listen for TCP connections. After one is established, we create a new connection to the

forwarding IP:port and send all data. Without logging this can be done with a simple
io.Copy(connDest, connSrc) . With logging we have to use multiple goroutines (as we have seen
before).

Only forwardConnection is different. Instead of calling handleConnection we call
forwardConnection in a new goroutine.

Inside, we create a TCP connection to server and two channels. Then we handle each side of the

connection like the echo TCP server.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 86/139

// 04.3-01-tcp-proxy.go
package main

import (
 "flag"
 "fmt"
 "io"
 "net"
)

var (
 bindIP, bindPort, destIP, destPort string
)

func init() {
 flag.StringVar(&bindPort, "bindPort", "12345", "bind port")
 flag.StringVar(&bindIP, "bindIP", "127.0.0.1", "bind IP")
 flag.StringVar(&destPort, "destPort", "12345", "bind port")
 flag.StringVar(&destIP, "destIP", "127.0.0.1", "bind IP")
}

// readSocket reads data from socket if available and passes it to channel
func readSocket(conn net.Conn, c chan<- []byte) {

 // Create a buffer to hold data
 buf := make([]byte, 2048)
 // Store remote IP:port for logging
 rAddr := conn.RemoteAddr().String()

 for {
 // Read from connection
 n, err := conn.Read(buf)
 // If connection is closed from the other side
 if err == io.EOF {
 // Close the connction and return
 fmt.Println("Connection closed from", rAddr)
 return
 }
 // For other errors, print the error and return
 if err != nil {
 fmt.Println("Error reading from socket", err)
 return
 }
 // Print data read from socket
 // Note we are only printing and sending the first n bytes.
 // n is the number of bytes read from the connection
 fmt.Printf("Received from %v: %s\n", rAddr, buf[:n])
 // Send data to channel
 c <- buf[:n]
 }
}

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 87/139

// writeSocket reads data from channel and writes it to socket
func writeSocket(conn net.Conn, c <-chan []byte) {

 // Create a buffer to hold data
 buf := make([]byte, 2048)
 // Store remote IP:port for logging
 rAddr := conn.RemoteAddr().String()

 for {
 // Read from channel and copy to buffer
 buf = <-c
 // Write buffer
 n, err := conn.Write(buf)
 // If connection is closed from the other side
 if err == io.EOF {
 // Close the connction and return
 fmt.Println("Connection closed from", rAddr)
 return
 }
 // For other errors, print the error and return
 if err != nil {
 fmt.Println("Error writing to socket", err)
 return
 }
 // Log data sent
 fmt.Printf("Sent to %v: %s\n", rAddr, buf[:n])
 }
}

// forwardConnection creates a connection to the server and then passes packets
func forwardConnection(clientConn net.Conn) {

 // Converting host and port to destIP:destPort
 t := net.JoinHostPort(destIP, destPort)

 // Create a connection to server
 serverConn, err := net.Dial("tcp", t)
 if err != nil {
 fmt.Println(err)
 clientConn.Close()
 return
 }

 // Client to server channel
 c2s := make(chan []byte, 2048)
 // Server to client channel
 s2c := make(chan []byte, 2048)

 go readSocket(clientConn, c2s)
 go writeSocket(serverConn, c2s)
 go readSocket(serverConn, s2c)
 go writeSocket(clientConn, s2c)

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 88/139

}
func main() {

 flag.Parse()

 // Converting host and port to bindIP:bindPort
 t := net.JoinHostPort(bindIP, bindPort)

 // Listen for connections on BindIP:BindPort
 ln, err := net.Listen("tcp", t)
 if err != nil {
 // If we cannot bind, print the error and quit
 panic(err)
 }

 fmt.Printf("Started listening on %v\n", t)

 // Wait for connections
 for {
 // Accept a connection
 conn, err := ln.Accept()
 if err != nil {
 // If there was an error print it and go back to listening
 fmt.Println(err)

 continue
 }
 fmt.Printf("Received connection from %v\n", conn.RemoteAddr().String())

 go forwardConnection(conn)
 }
}

Continue reading ⇒ 04.4 - SSH clients# 04.4 - SSH clients

Next in line is creating SSH clients. The /x/crypto/ssh provides SSH support. It's not one of the

standard libraries so you need to go get golang.org/x/crypto/ssh before use.

We can authenticate using either user/pass or certificate.

Basic interactive session with user/pass

Verifying host

ssh.FixedHostKey

Custom host verifier

Login with SSH key

Login and run a command

Run a command with CombinedOutput

Run a command with Run

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 89/139

Basic interactive session with user/pass

First program is a typical interactive session based on the example in the docs. We login with a

user/pass combo.

// 04.4-01-sshclient-login-password.go
// Interactive SSH login with user/pass.

package main

import (
 "flag"
 "fmt"
 "io"
 "net"
 "os"

 // Importing crypto/ssh
 "golang.org/x/crypto/ssh"
)

var (
 username, password, serverIP, serverPort string
)

// Read flags
func init() {
 flag.StringVar(&serverPort, "port", "22", "SSH server port")
 flag.StringVar(&serverIP, "ip", "127.0.0.1", "SSH server IP")
 flag.StringVar(&username, "user", "", "username")
 flag.StringVar(&password, "pass", "", "password")
}

func main() {
 // Parse flags
 flag.Parse()

 // Check if username has been submitted - password can be empty
 if username == "" {
 fmt.Println("Must supply username")
 os.Exit(2)
 }

 // Create SSH config
 config := &ssh.ClientConfig{
 // Username
 User: username,
 // Each config must have one AuthMethod. In this case we use password
 Auth: []ssh.AuthMethod{
 ssh.Password(password),
 },

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 90/139

 // This callback function validates the server.
 // Danger! We are ignoring host info
 HostKeyCallback: ssh.InsecureIgnoreHostKey(),
 }

 // Server address
 t := net.JoinHostPort(serverIP, serverPort)

 // Connect to the SSH server
 sshConn, err := ssh.Dial("tcp", t, config)
 if err != nil {
 fmt.Printf("Failed to connect to %v\n", t)
 fmt.Println(err)
 os.Exit(2)
 }

 // Create new SSH session
 session, err := sshConn.NewSession()
 if err != nil {
 fmt.Printf("Cannot create SSH session to %v\n", t)
 fmt.Println(err)
 os.Exit(2)
 }

 // Close the session when main returns
 defer session.Close()

 // For an interactive session we must redirect IO
 session.Stdout = os.Stdout
 session.Stderr = os.Stderr
 input, err := session.StdinPipe()
 if err != nil {
 fmt.Println("Error redirecting session input", err)
 os.Exit(2)
 }

 // Setup terminal mode when requesting pty. You can see all terminal modes at
 // https://github.com/golang/crypto/blob/master/ssh/session.go#L56 or read
 // the RFC for explanation https://tools.ietf.org/html/rfc4254#section-8
 termModes := ssh.TerminalModes{
 ssh.ECHO: 0, // Disable echo
 }

 // Request pty
 // https://tools.ietf.org/html/rfc4254#section-6.2
 // First variable is term environment variable value which specifies terminal.
 // term doesn't really matter here, we will use "vt220".
 // Next are height and width: (40,80) characters and finall termModes.
 err = session.RequestPty("vt220", 40, 80, termModes)
 if err != nil {
 fmt.Println("RequestPty failed", err)
 os.Exit(2)
 }

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 91/139

 // Also
 // if err = session.RequestPty("vt220", 40, 80, termModes); err != nil {
 // fmt.Println("RequestPty failed", err)
 // os.Exit(2)
 // }

 // Now we can start a remote shell
 err = session.Shell()
 if err != nil {
 fmt.Println("shell failed", err)
 os.Exit(2)
 }

 // Same as above, a different way to check for errors
 // if err = session.Shell(); err != nil {
 // fmt.Println("shell failed", err)
 // os.Exit(2)
 // }

 // Endless loop to capture commands
 // Note: After exit, we need to ctrl+c to end the application.
 for {
 io.Copy(input, os.Stdin)
 }
}

First we create a config (note it's a pointer):

// Create SSH config
config := &ssh.ClientConfig{
 // Username
 User: username,
 // Each config must have one AuthMethod. In this case we use password
 Auth: []ssh.AuthMethod{
 ssh.Password(password),
 },
 // This callback function validates the server.
 // Danger! We are ignoring host info
 HostKeyCallback: ssh.InsecureIgnoreHostKey(),
}

Each config should have an AuthMethod . We are using a password in this program.

Next on the config is HostKeyCallback and is used to verify the server.

The familiar Dial method connects to the server. Then we create a session (each connection can

have multiple sessions).

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 92/139

We set stdin, stdout and stderr for session and then terminal modes. Finally we request a pseudo-

terminal with RequestPty and a shell. We capture commands on stdin by basically copying
os.Stdin to the connection's input.

Note: Depending on your SSH server and the terminal mode, you might see color codes. For

example you will see ANSI color codes if you run it from Windows cmd, but not in PowerShell. With

Windows OpenSSH, it does not matter what TERM is sent, the color codes will not go away in cmd.

Verifying host

Usually when creating small programs in security, we do not care about the host. But it's always

good to check.

HostKeyCallback in config can be used in three ways:

ssh.InsecureIgnoreHostKey() : Ignore everything!

ssh.FixedHostKey(key PublicKey) : Returns a function to check the hostkey.

Custom host verifier: Return nil if host is ok, otherwise return an error.

ssh.FixedHostKey

This is an easy check. We pass a host key and the method checks if it matches the one returned by

the connection.

// https://github.com/golang/crypto/blob/master/ssh/client.go#L265
// FixedHostKey returns a function for use in
// ClientConfig.HostKeyCallback to accept only a specific host key.
func FixedHostKey(key PublicKey) HostKeyCallback {
 hk := &fixedHostKey{key}
 return hk.check
}

Looking at the source, it just unmarshals two publickeys and checks if they match.

// https://github.com/golang/crypto/blob/master/ssh/client.go#L253
func (f *fixedHostKey) check(hostname string, remote net.Addr, key PublicKey) error {
 if f.key == nil {
 return fmt.Errorf("ssh: required host key was nil")
 }
 if !bytes.Equal(key.Marshal(), f.key.Marshal()) {
 return fmt.Errorf("ssh: host key mismatch")
 }
 return nil
}

It's straightforward to use. The new program is only a little different from the old one:

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 93/139

Create a variable of type ssh.PublicKey to hold the key.

Pass HostKeyCallback: ssh.FixedHostKey(var_from_above) in config.

// Define host's public key
var hostPubKey ssh.PublicKey

// Populate hostPubKey

// Create SSH config
config := &ssh.ClientConfig{
 // Username
 User: username,
 // Each config must have one AuthMethod. In this case we use password
 Auth: []ssh.AuthMethod{
 ssh.Password(password),
 },
 // Danger! We are ignoring host info
 HostKeyCallback: ssh.FixedHostKey(hostPubKey),
}

Custom host verifier

This has more flexibility. We can also use this callback function to grab and store a server's public

key. It can have any number of arguments (usually we use these arguments to pass info to the host

checker). It should return a function of type ssh.HostKeyCallback:

type HostKeyCallback func(hostname string, remote net.Addr, key PublicKey) error

In other words, it's a function of this type:

func hostChecker(arg1 type1, arg2 type2, ...) ssh.HostKeyCallback {
 // ...
}

Returned function can be a separate function or an anonymous function created inside
hostChecker . Here's an example of an anonymous function used by InsecureIgnoreHostKey

from ssh package's source:

// https://github.com/golang/crypto/blob/master/ssh/client.go#L240

// InsecureIgnoreHostKey returns a function that can be used for
// ClientConfig.HostKeyCallback to accept any host key. It should
// not be used for production code.
func InsecureIgnoreHostKey() HostKeyCallback {
 return func(hostname string, remote net.Addr, key PublicKey) error {
 return nil

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 94/139

 }
}

Now we know enough to create our own custom host checker and pass it to HostKeyCallback :

// 04.4-02-sshclient-check-host.go

// hostChecker returns a function to be used as callback for HostKeyCallback.
func hostChecker() ssh.HostKeyCallback {
 return printServerKey
}

// printServerKey prints server's info instead of checking it.
// It's of type HostKeyCallback
func printServerKey(hostname string, remote net.Addr, key ssh.PublicKey) error {
 // Just print everything
 fmt.Printf("Hostname: %v\nRemote address: %v\nServer key: %+v\n",
 hostname, remote, key)
 // Return nil so connection can continue without checking the server
 return nil
}

We can see server info in the callback function:

$ go run 04.4-02-sshclient2.go -user user -pass 12345
Hostname: 127.0.0.1:22
Remote address: 127.0.0.1:22
Server key: &{Curve:{CurveParams:0xc04204e100}
X:+95446563830190539723549646387134804373421025763629370453495481728809028570967
Y:+71690030922286766932148563959160819051208718262353076812036347925006921654863}
...

Login with SSH key

It's also possible to pass another AuthMethod and login with a key. Luckily, the package has

another example. We read the PEM encoded private key and use it in ClientConfig .

// 04.4-03-sshclient-login-key.go

// Now we must read the private key
pKey, err := ioutil.ReadFile(pKeyFile)
if err != nil {
 fmt.Println("Failed to read private key from file", err)
 os.Exit(2)
}

// Create a signer with the private key

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 95/139

signer, err := ssh.ParsePrivateKey(pKey)
if err != nil {
 fmt.Println("Failed to parse private key", err)
 os.Exit(2)
}

// Create SSH config
config := &ssh.ClientConfig{
 // Username
 User: username,
 // Each config must have one AuthMethod. Now we use key
 Auth: []ssh.AuthMethod{
 ssh.PublicKeys(signer),
 },
 // This callback function validates the server.
 // Danger! We are ignoring host info
 HostKeyCallback: ssh.InsecureIgnoreHostKey(),
}

Login and run a command

Interactive login is useful but there are SSH clients for that. Automated tools usually want to login,

run commands, capture the output and move on to the next host.

Each session can only run one command. A new session must be created for each new command

(one SSH connection can support multiple sessions). We can run commands using one of these

methods:

Start: Runs a single command on the server.

Run: Same as above. In fact, run calls start internally.

Output: Runs the command but returns standard output.

CombinedOutput: Runs the command and returns both stdout and stderr.

1. Not all of these methods return the output directly (in []byte). For those that do not, we need
to read session.Stdout/Stderr .

2. All of them return errors. After execution, check the errors.

3. For obvious reasons, it seems like CombinedOutput will work best.

Run a command with CombinedOutput

We re-use the code from first example but stop after the session is created. Then we run the

command, check for errors and print the output.

// 04.4-04-sshclient-run-combinedoutput.go

// Close the session when main returns

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 96/139

defer session.Close()

// Run a command with CombinedOutput
o, err := session.CombinedOutput(command)
if err != nil {
 fmt.Println("Error running command", err)
}

fmt.Printf("Output:\n%s", o)

Results from my VM (don't get excited, it's the default user/pass for https://modern.ie VMs):

$ go run .\04.4-04-sshclient-run-combinedoutput.go -user IEUser -pass Passw0rd! -cmd d
Output:
 Volume in drive C is Windows 10
 Volume Serial Number is C436-9552

 Directory of C:\Users\IEUser

12/19/2017 08:28 PM <DIR> .
12/19/2017 08:28 PM <DIR> ..
10/02/2017 12:50 AM <DIR> .gradle
12/24/2017 07:02 PM <DIR> .ssh
03/23/2017 12:29 PM 6 .vbox_version
03/23/2017 11:18 AM <DIR> Contacts
12/24/2017 01:50 AM <DIR> Desktop
...

Of course, we can always cheat by running multiple commands. On Windows use & and && .

$ go run .\04.4-04-sshclient-run-combinedoutput.go -user IEUser -pass Passw0rd! -cmd "
Output:
 Volume in drive C is Windows 10
 Volume Serial Number is C436-9552

 Directory of C:\Users

12/24/2017 01:53 AM <DIR> .
12/24/2017 01:53 AM <DIR> ..
12/19/2017 08:28 PM <DIR> IEUser
03/23/2017 11:18 AM <DIR> Public
12/24/2017 01:53 AM <DIR> SSHD
 0 File(s) 0 bytes
 5 Dir(s) 21,863,829,504 bytes free

Run a command with Run

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 97/139

Using Run is similar, we buffer session.Stdout/Stderr before we execute the command and

print them after. This is based on the package example:

// 04.4-05-sshclient-run-run.go

// Close the session when main returns
defer session.Close()

// Create buffers for stdout and stderr
var o, e bytes.Buffer

session.Stdout = &o
session.Stderr = &e

// Run a command with Run and read stdout and stderr
if err := session.Run(command); err != nil {
 fmt.Println("Error running command", err)
}

// Convert buffer to string
fmt.Printf("stdout:\n%s\nstderr:\n%s", o.String(), e.String())

Continue reading ⇒ 04.5 - SSH Harvester

04.5 - SSH harvester

This is a copy of my blog Simple SSH Harvester in Go. Sometime in the future, I will return and

continue working on the tool. For now I want to move on to new things.

I realized I cannot find any examples of SSH certificate verification. There are a few examples for

host keys here and there. Even the certs_test.go file just checks the host name. There was a

typo in an error message[^1] in the crypto/ssh package but I think because this is not very much

used, had gone unreported.

Here's my step by step guide to writing this tool by piggybacking on SSH host verification

callbacks. Hopefully this will make it easier for the next person.

TL;DR: verifying SSH servers

1. Create an instance of ssh.CertChecker.

2. Set callback functions for IsHostAuthority , IsRevoked and optionally HostKeyFallback .

IsHostAuthority 's callback should return true for valid certificates.

IsRevoked 's callback should return false for valid certificates.

HostKeyFallback 's callback should return nil for valid certificates.

3. Create an instance of ssh.ClientConfig.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 98/139

4. Set HostKeyCallback in ClientConfig to &ssh.CertChecker.CheckHostKey .

5. CheckHostKey will verify the certificate based on other callback functions.

6. The certificate can be accessed in IsRevoked callback function.

Go to Parsing SSH certificates to skip the fodder.

Table of Contents

Code analysis

Constants and usage

Init function

Custom flag type

SSHServer struct

SSHServers struct

Struct to JSON

Utilities

Parsing SSH certificates <-- This is the important part

Step 1: Create ssh.CertChecker

Step 2: Set Callback functions

IsHostAuthority

IsHostAuthority callback

IsRevoked

IsRevoked callback

Question!!!!

HostKeyFallback

Step 3: Create ssh.ClientConfig

Banner callback

Step 4: ClientConfig.HostKeyCallback

Other ways of verifying servers

Step 5: Connecting to SSH servers

discover method

Goroutines and sync.WaitGroups

SSH Harvester in action

Conclusion

Code analysis

Let's look at the code.

Constants and usage

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 99/139

We can either pass a file with -in . The file should have one address on each line:

127.0.0.1:22
[2001:db8::68]:1234

Or we can pass addresses with -t separated by commas:

SSHHarvester.exe -t 127.0.0.1:22,[2001:db8::68]:1234

Output file is specified with -out .

const (
 mUsage = "SSH Harvester gathers and publishes info about SSH servers.\n" +
 "Addresses should be in format of 'host:port'.\n" +
 "Input file should have one address on each line " +
 "and addresses provided to -targets should be separated by commas.\n" +
 "-in and -targets are mutually exclusive, use one.\n" +
 "Examples:\n" +
 "go run SSHHarvester1.go -t 127.0.0.1:12334,192.168.0.10:22\n" +
 "go run SSHHarvester1.go -i inputfile.txt\n" +
 "go run SSHHarvester1.go -i inputfile.txt -out output.txt\n"
 outUsage = "output report file"
 inUsage = "input file"
 tUsage = "addresses separated by comma"
 vUsage = "print extra info"

 // Delimiter for host:port
 AddressDelim = ":"
 // // Delimiter for IPv6 addresses
 // IPv6Delim = "[]"

 // Log prefix - note the trailing space
 LogPrefix = "[*] "

 // Test SSH username/password - not really important
 TestUser = "user"
 TestPassword = "password"

 // Timeout in seconds
 Timeout = 5 * time.Second
)

// Usage string
func usage() {
 usg := mUsage
 usg += fmt.Sprintf("\n -i, -in\tstring\t%s", inUsage)
 usg += fmt.Sprintf("\n -o, -out\tstring\t%s", outUsage)
 usg += fmt.Sprintf("\n -t, -targets\tstring\t%s", tUsage)
 usg += fmt.Sprintf("\n -v, -verbose\tstring\t%s", vUsage)
 usg += fmt.Sprintf("\n")

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 100/139

 fmt.Println(usg)
}

This is pretty standard. You might want to change the default username/password. Ultimately we

do not care about logging in, we just want to connect and get host info.

Init function

We setup flags, logging and check flags. flag package does not have
mutually_exclusive_group from Python's Argparse package. It needs to be done manually. I will

most likely move to a community cli package after this.

func init() {
 // Setup flags
 flag.StringVar(&out, "out", "", outUsage)
 flag.StringVar(&out, "o", "", outUsage)
 flag.StringVar(&in, "in", "", inUsage)
 flag.StringVar(&in, "i", "", inUsage)
 flag.Var(&targets, "targets", tUsage)
 flag.Var(&targets, "t", tUsage)
 flag.BoolVar(&verbose, "verbose", false, vUsage)
 flag.BoolVar(&verbose, "v", false, vUsage)

 // Set flag usage
 flag.Usage = usage

 // Parse flags
 flag.Parse()

 // Setting up logging
 logSSH = log.New(os.Stdout, LogPrefix, log.Ltime)

 // Check if we have enough arguments
 if len(os.Args) < 2 {
 flag.Usage()
 errorExit("not enough arguments", nil)
 }

 // Check if both in and targets are supported
 if (in != "") && (targets != nil) {
 errorExit("-in and -targets are mutually exclusive, use one", nil)
 }
}

errorExit just calls logger.Fatalf with a message. Logging the message and returning from

main with status code 1.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 101/139

// errorExit logs an error and then exits with status code 1.
func errorExit(m string, err error) {
 // If err is provided print it, otherwise don't
 if err != nil {
 logSSH.Fatalf("%v - stopping\n%v\n", m, err)
 }
 logSSH.Fatalf("%v - stopping\n", m)
}

Custom flag type

We are using a custom flag type for -t . This allows us to pass multiple addresses separated by ,

and get a slice of addresses directly. This is done through implementing the flag.value which

contains two methods String() and Set() . In simple words:

1. Create a new type mytype .

2. Create two methods with *mytype receivers named String() and Set() .
String() casts the custom type to a string and returns it.

Set(string) has a string argument and populates the type, returns an error if

applicable.

3. Create a new flag without an initial value:

Call flag.NewFlagSet(&var, instead of flag.String(.

Call flag.Var(instead of flag.StringVar(or flag.IntVar(.

I have written more about the flag package in Hacking with Go - 03.1.

// Custom flag type for -t (code re-used from flag section)
// Create a custom type from a string slice
type strList []string

// Implement String()
func (str *strList) String() string {
 return fmt.Sprintf("%v", *str)
}

// Implement Set(*strList)
func (str *strList) Set(s string) error {
 // If input was empty, return an error
 if s == "" {
 return errors.New("nil input")
 }
 // Split input by ","
 *str = strings.Split(s, ",")
 // Do not return an error
 return nil
}

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 102/139

SSHServer struct

We use a struct and some methods to hold server info. The SSHServer struct has these fields:

// Struct to hold server data
type SSHServer struct {
 Address string // host:port
 Host string // IP address
 Port int // port
 IsSSH bool // true if server is running SSH on address:port
 Banner string // banner text, if any
 Cert ssh.Certificate // server's certificate
 Hostname string // hostname
 PublicKey ssh.PublicKey // server's public key
}

Not all fields will be populated. For example Hostname and PublicKey are only populated if the

server responds with a public key. If it has a cert, then Cert will be populated instead.

New *SSHServer s are created by NewSSHServer .

// NewSSHServer returns a new SSHServer with address, host and port populated.
// If address cannot be processed, an error will be returned.
func NewSSHServer(address string) (*SSHServer, error) {
 // Process address, return error if it's not in the correct format
 host, port, err := net.SplitHostPort(address)
 if err != nil {
 return nil, err
 }

 var s SSHServer

 s.Address = address
 s.Host = host
 s.Port, err = strconv.Atoi(port)
 if err != nil {
 return nil, err
 }
 // If port is not in (0,65535]
 if 0 > s.Port || s.Port > 65535 {
 return nil, errors.New(port + " invalid port")
 }
 return &s, nil
}

net.SplitHostPort splits host:port into two strings but it does not check the validity of either

part. Meaning you can pass 500.500.500.500:70000 and it will be accepted because the format is

correct.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 103/139

To check if the IP is valid, we can use net.ParseIP and check the result (it's nil if it was not

parsed correctly). However, we do not know if we are dealing with hostnames like
example.com:1234 . But we can check if ports are in the correct range.

SSHServers struct

SSHServers is a slice of SSHServer pointers. It has a Stringer method (a String method that

returns a string representation of receiver).

type SSHServers []*SSHServer

// String converts []*SSHServer to JSON. If it cannot convert to JSON, it
// will convert each member to string using fmt.Sprintf("%+v").
func (servers *SSHServers) String() string {
 var report string
 // Try converting to JSON
 report, err := ToJSON(servers, true)
 // If cannot convert to JSON
 if err != nil {
 // Save all servers as string (this is not as good as JSON)
 for _, v := range *servers {
 report += fmt.Sprintf("%+v\n%s\n", v, strings.Repeat("-", 30))
 }
 return report
 }
 return report
}

Struct to JSON

ToJSON converts a struct to a JSON string. If the second argument is true , it pretty prints it by
indenting.

// ToJSON converts input to JSON. If prettyPrint is set to True it will call
// MarshallIndent with 4 spaces.
// If your struct does not work here, make sure struct fields start with a
// capital letter. Otherwise they are not visible to the json package methods.
// We could also rewrite this as a method for ([]*SSHServer).
func ToJSON(s interface{}, prettyPrint bool) (string, error) {
 var js []byte
 var err error

 // Pretty print if specified
 if prettyPrint {
 js, err = json.MarshalIndent(s, "", " ") // 4 spaces
 } else {
 js, err = json.Marshal(s)
 }

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 104/139

 // Check for marshalling errors
 if err != nil {
 return "", nil
 }

 return string(js), nil
}

This is one of the useful things I learned while working on this code. It's a pretty cool way of

converting structs into strings. When printing with "%+v" format string, field pointers are not

dereferenced and it will print the memory address. However, marshalling to JSON dereferences

every field.

Note: When JSON-ing structs, make sure to mark fields as exportable by starting their names with

capital letters. The JSON package cannot see them otherwise.

Utilities

There are a couple of misc functions.

readTargetFile reads addresses from a file (one address on each line) and returns a []string .

writeReport gets a slice of SSHServer s (SSHServers to be exact), converts it to string (the

Stringer we saw earlier will try to convert it to JSON first) and writes it to a file. The final file will be a

JSON object that can be parsed.

Parsing SSH certificates <-- This is the important part

Inside ssh.ClientConfig there's a callback HostKeyCallback . This function should return nil if

host is verified. Read Phil Pennock's blogpost Golang SSH Security for the history behind it.

Let's expand the tl;dr steps:

Step 1: Create ssh.CertChecker

We are interested in the following three ssh.CertChecker fields. All of them are callback functions:

certCheck := &ssh.CertChecker{
 IsHostAuthority: hostAuthCallback(),
 IsRevoked: certCallback(s),
 HostKeyFallback: hostCallback(s),
}

Don't worry about the functions for now. But remember these callback functions are only required

to have a specific return value but can have any number of arguments. This is very useful we can

pass our SSHServer objects and populate them inside these functions.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 105/139

Step 2: Set Callback functions

Set callback functions for these three fields.

IsHostAuthority

IsHostAuthority must be defined. If not, we get a run-time error:

golang.org/x/crypto/ssh.(*CertChecker).CheckHostKey(0xc04206a140, 0xc0420080c0,
 0xc, 0x68d700, 0xc042058450, 0x68df80, 0xc0420a2000, 0x1, 0x8)
 Z:/Go/src/golang.org/x/crypto/ssh/certs.go:301 +0xae
golang.org/x/crypto/ssh.(*CertChecker).CheckHostKey-fm(0xc0420080c0, 0xc,
 0x68d700, 0xc042058450, 0x68df80, 0xc0420a2000, 0x0, 0x0)
 Z:/Go/src/hackingwithgo/04.5-01-ssh-harvester.go:205 +0x70
...

To discover the error cause, one must look at the source code for CheckHostKey. We'll see that
CheckHostKey calls IsHostAuthority .

// CheckHostKey checks a host key certificate. This method can be
// plugged into ClientConfig.HostKeyCallback.
func (c *CertChecker) CheckHostKey(addr string, remote net.Addr, key PublicKey) error
 cert, ok := key.(*Certificate)
 if !ok {
 if c.HostKeyFallback != nil {
 return c.HostKeyFallback(addr, remote, key)
 }
 return errors.New("ssh: non-certificate host key")
 }
 if cert.CertType != HostCert {
 return fmt.Errorf("ssh: certificate presented as a host key has type %d", cert
 }
 // If IsHostAuthority is not defined, run-time error occurs here
 if !c.IsHostAuthority(cert.SignatureKey, addr) {
 return fmt.Errorf("ssh: no authorities for hostname: %v", addr)
 }

 hostname, _, err := net.SplitHostPort(addr)
 if err != nil {
 return err
 }

 // Pass hostname only as principal for host certificates (consistent with OpenSSH)
 return c.CheckCert(hostname, cert)
}

So what does this function do?

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 106/139

First it tries to get a certificate from key PublicKey (by casting). If the cast is not successful, it

uses HostKeyFallBack to verity server's public key instead.

Then the function checks if the certificate type is HostCert . SSH differentiates between host and

client certificates. For example OpenSSH's keygen uses the -h switch to sign and create a host

key.

Another of our callbacks, IsHostAuthority is called next. If it returns false , the certificate is not
valid. The docs say:

// IsHostAuthority should report whether the key is recognized as
// an authority for this host. This allows for certificates to be
// signed by other keys, and for those other keys to only be valid
// signers for particular hostnames. This must be set if this
// CertChecker will be checking host certificates.

This is just fancy talk for verifying the CA and performing certificate pinning. In other words we can

check:

1. Is the certificate signed by a valid CA? Note, unlike TLS certs, most SSH certs are signed by

internal CAs. Often we are relying on a hardcoded CA for verification.

2. Is the certificate signed by the valid CA? We don't want certs signed by other CAs.

net.SplitHostPort (we already used it above) splits host:port into host and port and

passes hostname to CheckCert .

CheckCert does a couple of more checks. Most notably it calls another one of our functions
IsRevoked .

// CheckCert checks CriticalOptions, ValidPrincipals, revocation, timestamp and
// the signature of the certificate.
func (c *CertChecker) CheckCert(principal string, cert *Certificate) error {
 if c.IsRevoked != nil && c.IsRevoked(cert) {
 return fmt.Errorf("ssh: certicate serial %d revoked", cert.Serial)
 }
 ...

IsHostAuthority callback

Not every function can be a callback function. Each function needs to return certain type.

IsHostAuthority requires the callback function to have this return type:

func(ssh.PublicKey, string) bool

In other words, our callback function needs to return a function of that type.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 107/139

First we create a custom type (it's not defined in the package) and then create a function that

returns that type:

// Define custom type for IsHostAuthority
type HostAuthorityCallBack func(ssh.PublicKey, string) bool

// hostAuthCallback is the callbackfunction for IsHostAuthority. Without
// it, ssh.CertChecker will not work.
func hostAuthCallback() HostAuthorityCallBack {
 // Return true because we just want to make this work
 return func(p ssh.PublicKey, addr string) bool {
 return true
 }
}

If we want the connection to continue, the internal function needs to return true .

IsRevoked

IsRevoked is not mandatory. If it's not set, it's ignored. Meaning there's no automatic certificate

revocation checks happening without it. Note the typo in the error message: certicate . The typo
has now been corrected. Honestly, I think this just means programs do not use this function (or I

am terribly wrong and am using something which should not be used). If certificate is valid, this

function must return nil or false .

IsRevoked callback

For the goal of grabbing the certificate and processing it, IsRevoked is the most useful. It gets the

certificate as a parameter and we can do parse or verify it inside the function. IsRevoked must

return:

func(cert *Certificate) bool

Again we define that function type and declare our own function:

// Create IsRevoked function callback type
type IsRevokedCallback func(cert *ssh.Certificate) bool

// certCallback processes the SSH certificate. It is piggybacked on the
// IsRevoked callback function. It must return false (or nil) to keep the
// connection alive.
func certCallback(s *SSHServer) IsRevokedCallback {

 return func(cert *ssh.Certificate) bool {
 // Grab the certificate
 s.Cert = *cert
 s.IsSSH = true

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 108/139

 // Always return false
 return false
 }
}

Inside IsRevoked we have access to the SSH certificate. Here we just assign it to the Cert field.

If you want to verify the certificate, this is the place.

Question!!!!

Help me if you can. I don't like returning unnamed functions like this. But unless I create global

variables, I need to be able to access s *SSHServer inside certCallback to populate it. The

function type is strict so I cannot add arguments.

I think defining the inside function as a method will work. Am I write? Wrong? Please let me know if

you know the answer.

HostKeyFallback

Not all servers have SSH certificates. In fact, most servers probably do not. If server does not send

a certificate, this function will be called (and the connection will terminate if this function is not

defined).

If server is valid this function should return nil.

// hostCallback is the callback function for HostKeyCallback in SSH config.
// It can access hostname, remote address and server's public key.
func hostCallback(s *SSHServer) ssh.HostKeyCallback {
 return func(hostname string, remote net.Addr, key ssh.PublicKey) error {
 s.Hostname = hostname
 s.PublicKey = key
 // Return nil because we want the connection to move forward
 return nil
 }
}

Here we grab server's public key and hostname.

With these three callbacks set, we can move to the next step.

Step 3: Create ssh.ClientConfig

ssh.ClientConfig is needed for every SSH connection in Go. You can read about creating SSH

connections in Hacking with Go - 04.4.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 109/139

// Create SSH config
config := &ssh.ClientConfig{
 // Test username and password
 User: TestUser,
 Auth: []ssh.AuthMethod{
 ssh.Password(TestPassword),
 },
 HostKeyCallback: certCheck.CheckHostKey,
 BannerCallback: bannerCallback(s),
 Timeout: Timeout, // timeout
}

Timeout is also important. we do not want goroutines to wait forever connecting to inaccessible

addresses. It's set to 5 seconds by default. Can be changed in the constants.

Banner callback

Banner callback is another important function for information gathering. By now, you know the drill.

// bannerCallback is the callback function for BannerCallback in SSH config.
// Grabs server banner and stores it in the SSHServer object.
func bannerCallback(s *SSHServer) ssh.BannerCallback {
 return func(message string) error {
 // Store the banner
 s.Banner = message
 // Return nil because we want the connection to move forward
 return nil
 }
}

We store the banner message and return nil . Any other return value will terminate the
connection.

Step 4: ClientConfig.HostKeyCallback

This callback starts the server verification chain. It needs a function with ssh.HostKeyCallback type:

type HostKeyCallback func(hostname string, remote net.Addr, key PublicKey) error

The package actually suggests (*CertChecker) CheckHostKey (we looked at its source code

earlier). Looking inside ClientConfig , you can see I am passing it like this:

HostKeyCallback: certCheck.CheckHostKey,

This is where everything clicks. We created a certCheck and set its callback functions. Now we

are passing it to be called when we connect to a server.

Other ways of verifying servers

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 110/139

If you do not want to verify server's certificate, you can plug in three different types of functions

here.

ssh.FixedHostKey(key PublicKey) : Returns a function to check the hostkey.

ssh.InsecureIgnoreHostKey() : Ignore everything! Danger! Will Robinson!

Custom host verifier : Return nil if host is ok, otherwise return an error.

Read more about them in the verifying host.

A note about ssh.InsecureIgnoreHostKey()

After the breaking change as a consequence of the Golang SSH security blog post linked earlier,

everyone seems to be using this. I am not in the position to tell you how to write your code. But

make sure you know what you are doing when using this function. cough hashicorp packer cough.

Step 5: Connecting to SSH servers

Here comes the concurrent part. We have a list of addresses and our callbacks are set correctly.

Time to connect to servers with discover .

discover method

// discover connects to ip:port and attempts to make an SSH connection.
// If successful, some SSH properties will be populated (most importantly isSSH
// and isAlive).
func (s *SSHServer) discover() {
 // Release waitgroup after returning
 defer discoveryWG.Done()

 defer logSSH.Println("finished connecting to", s.Address)

 certCheck := &ssh.CertChecker{
 IsHostAuthority: hostAuthCallback(),
 IsRevoked: certCallback(s),
 HostKeyFallback: hostCallback(s),
 }

 // Create SSH config
 config := &ssh.ClientConfig{
 // Test username and password
 User: TestUser,
 Auth: []ssh.AuthMethod{
 ssh.Password(TestPassword),
 },
 HostKeyCallback: certCheck.CheckHostKey,
 BannerCallback: bannerCallback(s),
 Timeout: Timeout, // timeout
 }

 logSSH.Println("starting SSH connection to ", s.Address)

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 111/139

 sshConn, err := ssh.Dial("tcp", s.Address, config)
 if err != nil {
 // If error contains "unable to authenticate", there's something there
 logSSH.Println("error ", err)
 return
 }

 // Close connection if we succeed (almost never happens)
 sshConn.Close()
}

First we defer releasing the waitgroup and the log message. This waitgroup will be explained later.

In short, it's here to ensure that all discover goroutines are finished before starting the next

stage.

Next are CertCheck and ClientConfig . We have already seen them. And finally we are
connecting with ssh.Dial .

Goroutines and sync.WaitGroups

Each connection is done in its own goroutine. This means, we have to wait for these to complete

before processing the results. We use sync.WaitGroups . For a longer version please read Hacking
with Go - 02.6 - Syncing goroutines. But a tl;dr description is:

1. Every time a goroutine is started, we add one to the waitgroup (note we need to do this in the

calling function, not inside the goroutine).

2. When the goroutine returns we subtract one (the defer discoveryWG.Done() in discover).

3. Wait in main for all goroutines to finish with discoveryWG.Wait() . This will block the program
until they all return.

for _, v := range servers {
 // Before each goroutine add 1 to waitgroup
 discoveryWG.Add(1)
 go v.discover()
}

// Wait for all discovery goroutines to finish
discoveryWG.Wait()

SSH Harvester in action

And finally we can see the tool in action.

If the server returns a certificate:

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 112/139

If it returns a public key, HostKeyFallBack is triggered and we can it:

Note, server's have different keys for different ciphersuits. For example dsa , ecdsa , rsa and
ed25519 (the DJB curve). Depending what ciphersuite client supports, you may see one of these.

That's another TODO.

Conclusion

It took me a couple of days to figure everything out because I could not find any examples or

tutorials. But now we know how to verify SSH certificates. Hope this is useful, if you have any

feedback please let me know.

[^1]: I should have actually sent a patch. But signing up for Gerrit was a pain. Would have been the

easiest way to become a "Golang contributor" and put it in my Twitter bio/resume (kidding).

Continue reading ⇒ 05 - Parsing Files

05 - Parsing Files

Usually when we need to open and parse file formats, the normal parsers are not useful. Either files

are badly formatted or something is hidden. Making our own file parser is the way to go.

Table of Contents

05.1 - Extracting PNG Chunks

05.1 - Extracting PNG Chunks

This is a copy of my [blog post][png-chunk].

I wrote some quick code that parses a PNG file, extracts some information, identifies chunks and

finally extracts chunk data. The code has minimal error handling (if chunks are not formatted

properly). We also do not care about parsing PLTE and tRNS chunks although we will extract

them.

Code is in the 05/05.1 directory.

Golang's https://golang.org/src/image/png/reader.go does a decent job of explaining the rendering.

But we are not interested in rendering.

Instead we look at libpng documentation at http://www.libpng.org/pub/png/spec/1.2/PNG-

Contents.html. I am going to use a simple example (just a black rectangle which was supposed to

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 113/139

be a square lol) to demonstrate:

00000000 89 50 4e 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52 |.PNG........IHDR|.PNG
00000010 00 00 00 6f 00 00 00 73 08 02 00 00 00 19 b3 cb |...o...s......³Ë|
00000020 d7 00 00 00 01 73 52 47 42 00 ae ce 1c e9 00 00 |×....sRGB.®Î.é..|
00000030 00 04 67 41 4d 41 00 00 b1 8f 0b fc 61 05 00 00 |..gAMA..±..üa...|
00000040 00 09 70 48 59 73 00 00 0e c3 00 00 0e c3 01 c7 |..pHYs...Ã...Ã.Ç|
00000050 6f a8 64 00 00 00 3c 49 44 41 54 78 5e ed c1 01 |o¨d...<IDATx^íÁ.|
00000060 0d 00 00 00 c2 a0 f7 4f 6d 0f 07 04 00 00 00 00 |....Â ÷Om.......|
00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000090 70 ae 06 96 0a 00 01 1e c4 f7 41 00 00 00 00 49 |p®......Ä÷A....I|
000000a0 45 4e 44 ae 42 60 82 |END®B`.|

PNG Header

PNG starts with an 8-byte magic header:

89 50 4E 47 0D 0A 1A 0A

const pngHeader = "\x89PNG\r\n\x1a\n" from https://golang.org/src/image/png/reader.go.

When you open a PNG file, you can see PNG in the signature.

After the signature, there are a number of chunks.

PNG Chunks

Each chunk has four fields:

unint32 length in big-endian. This is the length of the data field.

Four-byte chunk type. Chunk type can be anything [Footnote 1].

Chunk data is a bunch of bytes with a fixed length read before.

Four-byte CRC-32 of Chunk 2nd and 3rd field (chunk type and chunk data).

// Each chunk starts with a uint32 length (big endian), then 4 byte name,
// then data and finally the CRC32 of the chunk data.
type Chunk struct {
 Length int // chunk data length
 CType string // chunk type
 Data []byte // chunk data

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 114/139

 Crc32 []byte // CRC32 of chunk data
}

First chunk or IHDR looks like this:

Converting big-endian uint32 s to int is straightforward:

// uInt32ToInt converts a 4 byte big-endian buffer to int.
func uInt32ToInt(buf []byte) (int, error) {
 if len(buf) == 0 || len(buf) > 4 {
 return 0, errors.New("invalid buffer")
 }
 return int(binary.BigEndian.Uint32(buf)), nil
}

Trick #1: When reading chunks, I did something I had not done before. I passed in an io.Reader .
This let me pass anything that implements that interface to the method. As each chunk is

populated, reader pointer moves forward and gets to the start of next chunk. Note this assumes

chunks are formatted correctly and does not check the CRC32 hash.

// Populate will read bytes from the reader and populate a chunk.
func (c *Chunk) Populate(r io.Reader) error {

 // Four byte buffer.
 buf := make([]byte, 4)

 // Read first four bytes == chunk length.
 if _, err := io.ReadFull(r, buf); err != nil {
 return err
 }
 // Convert bytes to int.
 // c.length = int(binary.BigEndian.Uint32(buf))
 var err error
 c.Length, err = uInt32ToInt(buf)
 if err != nil {
 return errors.New("cannot convert length to int")
 }

 // Read second four bytes == chunk type.
 if _, err := io.ReadFull(r, buf); err != nil {
 return err
 }
 c.CType = string(buf)

 // Read chunk data.
 tmp := make([]byte, c.Length)
 if _, err := io.ReadFull(r, tmp); err != nil {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 115/139

 return err
 }
 c.Data = tmp

 // Read CRC32 hash
 if _, err := io.ReadFull(r, buf); err != nil {
 return err
 }
 // We don't really care about checking the hash.
 c.Crc32 = buf

 return nil
}

IHDR Chunk

IHDR is a special chunk that contains file information. It's always 13 bytes and has:

// Width: 4 bytes
// Height: 4 bytes
// Bit depth: 1 byte
// Color type: 1 byte
// Compression method: 1 byte
// Filter method: 1 byte
// Interlace method: 1 byte

These will go directly into the PNG struct:

type PNG struct {
 Width int
 Height int
 BitDepth int
 ColorType int
 CompressionMethod int
 FilterMethod int
 InterlaceMethod int
 chunks []*Chunk // Not exported == won't appear in JSON string.
 NumberOfChunks int
}

Trick #2: chunks does not start with a capital letter. It's not exported, so it is not parsed when we

convert the struct to JSON.

Parsing the header pretty easy:

// Parse IHDR chunk.
// https://golang.org/src/image/png/reader.go?#L142 is your friend.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 116/139

func (png *PNG) parseIHDR(iHDR *Chunk) error {
 if iHDR.Length != iHDRlength {
 errString := fmt.Sprintf("invalid IHDR length: got %d - expected %d",
 iHDR.Length, iHDRlength)
 return errors.New(errString)
 }

 tmp := iHDR.Data
 var err error

 png.Width, err = uInt32ToInt(tmp[0:4])
 if err != nil || png.Width <= 0 {
 errString := fmt.Sprintf("invalid width in iHDR - got %x", tmp[0:4])
 return errors.New(errString)
 }

 png.Height, err = uInt32ToInt(tmp[4:8])
 if err != nil || png.Height <= 0 {
 errString := fmt.Sprintf("invalid height in iHDR - got %x", tmp[4:8])
 return errors.New(errString)
 }

 png.BitDepth = int(tmp[8])
 png.ColorType = int(tmp[9])

 // Only compression method 0 is supported
 if int(tmp[10]) != 0 {
 errString := fmt.Sprintf("invalid compression method - expected 0 - got %x",
 tmp[10])
 return errors.New(errString)
 }
 png.CompressionMethod = int(tmp[10])

 // Only filter method 0 is supported
 if int(tmp[11]) != 0 {
 errString := fmt.Sprintf("invalid filter method - expected 0 - got %x",
 tmp[11])
 return errors.New(errString)
 }
 png.FilterMethod = int(tmp[11])

 // Only interlace methods 0 and 1 are supported
 if int(tmp[12]) != 0 {
 errString := fmt.Sprintf("invalid interlace method - expected 0 or 1 - got %x"
 tmp[12])
 return errors.New(errString)
 }
 png.InterlaceMethod = int(tmp[12])

 return nil
}

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 117/139

Our example's IHDR is:

{
 "Width": 111,
 "Height": 115,
 "BitDepth": 8,
 "ColorType": 2,
 "CompressionMethod": 0,
 "FilterMethod": 0,
 "InterlaceMethod": 0,
 "NumberOfChunks": 6
}

IDAT Chunks

IDAT chunks contain the image data. They are compressed using deflate. If you look at the first

chunk, you will see the zlib magic header. This stackoverflow answer lists them:

78 01 - No Compression/low

78 9C - Default Compression

78 DA - Best Compression

Another answer has more info:

Level | ZLIB | GZIP
 1 | 78 01 | 1F 8B
 2 | 78 5E | 1F 8B
 3 | 78 5E | 1F 8B
 4 | 78 5E | 1F 8B
 5 | 78 5E | 1F 8B
 6 | 78 9C | 1F 8B
 7 | 78 DA | 1F 8B
 8 | 78 DA | 1F 8B
 9 | 78 DA | 1F 8B

I have seen a lot of random looking blobs starting with 78 9C when reversing custom protocols at

work. I have never seen the other two headers.

In Go we can inflate the blob (decompress them) with zlib.NewReader:

package main

import (
 "compress/zlib"
 "io"
 "os"

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 118/139

)

func main() {
 zlibFile, err := os.Open("test.zlib")
 if err != nil {
 panic(err)
 }
 defer zlibFile.Close()

 r, err := zlib.NewReader(zlibFile)
 if err != nil {
 panic(err)
 }
 defer r.Close()

 outFile, err := os.Create("out-zlib")
 if err != nil {
 panic(err)
 }
 defer outFile.Close()

 io.Copy(outFile, r)
}

Note that each chunk is not compressed individually. All IDAT chunks need to be extracted,

concatenated and decompressed together.

In our case, IDAT chunk has the 78 5E header:

00000000 78 5e ed c1 01 0d 00 00 00 c2 a0 f7 4f 6d 0f 07 |x^íÁ.....Â ÷Om..|
00000010 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000030 00 00 00 00 00 70 ae 06 96 0a 00 01 |.....p®.....|

Everything else is straightforward after this.

Tool Operation

Operation is pretty simple. PNG is passed by -file . Tool will display the PNG info like height and

width. -c flag will display the chunks and their first 20 bytes. Chunks can be saved to file

individually. Modifying the program to collect, decompress and store the IDAT chunks is also

simple.

[Footnote 1]: We can hide data in random chunks. The hidden chunk must be added before/after

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 119/139

IDAT chunks. The standard expects the chain of IDAT chunks to be uninterrupted.

[png-chunk]: https://parsiya.net/blog/2018-02-25-extracting-png-chunks-with-go/# 06 - Go-Fuzz

This section talks about [Go-Fuzz][go-fuzz]. Go-Fuzz is a coverage-guided fuzzer for Go code.

This section might be renamed to Fuzzing when new content arrives.

Start by reading the Quickstart guide and a few of the examples. Then move to sections 2 and 3 for

hands-on practice.

Table of Contents

06.1 - Go-Fuzz Quickstart

06.2 - Fuzzing iprange with Go-Fuzz

06.2 - Fuzzing goexif2 with Go-Fuzz

[go-fuzz]: https://github.com/dvyukov/go-fuzz# Go-Fuzz Quickstart

1. Get Go-fuzz with go get github.com/dvyukov/go-fuzz .

2. Build and install go-fuzz and go-fuzz-build .
cd src\github.com\dvyukov\go-fuzz\go-fuzz

go install

cd ..\go-fuzz-build

go install

3. Get the target package and store it in GOPATH . I usually keep it under
src\github.com\author\project .

4. Create a new file in the target package named Fuzz.go .

5. Create a function named Fuzz inside Fuzz.go with this signature func Fuzz(data []byte)
int .

6. Fuzz should return 1 if input is good and 0 otherwise.

7. Create fuzzing directory, e.g. go-fuzz-project-name .

8. go-fuzz-build github.com/author/project (note forward slashes even on Windows). Copy

the resulting file (project-fuzz.zip) to the fuzzing directory.

9. Make a directory called corpus and store samples there.

10. go-fuzz -bin=project-fuzz.zip -workdir=. to begin fuzzing.

Examples

"Fuzzing the new unit testing" by Dmitry Vyukov (Go-Fuzz creator): https://go-

talks.appspot.com/github.com/dvyukov/go-fuzz/slides/fuzzing.slide#1

"go-fuzz github.com/arolek/ase" by Damian Gryski: https://medium.com/@dgryski/go-fuzz-

github-com-arolek-ase-3c74d5a3150c

"Going down the rabbit hole with go-fuzz" by Nemanja Mijailovic:

https://mijailovic.net/2017/07/29/go-fuzz/

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 120/139

DNS parser, meet Go fuzzer by Filippo Valsorda: https://blog.cloudflare.com/dns-parser-meet-

go-fuzzer/

"Automated Testing with Go-Fuzz" GothamGo 2015: https://www.youtube.com/watch?

v=kOZbFSM7PuI

"Fuzzing Markdown parser written in Go" by Krzysztof Kowalczyk:

https://blog.kowalczyk.info/article/n/fuzzing-markdown-parser-written-in-go.html

Continue reading ⇒ 06.2 - Fuzzing iprange with Go-Fuzz# 06.2 - Fuzzing iprange with Go-Fuzz

This article will show how to use Go-Fuzz to fuzz a Go library named iprange at:

[https://github.com/malfunkt/iprange][iprange-github]

Code and fuzzing artifacts are at code/06/06.2/.

Setup

The article assumes you have a working Go installation and have go-fuzz and go-fuzz-build

executables in PATH . If not, use the quickstart or any other tutorial to do so and return here when
you are done.

The Fuzz Function

The Fuzz function is the fuzzer's entry point. It's a function with the following signature:

func Fuzz(data []byte) int

It takes a byte slice from the fuzzer and returns an integer. This gives us great flexibility in deciding

what we want to fuzz. Fuzz is part of the target package so we can also fuzz package internals.

The output of Fuzz is our feedback to the fuzzer. If the input was valid (usually in the correct

format), it should return 1 and 0 otherwise.

Having roughly correctly formatted input is important. Usually, we are dealing with formatted data.

Just randomly sending byte blobs to the target is not going to do much. We want data that can

bypass preliminary format checks. We pass the blob to either the target package or another

function (e.g. some format converter) and check if it passes the parser check without any errors. If

so, Fuzz must return 1 to tell go-fuzz that our format was good.

For a good example, look at the PNG fuzz function from the readme file:

func Fuzz(data []byte) int {
 img, err := png.Decode(bytes.NewReader(data))
 if err != nil {
 if img != nil {

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 121/139

 panic("img != nil on error")
 }
 return 0
 }
 var w bytes.Buffer
 err = png.Encode(&w, img)
 if err != nil {
 panic(err)
 }
 return 1
}

Fuzzing iprange

We can use the usage section in the [iprange][iprange-github] readme to become familiar with the

package.

Then we need to get the package with go get github.com/malfunkt/iprange . This will copy
package files to $GOPATH\src\github.com\malfunkt\iprange .

Note: I am using commit 3a31f5ed42d2d8a1fc46f1be91fd693bdef2dd52 , if the bug gets fixed, use
this specific commit to reproduce the crashes.

Fuzz Function

Now we create a new file inside the package named Fuzz.go and write our fuzz function:

package iprange

func Fuzz(data []byte) int {
 _, err := ParseList(string(data))
 if err != nil {
 return 0
 }
 return 1
}

Fuzz function

We are converting the input from go-fuzz to a string and passing it to ParseList . If the parser
returns an error, then it's not good input and we will return 0 . If it passes the check, we return 1 .
Good input will be added to the original corpus.

If go-fuzz achieves more coverage with a specific input, it will be added to corpus even if we

return 0 . But we do not need to care about that.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 122/139

go-fuzz-build

Next step is using go-fuzz-build to make the magic blob. Create a directory (I always use my
src directory`) and run this command inside it:

go-fuzz-build github.com/malfunkt/iprange

Note you need to use forward slashes on Windows too. If Fuzz was written correctly we will get a

zip file named iprange-fuzz.zip .

Note: This step usually takes a while. If the command line is not responsive after a few minutes,

press enter a couple of times to check if it has finished. Sometimes the file is created but the

command line windows is not updated.

Building go-fuzz-build

Corpus

To have meaningful fuzzing, we need to provide good samples. Create a directory named corpus
inside the work directory and add one sample per file (file name does not matter).

Copy the items from [supported formats][iprange-supported] section of iprange readme. I

created three files test1/2/3 :

test1: 10.0.0.1, 10.0.0.5-10, 192.168.1.*, 192.168.10.0/24

test2: 10.0.0.1-10,10.0.0.0/24,
10.0.0.0/24

test3: 10.0.0.*, 192.168.0.*, 192.168.1-256

Fuzzing

Now we can run go-fuzz .

go-fuzz -bin=iprange-fuzz.zip -workdir=.

Note workdir should point to the parent of corpus directory.

Fuzzing Results

We will quickly get a crash and some new files will be added to the corpus .

Running go-fuzz

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 123/139

Analyzing the Crash

While we are fuzzing, we can analyze the current crash. go-fuzz has created two other directories

besides corpus .

suppressions contains crash logs. This allows go-fuzz to skip reporting the same exact

crash.

crashers has our loot. Each crash has three files and the file name is SHA-1 hash of input. In

this crash we have:
17ee301be06245aa20945bc3ff3c4838abe13b52 contains the input that caused the crash
0.0.0.0/40 .

17ee301be06245aa20945bc3ff3c4838abe13b52.quoted is the input but quoted as a string.

17ee301be06245aa20945bc3ff3c4838abe13b52.output contains the crash dump.

Crash dump is:

panic: runtime error: index out of range

goroutine 1 [running]:
encoding/binary.binary.bigEndian.Uint32(...)
 /Temp/go-fuzz-build049016974/goroot/src/encoding/binary/binary.go:111
github.com/malfunkt/iprange.(*ipParserImpl).Parse(0xc04209d800, 0x526cc0, 0xc042083040
 /Temp/go-fuzz-build049016974/gopath/src/github.com/malfunkt/iprange/y.go:510 +0x2b
github.com/malfunkt/iprange.ipParse(0x526cc0, 0xc042083040, 0xa)
 /Temp/go-fuzz-build049016974/gopath/src/github.com/malfunkt/iprange/y.go:308 +0x8f
github.com/malfunkt/iprange.ParseList(0xc042075ed0, 0xa, 0xa, 0x200000, 0xc042075ed0,
 /Temp/go-fuzz-build049016974/gopath/src/github.com/malfunkt/iprange/y.go:63 +0xd6
github.com/malfunkt/iprange.Fuzz(0x3750000, 0xa, 0x200000, 0x3)
 /Temp/go-fuzz-build049016974/gopath/src/github.com/malfunkt/iprange/fuzz.go:4 +0x8
go-fuzz-dep.Main(0x5196e0)
 /Temp/go-fuzz-build049016974/goroot/src/go-fuzz-dep/main.go:49 +0xb4
main.main()
 /Temp/go-fuzz-build049016974/gopath/src/github.com/malfunkt/iprange/go.fuzz.main/m
exit status 2

bigEndian.Uint32

First stop is the Go standard library for encoding/binary.binary.bigEndian.Uint32 . The source
code for this method is at:

[https://github.com/golang/go/blob/master/src/encoding/binary/binary.go#L110][bigendian-

uint32]

func (bigEndian) Uint32(b []byte) uint32 {
 _ = b[3] // bounds check hint to compiler; see golang.org/issue/14808

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 124/139

 return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
}

Going to the issue in the comment, we land at [https://github.com/golang/go/issues/14808][issue-

14808]. We can see what the bounds check is for. It's checking if the input has enough bytes and if

not, it will panic before bytes are accessed. So this part of the chain is "working as intended."

This small piece of code results in a panic:

// Small program to test panic when calling Uint32(nil).
package main

import (
 "encoding/binary"
)

func main() {
 _ = binary.BigEndian.Uint32(nil)
 // _ = binary.BigEndian.Uint32([]byte(nil))
}

And the crash is similar to what we have seen:

$ go run test1.go
panic: runtime error: index out of range

goroutine 1 [running]:
encoding/binary.binary.bigEndian.Uint32(...)
 C:/Go/src/encoding/binary/binary.go:111
main.main()
 C:/Users/test-user/Go/src/gofuzz-stuff/malfunkt-iprange/test1.go:9 +0x11
exit status 2

Parse

Next item in the chain is at [https://github.com/malfunkt/iprange/blob/master/y.go#L309][iprange-

parse]. It's a huge method but we know the method that was called so we can just search for

Uint32 . The culprit is inside [case 5][iprange-case5].

case 5:
 ipDollar = ipS[ippt-3 : ippt+1]
 //line ip.y:54
 {
 mask := net.CIDRMask(int(ipDollar[3].num), 32)
 min := ipDollar[1].addrRange.Min.Mask(mask)
 maxInt := binary.BigEndian.Uint32([]byte(min)) + // <----
 0xffffffff -

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 125/139

 binary.BigEndian.Uint32([]byte(mask)) // <----
 maxBytes := make([]byte, 4)
 binary.BigEndian.PutUint32(maxBytes, maxInt)
 maxBytes = maxBytes[len(maxBytes)-4:]
 max := net.IP(maxBytes)
 ipVAL.addrRange = AddressRange{
 Min: min.To4(),
 Max: max.To4(),
 }
 }

We can see two calls. The first is for min and the second is for mask . mask comes from the

output of [net.CIDRMask][godoc-net-cidrmask]. Looking at the source code, we can see that it

returns nil if mask is not valid:

// CIDRMask returns an IPMask consisting of `ones' 1 bits
// followed by 0s up to a total length of `bits' bits.
// For a mask of this form, CIDRMask is the inverse of IPMask.Size.
func CIDRMask(ones, bits int) IPMask {
 if bits != 8*IPv4len && bits != 8*IPv6len {
 return nil
 }
 if ones < 0 || ones > bits {
 return nil
 }
 // removed
}

We can investigate this by modifying the local iprange package code and printing

ipDollar[3].num and mask .

case 5:
 ipDollar = ipS[ippt-3 : ippt+1]
 //line ip.y:54
 {
 fmt.Printf("ipdollar[3]: %v\n", ipDollar[3].num) // print ipdollar[3]
 mask := net.CIDRMask(int(ipDollar[3].num), 32)
 fmt.Printf("mask: %v\n", mask) // print mask
 min := ipDollar[1].addrRange.Min.Mask(mask)
 fmt.Printf("min: %v\n", min) // print min
 maxInt := binary.BigEndian.Uint32([]byte(min)) +
 0xffffffff -
 binary.BigEndian.Uint32([]byte(mask))
 maxBytes := make([]byte, 4)
 binary.BigEndian.PutUint32(maxBytes, maxInt)
 maxBytes = maxBytes[len(maxBytes)-4:]
 max := net.IP(maxBytes)
 ipVAL.addrRange = AddressRange{
 Min: min.To4(),

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 126/139

 Max: max.To4(),
 }
 }

Reproducing the Crash

Reproducing the crash is easy, we already have input and can just plug it into a small program using

our Fuzz function:

// Small program to investigate a panic in iprange for invalid masks.
package main

import "github.com/malfunkt/iprange"

func main() {
 _ = Fuzz([]byte("0.0.0.0/40"))
}

func Fuzz(data []byte) int {
 _, err := iprange.ParseList(string(data))
 if err != nil {
 return 0
 }
 return 1
}

Note: We could write an easier test but I wanted to keep the Fuzz function intact.

$ go run test2.go
ipdollar[3]: 40
mask: <nil>
min: <nil>
panic: runtime error: index out of range

goroutine 1 [running]:
encoding/binary.binary.bigEndian.Uint32(...)
 C:/Go/src/encoding/binary/binary.go:111
github.com/malfunkt/iprange.(*ipParserImpl).Parse(0xc04209e000, 0x500920, 0xc04209c050
 yaccpar:354 +0x202f
github.com/malfunkt/iprange.ipParse(0x500920, 0xc04209c050, 0xa)
 yaccpar:153 +0x5f
github.com/malfunkt/iprange.ParseList(0xc042085ef8, 0xa, 0xa, 0x20, 0xc042085ef8, 0xa,
 ip.y:93 +0xbe
main.Fuzz(0xc042085f58, 0xa, 0x20, 0xc042085f58)
 C:/Users/test-user/Go/src/gofuzz-stuff/malfunkt-iprange/test1.go:10 +0x6c
main.main()
 C:/Users/test-user/Go/src/gofuzz-stuff/malfunkt-iprange/test1.go:6 +0x69
exit status 2

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 127/139

We can see 40 is passed to net.CIDRMask function and the result is nil . That causes the crash.
We can see min is also nil .

Both min and mask are nil and result in a panic.

More Crashes?

I let the fuzzer run for another 20 minutes but it did not find any other crashes. Corpus was up to
60 items like:

2.8.0.0/4,0.0.0.5/0,2.8.0.0/4,0.0.0.5/0,2.8.0.0/4,0.0.0.5/0

0.0.0.0/4,0.0.0.5-0,2.8.1.*,2.8.0.0/2

Solution

Just pointing out bugs is not useful. Being a security engineer is not just finding vulnerabilities.

The quick solution is checking the values of min and mask before calling Uint32 .

A better solution is to check the input for validity and good format before processing. For example,

for IPv4 masks we can check if they are in the 16-30 range.

Continue reading ⇒ 06.3 - Fuzzing goexif2 Go-Fuzz
[go-fuzz]: https://github.com/dvyukov/go-fuzz [iprange-github]:

https://github.com/malfunkt/iprange [iprange-supported]:

https://github.com/malfunkt/iprange#supported-formats [bigendian-uint32]:

https://github.com/golang/go/blob/master/src/encoding/binary/binary.go#L110 [issue-14808]:

https://github.com/golang/go/issues/14808 [iprange-parse]:

https://github.com/malfunkt/iprange/blob/master/y.go#L309 [iprange-case5]:

https://github.com/malfunkt/iprange/blob/master/y.go#L498 [godoc-net-cidrmask]:

https://golang.org/pkg/net/#CIDRMask [net-cidrmask-github]:

https://github.com/golang/go/blob/master/src/net/ip.go#L68 # 06.3 - Fuzzing goexif2 with Go-Fuzz

This time we will be looking After `goexif` at [https://github.com/rwcarlsen/goexif][goexif-github].

Being a file parser, it's a prime target for `Go-Fuzz`. Unfortunately it has not been updated for a

while. Instead, we will be looking at a fork at [https://github.com/xor-gate/goexif2][goexif2-github].

Code and fuzzing artifacts are at code/06/06.3/.

TL;DR

Steps are similar to the previous part.

1. go get github.com/xor-gate/goexif2/exif

2. go get github.com/xor-gate/goexif2/tiff

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 128/139

3. Create Fuzz.go .

4. Build with go-fuzz-build .
go-fuzz-build github.com/xor-gate/goexif2/exif

5. Fuzz

6. ???

7. Crashes!

If panics have been fixed, you can clone the commit
e5a111b2b4bd00d5214b1030deb301780110358d .

Fuzz

The Fuzz function is easy straight forward:

// +build gofuzz

package exif

import "bytes"

func Fuzz(data []byte) int {
 _, err := Decode(bytes.NewReader(data))
 if err != nil {
 return 0
 }
 return 1
}

Samples

For samples, we need some pictures that contain exif data. The package comes with some samples

inside the samples directory but I used samples at the following repository minus corrupted.jpg :

https://github.com/ianare/exif-samples/tree/master/jpg

Running Out of Memory

During fuzzing I got a lot of crashes that were caused by lack of memory. This usually happens

when random bytes are read as field sizes and the size is not evaluated, thus the package will

allocate very large chunks of memory.

We are instrumenting the application around 10000 times a second, this adds up and the garbage

collector cannot keep up. Soon we need to download more RAM . You can see memory usage in the

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 129/139

following picture:

Go's GC hard at work

Looking at the fuzzer, we can see our restarts ratio is crap. This is the ratio of restarts to

executions. We want it to be around 1/10000 but we have fallen to 1/1500 . This means we are
crashing a lot. After a while, Go-Fuzz might even stop working (see stagnating total number of

execs in the picture below).

Go-Fuzz stops

Looking inside crash dumps, we see most of them are about running out of memory:

runtime: out of memory: cannot allocate 25769803776-byte block (25832882176 in use)
fatal error: out of memory

runtime stack:
runtime.throw(0x547da6, 0xd)
 /go-fuzz-build214414686/goroot/src/runtime/panic.go:616 +0x88
runtime.largeAlloc(0x600000000, 0x440001, 0x5f8330)
 /go-fuzz-build214414686/goroot/src/runtime/malloc.go:828 +0x117
runtime.mallocgc.func1()
 /go-fuzz-build214414686/goroot/src/runtime/malloc.go:721 +0x4d
runtime.systemstack(0x0)
 /go-fuzz-build214414686/goroot/src/runtime/asm_amd64.s:409 +0x7e
runtime.mstart()
 /go-fuzz-build214414686/goroot/src/runtime/proc.go:1175

This means we are running out of memory and it's not a legitimate crash. Before continuing we

need to go and investigate the root cause.

Lesson #0: Fix Go-Fuzz running out of memory:

Fix bugs that result in the allocation of large chunks of memory.

Run fewer workers with -procs . By default Go-Fuzz uses all of your CPU cores (including

virtual).

Analyzing Crashes

Let's look at our crashes.

05/03/2018 12:16 AM 365 171e8e5ca3e3d609322376915dcfa3dd56938845
05/03/2018 12:16 AM 3,651 171e8e5ca3e3d609322376915dcfa3dd56938845.output
05/03/2018 12:16 AM 912 171e8e5ca3e3d609322376915dcfa3dd56938845.quoted
05/01/2018 11:53 PM 186 3f5b7d448a0791f5739fa0a2371bb2492b64f835
05/01/2018 11:53 PM 1,928 3f5b7d448a0791f5739fa0a2371bb2492b64f835.output
05/01/2018 11:53 PM 312 3f5b7d448a0791f5739fa0a2371bb2492b64f835.quoted

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 130/139

05/01/2018 11:25 PM 114 49dfc363adbbe5aac9c2f8afbb0591c3ef1de2c3
05/01/2018 11:25 PM 1,383 49dfc363adbbe5aac9c2f8afbb0591c3ef1de2c3.output
05/01/2018 11:25 PM 186 49dfc363adbbe5aac9c2f8afbb0591c3ef1de2c3.quoted
05/01/2018 11:26 PM 22 a59a2ad5701156b88c6a132e1340fe006f67280c
05/01/2018 11:26 PM 1,677 a59a2ad5701156b88c6a132e1340fe006f67280c.output
05/01/2018 11:26 PM 63 a59a2ad5701156b88c6a132e1340fe006f67280c.quoted

Reproducing Crashes

As we know Go-Fuzz conveniently stores the inputs in files. We can use the following code snippet

to reproduce crashes:

// Sample app to test crash a5 for xor-gate/goexif2.
package main

import (
 "fmt"
 "os"

 "github.com/xor-gate/goexif2/exif"
)

func main() {
 f, err := os.Open("crashers\\a59a2ad5701156b88c6a132e1340fe006f67280c")
 if err != nil {
 panic(err)
 }
 defer f.Close()

 _, err = exif.Decode(f)
 if err != nil {
 fmt.Println("err:", err)
 return
 }
 fmt.Println("no err")
}

A5 and 3F Crashes

These two panics are similar:

panic: runtime error: makeslice: len out of range

goroutine 1 [running]:
github.com/xor-gate/goexif2/tiff.(*Tag).convertVals(0xc04205a280, 0xc042080480, 0xc042
 /go-fuzz-build214414686/gopath/src/github.com/xor-gate/goexif2/tiff/tag.go:258 +0x
github.com/xor-gate/goexif2/tiff.DecodeTag(0x30a0000, 0xc042080480, 0x5605c0, 0x613170

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 131/139

 /go-fuzz-build214414686/gopath/src/github.com/xor-gate/goexif2/tiff/tag.go:182 +0x
github.com/xor-gate/goexif2/tiff.DecodeDir(0x30a0000, 0xc042080480, 0x5605c0, 0x613170

// removed

A5 crash payload is:

00000000 49 49 2a 00 08 00 00 00 30 30 30 30 05 00 00 00 |II*.....0000....|
00000010 00 a0 30 30 30 30 |. 0000|

The panic is happening at https://github.com/xor-gate/goexif2/blob/develop/tiff/tag.go#L258:

case DTRational:
 t.ratVals = make([][]int64, int(t.Count))
 for i := range t.ratVals {

We can add some print statements to the local copy the package and investigate it:

case DTRational:
 fmt.Println("t.count: ", t.Count)
 t.ratVals = make([][]int64, int(t.Count))
 for i := range t.ratVals {

Running test-crash-a5.go we get the value:

$ go run test-crash-a5.go
t.count: 2684354560
panic: runtime error: makeslice: len out of range

goroutine 1 [running]:
github.com/xor-gate/goexif2/tiff.(*Tag).convertVals(0xc04205a1e0, 0xc042082018, 0xc042

Bonus: int Overflow and Go Playground's Operating System

As you have noticed, the constant 2684354560 is more than the maximum of signed int32

(2147483647). However, when trying to cast this value locally in Windows 10 64-bit VM or on the

Go playground we get different results.

Consider this mini-example:

// Testing overflow on int.
package main

import "fmt"

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 132/139

func main() {
 i := int(2684354560)
 fmt.Println(i)
}

Running this in the Windows 10 64-bit VM, does not return an error. While running the same

program in Go playground returns this error prog.go:8:11: constant 2684354560 overflows
int32 .

This means the playground is using 32 bit int s and locally we are using 64 bit ones. Local is

obvious because we are in a 64 bit OS. To get the OS of the Go playground we can use this other

small program:

// Get OS and architecture.
package main

import (
 "fmt"
 "runtime"
)

func main() {
 fmt.Println(runtime.GOOS)
 fmt.Println(runtime.GOARCH)
}

And we get:

nacl
amd64p32

amd64p32 means it's a 64-bit OS using 32-bit pointers and int s. We can use unsafe.Sizeof to

see this.

// Get int and pointer size.
package main

import (
 "fmt"
 "unsafe"
)

func main() {
 var i int
 var p *int
 var p2 *float32

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 133/139

 fmt.Printf("Size of int : %d\n", unsafe.Sizeof(i))
 fmt.Printf("Size of *int : %d\n", unsafe.Sizeof(p))
 fmt.Printf("Size of *float32 : %d\n", unsafe.Sizeof(p2))
}

On Go playground we get:

Size of int : 4
Size of *int : 4
Size of *float32 : 4

But locally we get:

$ go run int-pointer-size.go
Size of int : 8
Size of int*: 8
Size of *float32 : 8

Note: Pointers are just memory addresses. It does not matter what they are pointing to. As you can

see *float32 has the same size as a *int32 or *int64 .

Lesson #1: int is OS dependent. It's better to use data types with explicit lengths like int32 and

int64 . Also if you do not need negative numbers, use unsigned versions (but be careful of
underflows).

makeslice: len out of range

Now let's get back to the crash. We are trying to create a large slice and the result is an error. We

can trace back this error to slice.go in Go source:

func makeslice(et *_type, len, cap int) slice {
 // NOTE: The len > maxElements check here is not strictly necessary,
 // but it produces a 'len out of range' error instead of a 'cap out of range' erro
 // when someone does make([]T, bignumber). 'cap out of range' is true too,
 // but since the cap is only being supplied implicitly, saying len is clearer.
 // See issue 4085.
 maxElements := maxSliceCap(et.size)
 if len < 0 || uintptr(len) > maxElements {
 panic(errorString("makeslice: len out of range"))
 }

 if cap < len || uintptr(cap) > maxElements {
 panic(errorString("makeslice: cap out of range"))
 }

 p := mallocgc(et.size*uintptr(cap), et, true)

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 134/139

 return slice{p, len, cap}
}

// maxSliceCap from the same file.
// maxSliceCap returns the maximum capacity for a slice.
func maxSliceCap(elemsize uintptr) uintptr {
 if elemsize < uintptr(len(maxElems)) {
 return maxElems[elemsize]
 }
 return _MaxMem / elemsize
}

_MaxMem is calculated in malloc.go and it dictates how much memory can be allocated. On

Windows 64-bit it seems to be 32GB or 35 bits.

Root cause analysis: We are allocating too much memory.

Lesson #2: Amount of memory available for malloc is OS dependent and somewhat arbitrary.

Lesson #3: Manually check size before allocating memory for slices.

But t.Count has to come from somewhere.

t.Count's Origin

t.Count is calculated a bit further up at line 133.

err = binary.Read(r, order, &t.Count)
if err != nil {
 return nil, newTiffError("tag component count read failed", err)
}

// There seems to be a relatively common corrupt tag which has a Count of
// MaxUint32. This is probably not a valid value, so return early.
if t.Count == 1<<32-1 {
 return t, newTiffError("invalid Count offset in tag", nil)
}

We are reading 4 bytes (Count is uint32) and populating t.Count . According to RFC2306 - Tag

Image File Format (TIFF) - F Profile for Facsimile:

TIFF fields (also called entries) contain a tag, its type (e.g. short, long, rational, etc.), a count

(which indicates the number of values/offsets) and a value/offset.

So we get 2684354560 when we read A0 00 00 00 from our payload in little-endian:

00000000 49 49 2a 00 08 00 00 00 30 30 30 30 05 00 00 00 |II*.....0000....|
00000010 00 a0 30 30 30 30 |. 0000|

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 135/139

Lesson #4: After reading data, check them for validity. This is more important for field lengths.

Fix A5 and 3F Crashes

I could not find anything about the maximum number of types in a tag in the RFC. But it's a dword

(4 bytes) so it can contain values that cause the panic in makeslice . We can choose a large
enough value that does not cause the panic. I think 2147483647 or 1<<31-1 is a good

compromise.

We can add our new check to the current check:

// There seems to be a relatively common corrupt tag which has a Count of
// MaxUint32. This is probably not a valid value, so return early.
// Also check for invalid count values.
if t.Count == 1<<32-1 || t.Count >= 1<<31-1 {
 return t, newTiffError("invalid Count offset in tag", nil)
}

Now both crashes are avoided:

$ go run test-crash-a5.go
err: exif: decode failed (tiff: invalid Count offset in tag)

$ go run test-crash-3f.go
err: loading EXIF sub-IFD: exif: sub-IFD ExifIFDPointer decode failed: tiff: invalid C

49 Crash

This crash payload is:

00000000 4d 4d 00 2a 00 00 00 08 00 07 30 30 30 30 30 30 |MM.*......000000|
00000010 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 |0000000000000000|
00000020 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 |0000000000000000|
00000030 30 30 30 30 30 30 30 30 30 30 87 69 00 04 00 00 |0000000000.i....|
00000040 00 00 30 30 30 30 30 30 30 30 30 30 30 30 30 30 |..00000000000000|
00000050 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 |0000000000000000|
00000060 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 |0000000000000000|
00000070 30 30 |00|

And results in:

panic: runtime error: index out of range

goroutine 1 [running]:
github.com/xor-gate/goexif2/tiff.(*Tag).Int64(...)

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 136/139

 go-fuzz-build214414686/gopath/src/github.com/xor-gate/goexif2/tiff/tag.go:363
github.com/xor-gate/goexif2/exif.loadSubDir(0xc042080510, 0x547f15, 0xe, 0xc042080390,
 go-fuzz-build214414686/gopath/src/github.com/xor-gate/goexif2/exif/exif.go:211 +0x
github.com/xor-gate/goexif2/exif.(*parser).Parse(0x613170, 0xc042080510, 0xc0420804b0,
 go-fuzz-build214414686/gopath/src/github.com/xor-gate/goexif2/exif/exif.go:190 +0x
github.com/xor-gate/goexif2/exif.Decode(0x560240, 0xc042080480, 0x5ae92f8f, 0x212abedc
 go-fuzz-build214414686/gopath/src/github.com/xor-gate/goexif2/exif/exif.go:331 +0x
github.com/xor-gate/goexif2/exif.Fuzz(0x38f0000, 0x72, 0x200000, 0xc042047f48)
 go-fuzz-build214414686/gopath/src/github.com/xor-gate/goexif2/exif/Fuzz.go:8 +0xba
go-fuzz-dep.Main(0x550580)
 go-fuzz-build214414686/goroot/src/go-fuzz-dep/main.go:49 +0xb4
main.main()
 go-fuzz-build214414686/gopath/src/github.com/xor-gate/goexif2/exif/go.fuzz.main/ma
exit status 2

This can be reproduced by running test-crash-49.go . At this point we know the drill. Looking at

tag.go:363:

// Int64 returns the tag's i'th value as an integer. It returns an error if the
// tag's Format is not IntVal. It panics if i is out of range.
func (t *Tag) Int64(i int) (int64, error) {
 if t.format != IntVal {
 return 0, t.typeErr(IntVal)
 }
 return t.intVals[i], nil
}

It's known that this method can panic. We need to modify it (and the other similar ones) to return

an error instead.

Fix 49 Crash

The fix is straightforward. Before accessing t.intVals[i] we need to check if the index is valid.

This can be accomplished by checking it against len(t.intVals[i]) .

// Int64 returns the tag's i'th value as an integer. It returns an error if the
// tag's Format is not IntVal. It panics if i is out of range.
func (t *Tag) Int64(i int) (int64, error) {
 if t.format != IntVal {
 return 0, t.typeErr(IntVal)
 }
 if i >= len(t.intVals) {
 return 0, newTiffError("index out of range in intVals", nil)
 }
 return t.intVals[i], nil
}

Lesson #5: Check index against array length before access.

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 137/139

Now we do not panic but there's no error because it's suppressed at exif.go:211:

func loadSubDir(x *Exif, ptr FieldName, fieldMap map[uint16]FieldName) error {
 tag, err := x.Get(ptr)
 if err != nil {
 return nil
 }
 offset, err := tag.Int64(0)
 if err != nil { // error is suppressed here
 return nil
 }
 // removed

The new error check needs to be added to these methods:

Rat2

Int64

Int

Float

A bit further down inside the MarshalJSON method we can see errors being ignored:

// removed
for i := 0; i < int(t.Count); i++ {
 switch t.format {
 case RatVal:
 n, d, _ := t.Rat2(i)
 rv = append(rv, fmt.Sprintf(`"%v/%v"`, n, d))
 case FloatVal:
 v, _ := t.Float(i)
 rv = append(rv, fmt.Sprintf("%v", v))
 case IntVal:
 v, _ := t.Int(i)
 rv = append(rv, fmt.Sprintf("%v", v))
 }
}
// removed

Looking at the function we can see by ignoring the errors, we will have garbage data in the JSON.

However, I don't think we need to return errors here but I could be wrong.

Adding Crashes to Tests

After things are fixed, we need to add the crashes to tests. This will discover if these bug regress in

the future. Unfortunately, the package uses go generate to generate tests and I have no clue how

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 138/139

to use it. But I know how to write normal Go test using the testing package. Our payloads are pretty

small so we will embed them in the test file instead of adding extra files to the package.

package exif

import (
 "bytes"
 "fmt"
 "os"
 "testing"
)

var goFuzzPayloads = make(map[string]string)

// Populate payloads.
func populatePayloads() {

 goFuzzPayloads["3F"] = "II*\x00\b\x00\x00\x00\t\x000000000000" +
 "00000000000000000000" +
 "00000000000000000000" +
 "00000000000000000000" +
 "00000000000000000000" +
 "000000i\x87\x04\x00\x01\x00\x00\x00\xac\x00\x00\x0000" +
 "00000000000000000000" +
 "00000000000000000000" +
 "0000000000000000\x05\x00\x00\x00" +
 "\x00\xe00000"

 goFuzzPayloads["49"] = "MM\x00*\x00\x00\x00\b\x00\a0000000000" +
 "00000000000000000000" +
 "000000000000000000\x87i" +
 "\x00\x04\x00\x00\x00\x0000000000000000" +
 "00000000000000000000" +
 "00000000000000"

 goFuzzPayloads["A5"] = "II*\x00\b\x00\x00\x000000\x05\x00\x00\x00\x00\xa000" +
 "00"

}

// Test for Go-fuzz crashes.
func TestGoFuzzCrashes(t *testing.T) {
 for k, v := range goFuzzPayloads {
 t.Log("Testing gofuzz payload", k)
 v, err := Decode(bytes.NewReader([]byte(v)))
 t.Log("Results:", v, err)
 }
}

func TestMain(m *testing.M) {
 populatePayloads()
 ret := m.Run()

25/03/2023, 05:21 Hacking with Go

https://md2pdf.netlify.app 139/139

 os.Exit(ret)
}

Lesson #6: Add Go-Fuzz crashes to unit tests. This is useful for regression testing.

Lessons Learned

Go-Fuzz can crash when running out of memory and return false positives. We can throttle it

or fix memory allocation bugs before resuming.

Use data types with explicit lengths such as int32 and int64 instead of OS dependent ones

like int .

Amount of memory available for malloc is OS dependent and somewhat arbitrary.

Manually check the size before allocating memory for slices.

Check data (esp. field lengths) for validity after reading them.

Check index against array length before access.

Add Go-Fuzz crashes to unit tests.

