25/03/2023,05:21 Hacking with Go

Hacking with Go

This is my attempt at filling the gap in Go security tooling. When starting to learn Go, | learned from
a lot of tutorials but | could find nothing that is geared towards security professionals.

These documents are based on the Gray/Black Hat Python/C# series of books. | like their style.
Join me as | learn more about Go and attempt to introduce Go to security denizens without fluff and
through practical applications.

Table of Contents

e 01-
e 02-

(o}

o

(o}

o

(o}

o

(o}

e 03 -

o

(o}

Setting up a Go development environment

Basics
02.1 - Packages, functions, variables, basic types, casting and constants

02.2 - for, if, else, switch and defer

02.3 - Pointers, structs, arrays, slices and range
02.4 - Methods and interfaces

02.5 - Printf, Scanf, bufio readers and maps
02.6 - Goroutines and channels

02.7 - Error handling

Useful Go packages - WIP
03.1 - flag package

03.2 - log package

https://md2pdf netlify.app 1/139

25/03/2023,05:21 Hacking with Go

o 04.1 - Basic TCP and UDP clients
o 04.2 - TCP servers
04.3 - TCP proxy
04.4 - SSH clients
04.5 - SSH Harvester
e 05 - Parsing Files
o 05.1 - Extracting PNG Chunks

e 06 - Go-Fuzz
o 06.1 - Go-Fuzz Quickstart

[e]

[¢]

[e]

o 06.2 - Fuzzing iprange with Go-Fuzz
o 06.2 - Fuzzing goexif2 with Go-Fuzz

FAQ

Why not use Python?

Python reigns supreme in security and for good reason. It's a powerful programming language.
There are a lot of supporting libraries out there both in security and for general use. However, |
think Go has its merits and can occupy a niche.

Why not use other tutorials?

There are a lot of tutorials for Go out there. None are geared towards security professionals. Our
needs are different, we want to write quick and dirty scripts that work (hence Python is so
successful). Similar guides are available in Python and other programming languages.

Why not just use Black Hat Go?

There's a book named Black Hat Go by No Starch in production. Looking at the author list, | cannot
compete with them in terms of experience and knowledge. That is a proper book with editors and a
publisher while | am just some rando learning as | go. It does not take a lot of CPU power to decide
the book will be better.

But the book is not out yet. Today is December 6th 2017 and the book is marked for release in
August 2018. The book page does not have any released chapters or material. We can assume it's
going to be similar to the other gray|black hat books. This repository and that book are
inevitably going to have a lot of overlap. Think of this as warm up while we wait.

Update February 2020: Black Hat Go has been released. Please see the code samples at
https://github.com/blackhat-go/bhg.

Rewrite in Rust/Haskell
Honestly | will be very much interested in a similar guide for Rust/Haskell geared for security
people. Please let me know if you create one.

Feedback

https://md2pdf netlify.app 2/139

25/03/2023,05:21 Hacking with Go

| am always interested in feedback. There will be errors and there are always better ways to code.
Please create an issue here. If this has helped you please let me know, it helps with the grind.

Other resources

There are tons of Go resources online. | am going to try not to re-hash what has been already
created. Hacking with Go is not meant to be self-contained. When in doubt, use one of these
resources or just search.

The following links helped me get started:

e GoDoc: https://godoc.org/

e A Tour of Go: https://tour.golang.org/

e Go by Example: https://gobyexample.com/

e Go playground: https://play.golang.org/

o Effective Go: https://golang.org/doc/effective_go.html

Similar resources to Hacking with Go :

e Security with Go published by Packt: https://github.com/PacktPublishing/Security-with-Go
e goHackTools : https://github.com/dreddsa5dies/goHackTools

e (Go programming language secure coding practices guide

License

e Code in this repository is licensed under GPLv3.

e Non-code content is licensed under Creative Commons Attribution-NonCommercial 4.0 (CC
BY-NC 4.0).

01 - Setting up a Go development
environment

| am going to use a Windows 10 x64 Virtual Machine (VM) but Go is available for most popular
platforms. | can already hear the infosec pros grunt. The Getting Started section on Go website has
how-tos for most popular platforms. You can find binaries and building instructions.

You can get free Windows VMs from modern.ie. Make a snapshot after you everything is set up.
They expire in 90 days and you can only re-arm them multiple times.

¢ |nstallation on Windows 10 VM
e GOPATH

e Test application

https://md2pdf netlify.app 3/139

25/03/2023, 05:21 Hacking with Go
e Editor
o Go playground

o Offline coding
e gofmt

e Starting curly brace

Installation on Windows 10 VM

1. Go to https://golang.org/doc/install and download the MSI binary.
2. Install the MSI, choose the default location.

3. Choose a development directory. | have created a shared directory in my VM. This way | can
code in host and run the guest. In my case it 's Z:\Go where Z is the shared drive/directory.

4. Set the following environmental variables (installer might have already set some up):
o GOROOT : C:\Go

o GOPATH : Z:\Go or the directory from step 3.
5. Add C:\Go\Bin to PATH.

6. Open a new cmd and run go env . You should see what you have setup.

Output of go env in my Windows 10 VM is:

$ go env

set GOARCH=amd64

set GOBIN=

set GOEXE=.exe

set GOHOSTARCH=amd64

set GOHOSTOS=windows

set GOOS=windows

set GOPATH=Z:\Go\

set GORACE=

set GOROOT=C:\Go

set GOTOOLDIR=C:\Go\pkg\tool\windows_amd64
set GCCGO=gccgo

set CC=gcc

set GOGCCFLAGS=—-m64 -mthreads -fmessage-length=0
—fdebug-prefix-map=C:\Users\IEUser\AppData\Local\Temp\go-build352203231=/tmp/go-build
—gno-record—-gcc-switches

set CXX=g++

set CGO_ENABLED=1

set CGO_CFLAGS=-g -02

set CGO_CPPFLAGS=

set CGO_CXXFLAGS=—-g -02

set CGO_FFLAGS=-g -02

set CGO_LDFLAGS=-g -02

set PKG_CONFIG=pkg-config

https://md2pdf netlify.app 4/139

25/03/2023,05:21

GOPATH

Hacking with Go

You can write Go.code anywhere but only code in a GOPATH directory can be executed with go
) '
run =,

Go to the development path in step 3 of last section and create three directories inside it:

e src : Source code.
e bin : Compiled files.

e pkg : Executables.

You can clone this repository in src and then run everything in code . The directory structure
looks like in the Windows 10 VM:

Z:\Go>tree /F

Z:.
—bin
—pkg

L—src

L Hacking-with-Go
L code
L—o1

01-01-HelloWorld.go

Test application
Let's write a quick "Hello World" application and run it.

package main
import "fmt"
func main() {

fmt.Println("Hello World!'")

And we can run it with go run 01-01-HelloWorld.go .

Z:\Go\src\hacking-with—-go\code\@1>go run 01-01-HelloWorld.go
Hello World!

Editor

https://md2pdf netlify.app 5/139

okanyildiz

okanyildiz

25/03/2023, 05:21 Hacking with Go
Choose whatever you like. There are many editors with Go support (you will see below) to choose
from. Some in no particular order are:

e SublimeText using GoSublime package.
e Atom via go-plus package.

e Visual Studio Code with Go extension.
e Vim-go.

e Emacs go-mode.

| personally use Sublime Text 3 and GoSublime.

Go playground

The online go playground at https://play.golang.org/ is good for prototyping/testing and sharing
quick scripts. It's pretty useful when Go is not installed on the machine. For more information read
Inside the Go Playground.

Offline coding
It's possible to run both the playground and documentation server offline.

e godoc -http :1234 will run the the documentation server at localhost:1234 .

e go tool tour will start an offline version of Tour of Go at localhost:3999 . This allows
coding offline in browser in Go playground.

gofmt

gofmt is Go's official formatting tool. It automatically modifies source code. The main reason
behind choosing an editor with Go support is running gofmt automatically on your code.

| personally do not agree with gofmt . For example it uses tabs (I like spaces). Tab-width is fixed at
four (I like two). But it's better if our code adheres to language standards.

For more information read go fmt your code. For usage see Command gofmt.

Starting curly brace

The starting curly brace needs to be on the same line as the the keyword starting the block (e.g.
for or if). Thisis a Go standard enforced by the compiler. It's explained in the Go FAQ.

This is wrong:

func main()

{

https://md2pdf netlify.app 6/139

25/03/2023, 05:21 Hacking with Go
fmt.Println("Hello World!'")

This is correct:

func main() {
fmt.Println("Hello World!'")
}

Continue reading = 02 - Basics

02 - Basics

This is a quick introduction to Go. This section assumes you know other programming languages
(most likely Python) and are familiar with basic programming structures.

These notes were originally created during the tutorials at Tour of Go and some other sources.
Then more were added to make it a reference/cheat sheet.

Table of Contents

e 02.1 - Packages, functions, variables, basic types, casting and constants
e 02.2 - for, if, else, switch and defer

e 02.3 - Pointers, structs, arrays, slices and range

e 02.4 - Methods and interfaces

e 02.5 - Printf, Scanf, bufio readers and maps

e 02.6 - Goroutines and channels

e 02.7 - Error handling

02.1 - Packages, functions, variables, basic
types, casting and constants

e Packages
o Exported names

e Functions
o Functions can return multiple values

o Named return values
o init function

e Variables

https://md2pdf netlify.app 7/139

25/03/2023,05:21 Hacking with Go
o |nitialization
o |nitialization Values

o Short variable declarations

Basic types

Casting

Constants

Raw strings

Packages

Go is divided into packages. Packages are the equivalent of modules in Python. Only the main
package can be executed with go run .

We can import packages with import . The Hello World application imported the fmt package.
Multiple imports are similar:

import (
Ilfm.tll
"math/rand"
"otherimport"

Exported names
In Go, a name is exported if it begins with a capital letter.

When importing a package, you can refer only to its exported names. Unexported names are not
accessible from outside the package.

Functions

Unlike C, type comes after variable name except for pointers.

// 02.1-01-multiply.go
package main

import "fmt"
func multiply(x int, y int) int {
return x x vy

by

func main() {

https://md2pdf netlify.app 8/139

25/03/2023,05:21 Hacking with Go
fmt.Println(multiply(10,20))

https://play.golang.org/p/jZrNpGAEWds

Functions can return multiple values

A function can return any number of values. Gone are the days when we had to use pointers in
function parameters as extra return values.

// 02.1-02-addTwo.go
package main

import "fmt"

func addTwo(x int, y int) (int, int) {
return x+2, y+2

}

func main() {

fmt.Println(addTwo(10,20))
}

https://play.golang.org/p/sHOLeYIBpOM

If multiple variables have the same type we can declare them like this:

func addTwo(x, y int) (int, int) {
return x+2, y+2

by

https://play.golang.org/p/Dwi94tWctK8

Named return values
Return values can be named. If so, they are treated as variables defined in the function.

A return statement without arguments returns the named return values. This is known as a "naked"
return. Using named return values and naked return is frowned upon unless it helps readability.

// 02.1-03-addTwo2.go
package main

import "fmt"

func addTwo2(x int, y int) (xPlusTwo int, yPlusTwo int) {
xPlusTwo = x + 2

https://md2pdf netlify.app 9/139

25/03/2023,05:21 Hacking with Go
yPlusTwo =y + 2

return xPlusTwo, yPlusTwo

func main() {
fmt.Println(addTwo2(20,30))

https://play.golang.org/p/wiCO9HJOuxDN

init function
init function is used to set up the state. A common practice is to declare flags in it.

1. Imported packages are initialized.
2. Variable declarations evaluate their initializers.

3. init function executes.

// 02.1-09-init.go
package main

import "fmt"

func init() {
fmt.Println("Executing init function!")

func main() {
fmt.Printin("Executing main!")

by

https://play.golang.org/p/HfL8YjGMsmw

Resulting in:

$ go run 02.1-09-init.go
Executing init function!
Executing main!

Like any other function, variables declared in init are only valid there.

Variables

Use var .

https://md2pdf netlify.app 10/139

25/03/2023,05:21 Hacking with Go

e var x int
Can be combined for multiple variables:

e var x,y int == var x int, y int

Initialization
Variables can be initialized.

e var a, b int = 10, 20

or
e var a int = 10
e var b int = 20

If initialized value is present during declaration, type can be omitted:
e var sampleInt, sampleBoolean, sampleString = 30, true, "Hello"

or

e var sampleInt = 30
e var sampleBoolean = true

e var sampleString = "Hello"

// 02.1-04-variables.go
package main

import "fmt"
func main() {
var a, b int = 10, 20

var sampleInt, sampleBoolean, sampleString = 30, true, "Hello"

fmt.Println(a, b , sampleInt, sampleBoolean, sampleString)

https://play.golang.org/p/TnRriIC43-NR

Initialization Values
If no initial value is assigned to a declared variable, it will geta zero value:

e 0 for numeric types (int, float, etc.).
e false for the boolean type.

e "" (the empty string) for strings.
https://md2pdf .netlify.app

11/139

25/03/2023,05:21 Hacking with Go

Short variable declarations

Inside a function (including main), the := short assignment statement can be used in place of a
var declaration with implicit type.

Outside a function, every statement begins with a keyword (var , func) sothe := constructis
not available.

// 02.1-05-short-declaration.go
package main

import "fmt"

func main() {
sampleInt, sampleBoolean, sampleString := 30, true, "Hello"

fmt.Println(sampleInt, sampleBoolean, sampleString)

https://play.golang.org/p/RMC-9h4eBLD

var statements can be put in different lines (increases readability):

var (
samplelnt = 30
sampleBoolean = true
sampleString = "Hello"

Several other Go constructs use the same format. For example import and const .

Basic types

bool
string

int int8 intl6 int32 int64 // use int unless you want a specific size
uint uint8 uintl1l6 uint32 uint64 uintptr // ditto, use uint

byte // alias for uint8

rune // alias for int32
// represents a Unicode char

float32 float64

https://md2pdf netlify.app 12/139

25/03/2023,05:21 Hacking with Go

complex64 complex128

Casting
Casting needs to be explicit, unlike C where some castings worked out of the box.

// 02.1-06-casting.go
package main

import (

Ilfmtll
)

func main() {
var a, b int = 20, 30
// Need to convert a and b to float32 before the division
var div float32 = float32(a) / float32(b)
// Cast float32 to int

var divInt = int(div)
fmt.Println(div, divInt)

https://play.golang.org/p/wKtudyE9f8q

Constants

Declared with const keyword. Can be character, string, boolean or numeric. Cannot use :=.
Coding standard requires constants to start with a capital letter.

// 02.1-07-const.go
package main

import "fmt"
const Whatever = "whatever"

func main() {
fmt.Println(Whatever)

const One =1
fmt.Println(One)

https://play.golang.org/p/RaNzEnRIFZ4

https://md2pdf netlify.app 13/139

25/03/2023,05:21 Hacking with Go

Multiple constants can be declared together:

const (
Constl = "Constant String"
Intl = 12345

True = true

Raw strings

Go has two types of strings:

e Interpreted strings: The typical string type created with " . Can contain anything except
new line and unescaped " .

* Raw strings: Encoded between """ (backticks) can contain new lines and other artifacts.

// 02.1-08-rawstring.go
package main

import "fmt"
func main() {
rawstr :=
"First line
some new lines
more new lines

"double quotes"

fmt.Print(rawstr)

https://play.golang.org/p/D8TwnBhwMOo

Continue reading = 02.2 - for, if, else, switch and defer

02.2 - for, if, else, switch and defer

» For

e ++and --

https://md2pdf netlify.app 14/139

25/03/2023,05:21 Hacking with Go
o |if

Short statements

e glse

switch

defer

For

Similar to C with two differences:

* No parenthesis around the three components. Having parenthesis will give result in an error.

e Curly braces { } are always required and the first one needs to be in the same line as for, if,
etc.

It has three components:

e for init; condition; post { }

// 02.2-01-forl.go
package main

import "fmt"

func main() {
// var sum int
sum := 0

for i := 0; 1 < 20; i++ {
sum += 1

fmt.Println(sum)

Init and post (first and last) components are optional and turn for into while :

// 02.2-02-for2.go
package main

import "fmt"

func main() {
// var sum int

sum, i := 0

for i <20 { // while (i<20)
sum += 1
i++

}

https://md2pdf netlify.app 15/139

25/03/2023,05:21 Hacking with Go

fmt.Println(sum)

Without the condition it turns into for(;;) or while(1)

for { // while(1)

++ and --

Don't be fooled by their use in for examples. According to the FAQ, they are "statements" and not
"expressions." In other words we can use them to increase or decrease a variable by one but
cannot assign the result to a different one.

This will not work:

// 02.2-03-incdec.go
package main

import "fmt"
func main() {
// var sum int
sum, 1 :=0
// This will not work

sum = i++
fmt.Println(sum)

Z:\Go\src\Hacking-with-Go\code\@02>go run 02.2-03-incdec.go
command-line-arguments
.\02.2-03-incdec.go:9:9: syntax error: unexpected ++ at end of statement

if
Does not need parenthesis but needs curly braces.

// 02.2-04-ifl.go
package main

import "fmt"

https://md2pdf netlify.app 16/139

25/03/2023, 05:21 Hacking with Go
func main() {

a := 10
b := 20
if b > a {

fmt.Printtln(b, ">", a)

Short statements

Short statements are interesting. They are statements that are executed before the condition. It's
not a unique idea to Go because we have already seen them in for constructs in almost every
language.

They can be used in if s.

// 02.2-05-if2.9go0
package main

import "fmt"
func main() {
if varl := 20; varl > 10 {

fmt.Println("Inside if:", varl)

by

// Cannot use the variable varl here

In this code varl := 20 is executed before the if condition. Any variables declared in the short
statement are only in scope in the if block and are destroyed after.

Short statements are usually used for executing a function and checking the return value with an
if .

else

else is similar to C else.

If the corresponding if has a short statement then any variables declared in the short statement
are also in scope in the else block.

// 02.2-06-else.go
package main

https://md2pdf netlify.app 17/139

25/03/2023,05:21 Hacking with Go
import "fmt"
func main() {

if varl := 20; varl > 100 {
fmt.Println("Inside if:", varl)

} else {
// Can use varl here
fmt.Println("Inside else:", varl)

}
// Cannot use varl here
}
switch

Similar to C switch with some differences:

e Doesn't automatically go to the next switch statement unless you have fallthrough inthe
end. The fallthrough only works if it's the last statement in the case.

e Can have a short statement like if .

// 02.2-07-switchl.go
package main

import (
Ilfmtll
"math/rand" // This is not cryptographically secure!
"time"

func main() {
// Seeding rand
rand.Seed(time.Now().UnixNano())
fmt.Println("Choosing a random number:")

switch num := rand.Intn(3); num {
case 1:
fmt.Println("1")
case 2:
fmt.Println("2")
default:

fmt.Println("3")

Cases can have if conditions if we use a switch with an empty value:

https://md2pdf netlify.app 18/139

25/03/2023,05:21 Hacking with Go

// 02.2-08-switch2.go
package main

import (
Ilfmtll
"math/rand" // This is not cryptographically secure!
"time"

func main() {
// Seeding rand
rand.Seed(time.Now().UnixNano())
fmt.Println("Choosing a random number:'")

switch num := rand.Intn(100); {
case num < 50:
fmt.Println("Less than 50")
default:
fmt.Println("More than 50")

The short statement does not have to be part of the switch:

// 02.2-09-switch3.go
package main

import (
Ilfmtll
"math/rand" // This is not cryptographically secure!
"time"

func main() {
// Seeding rand
rand.Seed(time.Now().UnixNano())
fmt.Println("Choosing a random number:")

num := rand.Intn(100)
switch {
case num < 50:
fmt.Println("Less than 50")
default:
fmt.Println("More than 50")

defer

https://md2pdf netlify.app 19/139

25/03/2023,05:21 Hacking with Go

defer is another interesting feature in Go. It defers the execution of a function until the calling
function returns.

It works like a stack, every time program reaches a defer , it will push that function with its
argument values. When surrounding function returns, deferred functions are popped from the
stack and executed.

// 02.2-10-deferl.go
package main

import "fmt"

func main() {
defer fmt.Println("This runs after main")

fmt.Println("Main ended")

Results in:

Z:\Go\src\Hacking-with-Go\code\02>go run 02.2-10-deferl.go
Main ended
This runs after main

Argument values are saved when the defer statement is reached but it is executed later.

// 02.2-11-defer2.go
package main

import "fmt"
func main() {
num := 1

defer fmt.Println("After main returns", num)

num++
fmt.Println("Inside main'", num)

$ go run 02.2-11-defer2.go
Inside main 2
After main returns 1

The value of num was 1 when the print was deferred.

Continue reading = 02.3 - Pointers, structs, arrays, slices and range
https://md2pdf netlify.app 20/139

25/03/2023,05:21 Hacking with Go

02.3 - Pointers, structs, arrays, slices and
range

Pointers
o Function arguments: variables vs. pointers

Structs

Arrays

Slices
o Slice length and capacity

o make
o append

e range

Pointers

Similar to C:

e Pointwith *x: var p xint == int xp;

e Generate pointer (get address of) with &: i := 1 and p = &i

No pointer arithmetic.

Function arguments: variables vs. pointers
Functions/methods accept both variables and pointers. The golden rule is:
* Pass pointers when function/method needs to modify the parameter.

When a variable is passed, the function/method gets a copy and the original copy is not modified.
With pointers the underlying value is modified.

Structs

Go does not have classes. It has structs like C.

Exported field names need to be uppercase to be visible outside the defining package.

// 02.3-01-structs.go
package main

import "fmt"

type Student struct {

https://md2pdf netlify.app 21/139

25/03/2023,05:21 Hacking with Go
FirstName string
LastName string

func main() {
// Make an instance
studentOne := Student{"Ender", "Wiggin"}

// Now we can access fields
fmt.Println(studentOne.FirstName)

// We can just assign fields using names, anything not assigned will be
// initialized with "zero" as we have seen before
studentTwo := Student{FirstName: "Petra"}

// We will print "{Petra }" notice the space after Petra which is supposed
// to be the delimiter between the fields, LastName is nil because it is not
// given a value

fmt.Println(studentTwo)

// Can also make a pointer to a struct
p := &studentOne

// Now instead of *p.LastName (doesn't work) we can just use p.LastName
// fmt.Println((xp).LastName) will not work with error message: invalid indirect o

fmt.Println(p.LastName)

// Which is the same as
fmt.Println(studentOne.LastName)

// We can just create a pointer out of the blue

p2 := &Student{"Hercule", "Poirot"}
fmt.Println(p2)

Tour of Go says, we have to create a pointer to a struct to access fields while we can just do it
directly as we saw in the code.

Arrays

var a [10]int == int al[10]; .

Arrays cannot be resized.

// 02.3-02-array.go
package main

import "fmt"

func main() {

https://md2pdf netlify.app 22/139

25/03/2023,05:21 Hacking with Go

var a [5]int

alo] = 10

al4]l = 20

fmt.Println(a) // [10 @ 0 0 20]

// Array can be initialized during creation
// characters[2] is empty

characters := [3]string{"Ender", "Pentra"}

fmt.Println(characters) // [Ender Pentra 1

Slices

Slice is a dynamic view of an array. Slices don't store anything by themselves, they reference an
array. If we change something via the slice, the array is modified.

Think of slices as dynamic arrays. When a slice is created out of the blue, an underlying array is
also initialized and can be modified by the slice.

// 02.3-03-slicel.go
package main

import "fmt"
func main() {

// Create an array of strings with 3 members
characters := [3]string{"Ender", "Petra", "Mazer"}

// Last index is exclusive
// allMembers [lstring := characters[0:3]
var allMembers []string = characters[0:3]

fmt.Println("All members", allMembers)

var lastTwo [lstring = characters[1:3]
fmt.Println("Last two members', lastTwo)

// Replace Mazer with Bean
fmt.Println("Replacing Mazer with Bean")
allMembers[2] = "Bean"

fmt.Println("All members after Bean swap', characters)

fmt.Println("Last two members after Bean swap", lastTwo)

https://md2pdf netlify.app

23/139

25/03/2023,05:21 Hacking with Go

We can create array and slice literals. Meaning we can just initialize them by their members instead

of assigning a length and then add more members. If a slice literal is created, the underlying array is
also created.

// 02.3-04-slice2.go
package main

import "fmt"
func main() {

// Slice literal of type struct, the underlying array is created automatically
sliceStruct := []struct {

a, b int
H

{1, 2},

{3, 4},

{5, 6}, // need this comma in the end otherwise it will not work

fmt.Println(sliceStruct)

If a length is not specified during array creation, the result is a slice literal as seen above.

If we do not want to specify a length we canuse [...].

// 02.3-05-slice3.go
package main

import "fmt"
func main() {

characters := [...]string{"Ender", "Petra", "Mazer"}

fmt.Println(characters)

Slice length and capacity

Slices have length and capacity.

e Length is the current number of items in the slice. Returned by len(slice) .

e Capacity is the maximum number of items in the slice. Returned by cap(slice) . Capacity is
determined by the number of items in the original array from the start of the slice and not the

https://md2pdf netlify.app 24/139

25/03/2023,05:21 Hacking with Go

size of array. For example if the slice starts from the second item (index 1) of an array, slice
capacity is len(array)-1 . This ensures that the slice cannot go past the array.

In most cases, we do not care about capacity. Create slices and append to them.

// 02.3-06-sliced.go
package main

import "fmt"
func main() {

ints := [...]int{0, 1, 2, 3, 4, 5}
fmt.Println(ints)

slicel := ints[2:6]

// len=4 and cap=4 (from 3rd item of the array until the end)
printSlice(slicel)

slicel = ints[2:4]
// len=2 but cap will remain 4

printSlice(slicel)

// Copied from the tour
func printSlice(s [lint) {
fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)

by

make

To create dynamically-sized arrays use make . make creates a zero-ed array and returns a slice
pointing to it.

e slicel := make([lint, 1@) creates an int array of length 10.

e slice2 := make([lint, 5, 10) creates an int array of length 5 and capacity of 10.
We can append stuff to slices and it grows as needed:
e slicel = append(slicel, 1)

We can append multiple elements:

e slicel = append(slicel, 1, 2, 3)
append

https://md2pdf .netlify.app

25/139

25/03/2023,05:21 Hacking with Go

In order to append one slice to another (obviously they should be of the same type), we have to use
as follows:

e slicel = append(slicel, slice2...)

append is a variadic function, meaning it can an arbitrary number of arguments. By passing
slice2... , we are essentially passing each member of slice2 one by one to append .

This is pretty useful later on when we want to append two byte slices together.

// 02.3-07-slice-append.go
package main

import "fmt"
func main() {

// Create a slice pointing to an int array
sl := make([]lint, 5)

fmt.Println(sl) // [0 0 0 0 0]

for i := 0; i < len(sl); i++ {
s1[i] =1

fmt.Println(sl) // [0 1 2 3 4]

s2 := make([]int, 3)

for i 1= 0; i < len(s2); i++ {

s2[i] = 1

fmt.Println(s2) // [0 1 2]
s3 := append(sl, s2...)

fmt.Println(s3) // [0 12 3 40 1 2]

range

range iterates over slices. It returns an index and a copy of the item stored at that index.
* for index, value := range slice

value is optional but index is not. Ignore either with _ .

https://md2pdf netlify.app 26/139

25/03/2023,05:21

// 02.3-08-range.go
package main

import "fmt"

func main() {

Continue reading = 02.4 - Methods and interfaces# 02.4 - Methods and interfaces

characters := [3]string{"Ender", "Petra", "Mazer"}

for i, v := range characters {
fmt.Println(i, v)
}

// 0 Ender
// 1 Petra
// 2 Mazer

fmt.Println("—————— ")

// Only using index
for i := range characters {

fmt.Println(i, characters[i])

fmt.Println("—————— ")

// Ignoring index

Hacking with Go

for _, v := range characters {
// No non-elaborate way to get index here
fmt.Printin(v)

¥

// Ender

// Petra

// Mazer

Methods

o Create methods for slices
o Value vs. pointer receivers

o Pointer Receivers

o When to use methods vs. functions

Interfaces

e Type switch

e Stringers

o Solution to the Stringers exercise

https://md2pdf netlify.app

27/139

25/03/2023,05:21 Hacking with Go

Methods

Methods can be defined for types (e.g. structs). A method is a function with a special receiver,

receiver is the type that a method is defined for.

Create methods for slices

Let's say want to create a method for a string array that prints the members. First problem is that

we cannot create a method for type [lstring because it's an unnamed type and they cannot be
method receivers. The trick is to declare a new type for [Istring and then define the method for

that type.

// 02.4-01-methodl.go
package main

import "fmt"

// Create a new type for []lstring
type StringSlice []string

// Define the method for StringSlice
func (x StringSlice) PrintSlice() {

for _, v := range x {
fmt.Println(v)

func main() {

// Create an array of strings with 3 members

characters := [3]string{"Ender", "Petra", "Mazer"}

// Create a StringSlice
var allMembers StringSlice = characters[0:3]

// Now we can call the method on it
allMembers.PrintSlice()

// Ender
// Petra
// Mazer

// allMembers.PrintSlice()

// allMembers.PrintSlice undefined (type [Istring has no field or method PrintSlic

Note that we cannot call PrintSlice() on [lstring although they are essentially the same type.

https://md2pdf .netlify.app

28/139

25/03/2023,05:21 Hacking with Go

Value vs. pointer receivers

In the previous example we created a value receiver. In methods with value receivers, the method
gets a copy of the object and the initial object is not modified.

We can also designate a pointer as receiver. In this case, any changes on the pointer inside the
method are reflected on the referenced object.

Pointer receivers are usually used when a method changes the object or when it's called on a large
struct. Because value receivers copy the whole object, a large struct will consume a lot of memory
but pointer receivers do not have this overhead.

Pointer Receivers
Pointer receivers get a pointer instead of a value but can modify the referenced object.

In the following code, Tuple's fields will be modified by ModifyTuplePointer() but not by
ModifyTupleValue() .

However, this is not the case for slices (e.g. IntSlice in the code). Both value and pointer
receivers modify the slice.

Pointer receivers are more efficient because they do not copy the original object.

All methods for one type should either have value receivers or pointer receivers, do not mix and
match like the code below :).

// 02.4-02-method2.go
package main

import "fmt"

// Tuple type

type Tuple struct {
A, B int

b

// Should not change the value of the object as it works on a copy of it
func (x Tuple) ModifyTupleValue() {

X.A =2

X.B = 2

// Should change the value of the object
func (x *Tuple) ModifyTuplePointer() {
X.A =3
Xx.B =3

type IntSlice []int
https://md2pdf netlify.app 29/139

25/03/2023,05:21 Hacking with Go

func (x IntSlice) PrintSlice() {
fmt.Println(x)

// Modifies the IntSlice although it's by value
func (x IntSlice) ModifySliceValue() {
x[o] =1
}
// Modifies the IntSlice
func (x *IntSlice) ModifySlicePointer() {
(xx) [0] = 2
b

func main() {
tup := Tuple{1, 1}

tup.ModifyTupleValue()
fmt.Println(tup) // {1 1} - Does not change

tup.ModifyTuplePointer()
fmt.Println(tup) // {3 3} - Modified by pointer receiver

var slicel IntSlice = make([lint, 5)
slicel.PrintSlice() // [0 0 0 0 0]

slicel.ModifySliceValue()
slicel.PrintSlice() // [1 0 0 0 0]

slicel.ModifySlicePointer()
slicel.PrintSlice() // [2 0 0 0 0]

When to use methods vs. functions
Methods are special functions. In general use methods when:

e The output is based on the state of the receiver. Functions do not care about states.
e The receiver must to be modified.

e The method and receiver are logically connected.

Interfaces

An interface is not Generics! An interface can be one type of a set of types that implement a set of
specific methods.

https://md2pdf netlify.app 30/139

25/03/2023, 05:21 Hacking with Go
For example we will define an interface which has the method MyPrint() . If we define and
implement MyPrint() for type B, a variable of type B can be assigned to an interface of that type.

// 02.4-03-interfacel.go
package main

import "fmt"

// Define new interface
type MyPrinter interface {
MyPrint()

// Define a type for int
type MyInt int

// Define MyPrint() for MyInt

func (i MyInt) MyPrint() {
fmt.Println(i)

}

// Define a type for float64
type MyFloat float64

// Define MyPrint() for MyFloat
func (f MyFloat) MyPrint() {
fmt.Printin(f)

func main() {

// Define interface
var interfacel MyPrinter

fl := MyFloat(1.2345)

// Assign a float to interface
interfacel = fl

// Call MyPrint() on interface
interfacel.MyPrint() // 1.2345

il := MyInt(10)

// Assign an int to interface
interfacel = il

// Call MyPrint() on interface
interfacel.MyPrint() // 10

Empty Interface is interface {} and can hold any type. We are going to use empty interfaces a
lot in functions that handle unknown types.

https://md2pdf netlify.app 31/139

25/03/2023,05:21 Hacking with Go

// 02.4-04-interface2.go
package main

import "fmt"
var emptyInterface interface{}

type Tuple struct {
A, B int
¥

func main() {

// Use int

intl := 10

emptyInterface = intl
fmt.Println(emptyInterface) // 10

// Use float

floatl := 1.2345

emptyInterface = floatl
fmt.Println(emptyInterface) // 1.2345

// Use custom struct

tuplel := Tuple{5, 5}

emptyInterface = tuplel
fmt.Println(emptyInterface) // {5 5}

We can access the value inside the interface after casting. But if the interface does not contain a

float, it will trigger a panic:
e myFloat := myInterface(float64)

In order to prevent panic we can check the error returned by casting and handle the error.
e myFloat, ok := myInterface(float64) .

If the interface has a float, ok will be true and otherwise false .

// 02.4-05-interface3.go
package main

import "fmt"

func main() {
var interfacel interface{} = 1234.5

// Only print f1l if cast was successful
if f1, ok := interfacel.(float64); ok {

https://md2pdf .netlify.app

32/139

25/03/2023, 05:21 Hacking with Go
fmt.Println("Float")
fmt.Println(f1l) // 1234.5

f2 := interfacel. (float64)
fmt.Println(f2) // 1234.5 No panic but not recommended

// This will trigger a panic
// il = interfacel.(int)

i2, ok := interfacel.(int) // No panic
fmt.Println(i2, ok) // 0 false
¥
Type switch

Type switches are usually used inside functions that accept empty interfaces. They are used to
determine the type of data that inside the interface and act accordingly.

A type switch is a switch on interface. (type) and some cases.

// 02.4-06-typeswitch.go
package main

import "fmt"

func printType(i interface{}) {
// Do a type switch on interface
switch val := i.(type) {
// If an int is passed
case int:
fmt.Println("int")
case string:
fmt.Println("string")
case float64:
fmt.Println("float64")
default:
fmt.Println("0Other:", val)

func main() {
printType(10) // int
printType("Hello") // string
printType(156.32) // float64
printType(nil) // Other: <nil>
printType(false) // Other: false

https://md2pdf netlify.app

33/139

25/03/2023,05:21 Hacking with Go

Stringers

Stringers overload print methods. A Stringer is a method named String() thatreturnsa string
and is defined with a specific type as receiver (usually a struct).

type Stringer interface {
String() string
}

After the definition, if any Print function is called on the struct, the Stringer will be invoked
instead. For example if a struct is printed with %y format string verb (we will see later that this verb
prints the value of an object), Stringer is invoked.

// 02.4-07-stringerl.go
package main

import "fmt"

// Define a struct

type Tuple struct {
A, B int

}

// Create a Stringer for Tuple

func (t Tuple) String() string {
// Sprintf is similar to the equivalent in C
return fmt.Sprintf("A: %d, B: %d", t.A, t.B)

func main() {

tuplel := Tuple{10, 10}
tuple2 := Tuple{20, 20}
fmt.Println(tuplel) // A: 10, B: 10
fmt.Println(tuple2) // A: 20, B: 20

Solution to the Stringers exercise

Make the IPAddr type implement fmt.Stringer to print the address as a dotted quad. For
instance, IPAddr{1, 2, 3, 4} should printas 1.2.3.4.

// 02.4-08-stringer2.go
package main

import "fmt"

https://md2pdf netlify.app 34/139

25/03/2023,05:21 Hacking with Go
type IPAddr [4]byte

// TODO: Add a "String() string" method to IPAddr.
func (ip IPAddr) String() string {

return fmt.Sprintf("sv.%v.%v.%v", ipl[@l, ip[1l, ipl[2], ip[3])
b

func main() {
hosts := map[string]lIPAddr{
"loopback": {127, o, 0, 1},
"googleDNS": {8, 8, 8, 8},

}

for name, ip := range hosts {
fmt.Printf("sv: %v\n", name, ip)

}

Continue reading = 02.5 - Printf, Scanf, bufio readers and maps

02.5 - Printf, Scanf, bufio readers and maps

e Print
o Print verbs
= Decimals

= Floats

= Value

= Strings

= QOthers

= Print verbs in action

e Scan
o Scan verbs
= Reading user input with Scanin

= What's wrong with Scanin?
e bufio.Reader

e Maps

Print

The fmt package contains printf . It's very similar to the C equivalent.
These three need a format string:

e fmt.Sprintf returns a string.

https://md2pdf netlify.app 35/139

25/03/2023,05:21 Hacking with Go

e fmt.Fprintf takes any objects that implements io.Writer for example os.Stdout and
os.Stderr .

e fmt.Printf prints to stdout.
The following are similar but do not need a format string:

e fmt.Print and fmt.Println
e fmt.Fprint
e fmt.Sprint

Print verbs

To format strings we can use verbs (also known as switches). For more information on switches,
see the fmt package source.

Decimals

e %d : digits = numbers.

e %nd : n = width of number. Right justified and padded with spaces. To left justify use - like %-
nd . If n isless than the number of digits nothing happens.

e %b : number in binary.

e %c: chr(int) , prints the character corresponding to the number.

e %x : hex.

Floats

e f : float.

e %n.mf : n = decimal width, m = float width. Right justified. To left justify use - like %-n.mf . If
nis less than the number of digits nothing happens.

e %e and %E : scientific notation (output is a bit different from each other).

Value

e %v or value: catch all format. Will print based on value.
e %+v : will print struct's field names if we are printing a struct. Has no effect on anything else.

e %#v : prints code that will generate that output. For example for a struct instance it will give
code that creates such a struct instance and initializes it with the current values of the struct
instance.

Strings

e %q : double-quotes the strings before printing and also prints any invisible characters.

e %s :string.

https://md2pdf netlify.app 36/139

25/03/2023,05:21

e %ns : control width of string. Right justified, padded with spaces. To left justify use - like
ns . If nis less than the length of the string, nothing happens.

Others

e %t : boolean.

e %T : prints the type of a value. For example int or main.myType .

Print verbs in action

// 02.5-01-print-verbs.gos
package main

import "fmt"

type myType struct {
fieldl int
field2 string
field3 float64

func main() {

// int

fmt.Println("int:")

intl := 123

fmt.Printf("%sv\n", intl) // 123
fmt.Printf("%d\n", intl) // 123
fmt.Printf("|%6d|\n", intl) // |

fmt.Printf("|%-6d|\n", intl) // |123

Hacking with Go

123
|

fmt.Printf("sT\n", intl) // int

%x\n", int1l) // 7b
fmt.Printf("%sb\n", intl) // 1111011
fmt.Printf("%se\n", intl) // %le(int=123)
fmt.Printf(") // { - 0x7B = 123

(
(
(
(
fmt.Printf("
(
(
(
n

%c\n", intl
fmt.Println()

// float

fmt.Printin("float:")

floatl := 1234.56
fmt.Printf("%f\n", floatl) //

fmt.Printf("|%3.2f|\n", floatl) //
fmt.Printf("|%-3.2f|\n", floatl) //
fmt.Printf("%e\n", floatl) //
fmt.Printf("%E\n", floatl) //
fmt.Printlin()

// string

fmt.Println("string:")

stringl := "Petra"
fmt.Printf("%ss\n", stringl) //

https://md2pdf netlify.app

1234.560000
11234.56 |
11234.56 |
1.234560e+03
1.234560E+03

Petra

[
—

37/139

25/03/2023,05:21 Hacking with Go

fmt.Printf("|%10s|\n", stringl) // | Petra|
fmt.Printf("|%-10s|\n", stringl) // |Petra |
fmt.Printf("sT\n", stringl) // string
fmt.Println()

// boolean

fmt.Println("boolean:")

booleanl := true

fmt.Printf

("%t\n", booleanl) // true
fmt.Printf("%T\n", booleanl) // bool
fmt.Println()

// struct type
fmt.Println("struct:")
structl := myType{1l0, "Ender", -10.2}

fmt.Printf("%v\n", structl) // {10 Ender -10.2}
fmt.Printf("%+v\n", structl) // {field1:10 field2:Ender field3:-10.2}
fmt.Printf("%#v\n", structl) // main.myType{field1l:10, field2:"Ender", field3:-10.
fmt.Printf("%T\n", structl) // main.myType
}
Scan

As expected Go has Scan functions for reading input. Like Printf the package description is

comprehensive.

The functions read from standard input (os.Stdin):

Scan : treats new lines as spaces.
Scanf : parses arguments according to a format string.

Scanln : reads one line.

These read from io.Reader S:

Fscan
Fscanf

Fscanln

These read from an argument string:

As you can guess, the following stop at the first new line or EOF:

Sscan
Sscanf

Sscanln

Scanln

https://md2pdf .netlify.app

38/139

25/03/2023,05:21 Hacking with Go

e Fscanln

e Sscanln

While these treat new lines as spaces:

e Scan
e Fscan
e Sscan

Similarto Printf we can use format strings with these functions:

e Scanf

e Fscanf

e Sscanf
Scan verbs

Scan verbs are the same as Print . %p, %T and # + flags are not implemented.

Apart from %c every other verb discards leading whitespace (except new lines).

Reading user input with Scanin

Let's start by something simple like reading a line from input:

// 02.5-02-scanl.go
package main

import "fmt"
func main() {

var s string

n, err := fmt.Scanln(&s)

if err '= nil {
panic(err)

}

fmt.Printf("Entered %d word(s): %s", n, s)

All is well when input does not have any whitespace (e.g. space):

$ go run 02.5-02-scanl.go
HelloHello

Entered 1 word(s): HelloHello

https://md2pdf .netlify.app

39/139

25/03/2023,05:21

But When input has whitespace:

$ go run 02.5-02-scanl.go
Hello Hello
panic: expected newline

goroutine 1 [running]:
main.main()

Z:/Go/src/Hacking-with-Go/code/02/02.5/02.5-02-scanl.go:10 +0xlae

exit status 2

What's wrong with Scanin?

Hacking with Go

1. Scan does not return the number of characters as we expect from the C equivalent. It returns

the number of words entered.

2. Scan and friends separate words by whitespace. Meaning when we entered Hello Hello,
they are counted as two words. Scanln stored the first Hello in s and was expecting a new

line or EOF to finish that. Instead it got a new word and panicked.
If we wanted to just read a number or anything without whitespace, it would have worked.

If we replace Scanln with Scan in the code, the program will not panic but will ignore anything

after the first whitespace.

Lesson learned Don't use Scan for reading user input with whitespace.

bufio.Reader

An easier way to read user input is through bufio readers. We are looking for the quickest ways to

get things done after all.

// 02.5-03-bufioreadstring.go
package main

import (
"bufio
Ilfmtll

OSII

func main() {

reader := bufio.NewReader(os.Stdin)
// ReadString will read until first new line
input, err := reader.ReadString('\n') // Need to pass '\n' as char (byte)
if err !'= nil {
panic(err)

https://md2pdf .netlify.app

40/139

25/03/2023,05:21 Hacking with Go

by

fmt.Printf("Entered %s", input)

ReadString reads until the first occurrence of its argument (delimiter). The delimiter should be a
byte hence we need to pass a char using single quotes (\n). "\n" is a string and will not work.

bufio.Reader has more methods for reading different types. For example we can directly read
user input and convert it to bytes with [ReadBytes][bufio-readbytes].

// 02.5-04-bufioreadbytes.go
package main

import (
"bufio"
IIfmtll
“OS

func main() {

reader := bufio.NewReader(os.Stdin)
// Read bytes until the new line
input, err := reader.ReadBytes('\n') // Need to pass '\n' as char (byte)
if err !'= nil {
panic(err)

// Print type of "input" and its value
fmt.Printf("Entered type %T, %v\n", input, input)

// Print bytes as string

fmt.Printf("Print bytes as string with %%s %s", input)

We are printing the type of input and its value as-is first. Then we print the bytes as string with

)
%S .

$ go run 02.5-04-bufioreadbytes.go
Hello 0123456789
Entered type [Juint8, [72 101 108 108 111 32 48 49 50 51 52 53 54 55 56 57 13 10]

Print bytes as string with %s Hello 0123456789

As you can see bytes arejust uint8 (unsigned ints) and printing them yields decimal values and
not hex. Don't worry about bytes and strings now. We will have a byte manipulation chapter.

Maps

https://md2pdf netlify.app 41/139

25/03/2023,05:21 Hacking with Go

Fast lookup/add/delete. Each key is associated with a value (similar to Python dict).
Declare an initialized map:
e mapName := make(map[KeyTypelValueType) .
KeyType needs to be a comparable type. ValueType can be anything.
If a key does not exist, the result is a zero value. For example @ for int .
To check if a key exists or not (0 might be a valid value in the map) use:
e value, ok := mapNamel[key]
If ok is true then the key exists (and false if the key is not there).

To test for a key without getting the value drop the value like this _, ok := mapName[key] and
then just check ok .

range iterates over the contents of a map like arrays/slices. But we get keys instead of indexes.
Typically we use the range witha for :

e for key, value := range mapName
We can create a map using data:

e m := map[string]lint{"key0@": 0, "keyl": 1}
Delete a key/value pair with delete :

e delete(m, "key@")

// ©02.5-05-maps.go
package main

import "fmt"
type intMap maplint]lint

// Create a Stringer for this map type
func (i intMap) String() string {

var s string
s += fmt.Sprintf("Map type %T\n", i)
s += fmt.Sprintf("Length: %d\n", len(i))

// Iterate through all key/value pairs

for k, v := range i {

s += fmt.Sprintf (" [%v] = %v\n", k, V)
¥
return s

https://md2pdf netlify.app 42/139

25/03/2023,05:21 Hacking with Go

by

func main() {

// Create a map
mapl := make(intMap)

// Add key/value pairs
mapl[@] = 10
mapl[5] = 20

// Print map - Stringer will be called
fmt.Println(mapl)

// Map type main.intMap

// Length: 2
// [0] = 10
// [5] = 20

// Delete a key/value pair
delete(mapl, 0)

fmt.Println(mapl)

// Map type main.intMap
// Length: 1

// [5] = 20

// Create a map on the spot using members
map2 := map[stringlstring{"keyl": "valuel", "key2": "value2"}

fmt.Println(map2)
// map[keyl:valuel key2:value2]

Continue reading = 02.6 - Goroutines and channels

[bufio-readbytes]: https://golang.org/pkg/bufio/#Reader.ReadBytes# 02.6 - Goroutines and
channels

e Goroutines
o Spawning anonymous goroutines

e Channels
o Buffered channels

o Closing channels
o Checking channel status
o Reading from channels with range
o select
o Directed channels
* Synching goroutines

https://md2pdf netlify.app 43/139

25/03/2023,05:21 Hacking with Go

o sync.WaitGroup

Goroutines

Concurrency is not parallelism
* Rob "Commander" Pike

With that said, let's look at one of Go's main selling points, the goroutine . go function(a, b)
runs the function in parallel and continues with the rest of the program.

// 02.6-01-goroutinel.go
package main

import "fmt"
func PrintMe(t int, count int) A

for i := 0; i < count; i++ {
fmt.Printf("Printing from %d\n", t)

func main() {
go PrintMe(Q, 100)

fmt.Println("Main finished!")

But we never see anything printed. main returns before goroutine is spun up and start printing:

$ go run 02.6-01-goroutinel.go
Main finished!

Lesson learned: Always wait for goroutines to finish! (if applicable).

Continuing the C tradition, we can wait for a key-press before ending main .

// 02.6-02-goroutine2.go
package main

import "fmt"
func PrintMe(t int, count int) {

for 1 := @; i < count; i++ {
fmt.Printf("Printing from %d\n", t)

https://md2pdf .netlify.app 44/139

25/03/2023,05:21 Hacking with Go

by

func main() {
go PrintMe(@, 10)

// Wait for a keypress
fmt.Scanln()
fmt.Println("Main finished!")

This time we can see the goroutine's output:

$ go run 02.6-02-goroutine2.go
Printing from @

Printing from
Printing from
Printing from
Printing from
Printing from
Printing from
Printing from
Printing from
Printing from
e

Main finished!

(SIS NS B S I IS B SIS

Spawning anonymous goroutines

We can also spawn new goroutines on the spot:

// 02.6-03-goroutine3.go
package main

import "fmt"
func main() {
go func() {
for i 1= 0; i < 10; i++ {
fmt.Printf("Printing from %d\n",)
()
// Wait for a keypress

fmt.Scanln()
fmt.Println("Main finished!")

https://md2pdf netlify.app

45/139

25/03/2023,05:21 Hacking with Go

Channels

Channels go hand-in-hand with gorotuines. They are typed. For example if we create a channel of
type int , we can only use it to transfer int s. Values are transfered using <- . Channels must be
created before use.

Let's make a channel in honor of famous hacker 4chan and use it to transfer some numbers around:

// 02.6-04-channell.go

// This will not run

package main

import "fmt"

func main() {
fourChan := make(chan int)
il := 10
// Send il to channel
fourChan <- il
fmt.Printf("Sent %d to channel\n", 1i1l)
// Receive int from channel

12 := <-fourChan
fmt.Printf("Received %d from channel\n", i2)

But it doesn't work:

$ go run 02.6-04-channell.go
fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan send]:

main.main()

Z:/Go/src/Hacking—-with-Go/code/02/02.6/02.6-04—-channell.go:12 +0x75
exit status 2

[Unbuffered] Channels will not start until the other side is ready.

Our channel's "other side" is also in main and the channel is unbuffered (we will talk about it in a
bit). Meaning there's nothing on the other side listening.

We can either send or receive the data in a goroutine (or both):

https://md2pdf netlify.app 46/139

25/03/2023,05:21 Hacking with Go

// 02.6-05-channel2.go
package main

import "fmt"
func main() {
fourChan := make(chan int)

go func() {
// Send il to channel
il := 10
fourChan <- i1 // fourChan <- 10
fmt.Printf("Sent %d to channel\n", 1i1)
()

go func() {
// Receive int from channel
i2 := <-fourChan
fmt.Println(i2)
fmt.Printf("Received %d from channel\n", 1i2)

()

// Wait for goroutines to finish
fmt.Scanln()
fmt.Println("Main Finished!")

This time we have another goroutine listening on the other side:

$ go run 02.6-05-channel2.go
10

Received 10 from channel
Sent 10 to channel

e

Main Finished!

Buffered channels

Buffered channels have capacity and only block when the buffer is full. Buffer size (as far as | know)
is specified during declaration:

e bc := make(chan int, 10) makes an int channel with size 10 .

Using buffered channels we can send and receive in main:

// ©02.6-06-channel3.go
package main

https://md2pdf netlify.app 47/139

25/03/2023,05:21 Hacking with Go
import "fmt"
func main() {
fourChan := make(chan int, 2)
// Send 10 to channel
fourChan <- 10
fmt.Printf("Sent %d to channel\n", 10)
// Receive int from channel

// We can also receive directly
fmt.Printf("Received %d from channel\n", <-fourChan)

If the channel goes over capacity, we get the same fatal runtime error as before.

Closing channels
Channels can be closed. To close a channel we can use close(fourChan) .

Sending items to a closed channel will cause a panic.

Checking channel status

When reading from channels, we can also get a second return value:
e 11, ok := <— fourChan

If channel is open ok will be true. false means channelis closed.

Reading from a closed channel will return a zero value (e.g. @ for most number types). See this
example. i2 is 10 before reading something from a closed channel. After it's o .

// ©02.6-07-channel4.go
package main

import "fmt"
func main() {
fourChan := make(chan int, 2)

close(fourChan)

i2 := 10
fmt.Println("i2 before reading from closed channel", i2) // 10
i2, ok := <—fourChan

https://md2pdf netlify.app 48/139

25/03/2023,05:21

Reading from channels with range

Use a range ina for toreceive values from the channel in a loop until it closes like for i:=

range fourChan .

// 02-08-channel5.go
package main

import "fmt"

func main() {

fourChan := make(chan int, 10)
go func() {
// Send 0-9 to channel
for i (= 0; i < 10; i++ {
fourChan <- i
¥
()
go func() {
// Receive from channel
for v := range fourChan {
fmt.Println(v)
}

()

// Wait for goroutines to finish

fmt.Scanln()

fmt.Println("Main Finished!")

Hacking with Go
fmt.Printf("i2: %d - ok: %t", i2, ok) // i2: 10 - ok: false

If we attempt to read something from an open channel and there's nothing there, the program will

block and wait until it gets something. We can use channels to sync goroutines instead of waiting

for Scanln . Here's our example from 02.6-03-goroutine3.go :

// 02.6-09-channel6.go
package main

import "fmt"
func main() {

c := make(chan bool)

https://md2pdf .netlify.app

49/139

25/03/2023,05:21 Hacking with Go

go func() {

for i 1= 0; i < 10; i++ {
fmt.Printf("Printing from %d\n", 0)

b
// Send true to channel when we are done
Cc <- true

X0

// Main will wait until it receives something from c

<-C

}
select

Another way to wait for channels to be ready is using select . select has some case s. It will
block until one of the cases is ready and runs it. If multiple are ready, it will choose one at random.

// 02.6-10-channel7.go
package main

import "fmt"

func main() {

c := make(chan int, 2)
for i := 0; i < 10; i++ {
select {

case C <— 1i:
// If we can write to channel, send something to it
fmt.Println("Sent to channel", i)

case i2 := <-c:
// If we can read from channel, read from it and print
fmt.Println("Received from channel', 1i2)

default:
// This 1is run when nothing else can be done

Break is never reached because there's always something to do. Increase the size of the channel
and re-run the program a few times to see select 's randomness when multiple choices are valid.

$ go run 02.6-10-channel7.go
Sent to channel 0

Received from channel 0

Sent to channel 2

https://md2pdf netlify.app 50/139

25/03/2023,05:21 Hacking with Go

Sent to channel 3
Received from channel 2
Received from channel 3
Sent to channel 6
Received from channel 6
Sent to channel 8
Sent to channel 9

If channel is unbuffered, default is always triggered because there's nothing listening on the
other side.

Directed channels

Channels can be directed. Meaning you can only read or write to them.

e cl := make(chan<- int) : write-only int channel.

e 2 := make(<—-chan int) :read-only int channel.

However, declaring directed channels is not useful. Because if we can never write to a read-only
channel, it will never have data. Instead they are used when passing channels to
functions/goroutines.

Rewriting 02.6-05-channel2.go using directed channels:

// ©02.6-11-channel8.go
package main

import "fmt"

// Directed write-only channel
func Sender(c chan<- int) {

for 1 := 0; i < 10; i++ {
fmt.Println("Sent", 1i)
c <1

}

func Receiver(c <-chan int) {
for i := range c {
fmt.Println("Received", i)

func main() {
fourChan := make(chan int)

go Sender(fourChan)
go Receiver(fourChan)

https://md2pdf netlify.app 51/139

25/03/2023,05:21 Hacking with Go
// Wait for goroutines to finish

fmt.Scanln()
fmt.Println("Main Finished!")

$ go run 02.6-11-channel8.go
Sent 0
Sent 1
Received 0
Received 1
Sent 2
Sent 3
Received 2
Received 3
Sent 4
Sent 5
Received 4
Received 5
Sent 6
Sent 7
Received 6
Received 7
Sent 8
Sent 9
Received 8
Received 9
d

Main Finished!

Synching goroutines

In our previous example, we used both Scanln and a blocking channel to force main wait for
goroutines to finish. There's a better way of doing this using sync.WaitGroup.

Let's assume we are generating a list of strings that need to processed. To take advantage of Go's
concurrency model, we spawn a goroutine to generate the list and send each to a channel. Then we
read from the channel and spawn a new goroutine for each string and process it.

This way we can start processing the generated strings as they are being generated and we do not
have to create a large string slice to hold the results.

// 02.6-12-waitgroupl.go
package main

import "fmt"

// generateStrings generated n strings and sends them to channel.
// Channel is closed when string generation is done.

https://md2pdf netlify.app 52/139

25/03/2023,05:21 Hacking with Go
func generateStrings(n int, c chan<- string) {

// Close channel when done
defer close(c)
// Generate strings
for 1 := 0; i < n; i++ {
c <— fmt.Sprintf("String #%d", 1)

// consumeString reads strings from channel and prints them.
func consumeString(s string) {
fmt.Printf("Consumed %s\n", s)

by

func main() {
// Create channel
¢ := make(chan string)
// Generate strings
go generateStrings(10, c)

for {
select {
// Read from channel
case s, ok := <—-c:
// If channel is closed stop processing and return
if lok {
fmt.Printin("Processing finished")
return
b
// Consume the string read from channel
go consumeString(s)
}
b

This looks correct but it's not. Not all strings are consumed. Because the channel is closed and we
return from main when generateStrings is done. However, not all consumerString goroutines are
done when by then. We need to find a way to signal main to wait until all goroutines have returned.

sync.WaitGroup

We accomplish this with sync.WaitGroup . Before spawning each consumerString goroutine we
wg.Add (1) toit. Every time a consumerString goroutine is finished, we subtract the counter by one
with wg.Done() and then we wait before returning with wg.Wait() which blocks execution until
the counter is zero.

package main

import (
https://md2pdf netlify.app 53/139

25/03/2023,05:21 Hacking with Go
1] fmt 1]
1] S y nc 1]

var wg sync.WaitGroup

// generateStrings generated n strings and sends them to channel.
// Channel is closed when string generation is done.
func generateStrings(n int, c¢ chan<- string) {

// Close channel when done
defer close(c)
// Generate strings
for i := 0; 1 < n; i++ {
¢ <— fmt.Sprintf("String #%d", 1)

// consumeString reads strings from channel and prints them.
func consumeString(s string) {

// Decrease waitgroup's counter by one

defer wg.Done()

fmt.Printf("Consumed %s\n", s)

func main() {
// Create channel
¢ := make(chan string)
// Generate strings
go generateStrings(10, c)

for {
select {
// Read from channel
case s, ok := <-c:
// If channel is closed stop processing and return
if tok {
// Wait for all goroutines to finish
wg.Wait()
// Return
fmt.Printin("Processing finished")
return
}
// Increase wg counter by one for each goroutine
// Note this is happening inside main before spawning the goroutine
wg.Add(1)
// Consume the string
go consumeString(s)
I
}

https://md2pdf netlify.app 54/139

25/03/2023,05:21 Hacking with Go

Continue reading = 02.7 - Error handling

sync-waitgroup: https://golang.org/pkg/sync/#WaitGroup# Error handling

e Error handling
e Errors
o Avoiding if err != nil fatigue

o Solution to the Errors exercise

Error handling

Go does not have try/catch or try/except. Instead almost every function returns (or should return)
an error value. It's good practice to return an error value in every function and also check it after
reading values from functions/channels/etc. As a result it's very common to see if err != nil
code blocks.

Go's error handling is very controversial. Some call it genius and others not so much. For more
information read the Error handling and Go blog.

Errors

error typeissimilarto Stringer() .

type error interface {
Error() string

b
Create a method for the struct type named Error() to return error codes/messages.

func (e MyType) Error() string {
return fmt.Sprintf("error message")

by

According to Go docs, errors strings should not be capitalized. Most built-in and package methods
return an error value if an error occurs, otherwise they will return nil for error which means no
error.

Avoiding if err != nil fatigue

Checking for errors after every function call will resultin alot of if err != nil blocks. One good
way is to create a function to check the error and perform actions based on it. For example:

func checkError(err) {
if err '= nil {
https://md2pdf netlify.app 55/139

25/03/2023,05:21 Hacking with Go
// Do something

Solution to the Errors exercise

The errors exercise is part of tour of go.

// 02.7-01-errorsl.go
package main

import (
Ilfmtll
"math"

type ErrNegativeSqrt float64
func (e ErrNegativeSqrt) Error() string {

return fmt.Sprintf("cannot Sqrt negative number: %v'", float64(e))
func Sqrt(x float64) (float64, error) {

if x <0 {

return @, ErrNegativeSqrt(x)

// Don't need else here - why?
return math.Sqrt(x), nil

func main() {
fmt.Println(Sqrt(2))
fmt.Println(Sqrt(-2))

Instead of creating an Error() method, we could create a new error type and return that using
fmt.Errorf :

// 02.7-02-errors2.go
package main

import (
Ilfmtll
"math"

func Sqrt(x float64) (float64, error) {

https://md2pdf netlify.app 56/139

25/03/2023,05:21 Hacking with Go

if x <0 {
return @, fmt.Errorf("cannot Sqrt negative number: %v'", float64(x))

}

return math.Sqrt(x), nil

by

func main() {
fmt.Println(Sqrt(2))
fmt.Println(Sqrt(-2))

Continue reading = 03 - Useful Go packages

03 - Useful Go packages

This is where this repo is going to divert a bit from BH books. This section is going to be simple
guides to Go packages that will be used later. For example the flag package is used to create and
process command line parameters and is a building block of almost every security script that hopes
to be re-used. Some packages like net are more complex and better learned in action while
building/using tools.

As | move forward and learn more, | will return and add more tutorials here.

e 03.1- flag package: Parsing command line parameters.

e 03.2 - log package: Logging.

flag package

flag package is the Go equivalent of Python argparse. While not as powerful, it does what we
expect it to do. It simplifies adding and parsing command line parameters, leaving us to
concentrate on the tools. Most of our tools will need them to be actually useful (hardcoding URLs
and IPs get old too fast).

e Alternative community packages

Basic flags
o Flag use

e Declaring flags in the init function

e Custom flag types and multiple values
e Required flags

e Alternate and shorthand flags

e Non-flag arguments

https://md2pdf netlify.app 57/139

25/03/2023,05:21 Hacking with Go

e Subcommands

Alternative community packages

Some community packages offer what flag does and more. In this guide | am trying to stick to the
standard library. Some of these packages are:

e Cobra: A Commander for modern Go CLI interactions

e cli: A simple, fast, and fun package for building command line apps in Go
Basic flags

Declaring basic flags is easy. We can create basic types such as: string, bool and int .

A new flag is easy to add:

® ipPtr := flag.String("ip", "127.0.0.1", "target IP")
°o String : Flag type.

o ipPtr : Pointer to flag's value.

o ip : Flag name, meaning flag can be called with -ip .

o 127.0.0.1 : Flag's default value if not provided.

o target IP :Flag description, displayed with -h switch.

It's also possible to pass a pointer directly:

®* var port int

e flag.IntVar(&port, "port", 8080, "Port")

// 03.1-01-flagl.go
package main

import (
Ilflagll
Ilfmtll

func main() {

// Declare flags
// Remember, flag methods return pointers
ipPtr := flag.String("ip", "127.0.0.1", "target IP")

var port int
flag.IntVar(&port, "port", 8080, "Port")

verbosePtr := flag.Bool("verbose", true, "verbosity")

https://md2pdf netlify.app 58/139

25/03/2023,05:21 Hacking with Go

// Parse flags
flag.Parse()

// Hack IP:port
fmt.Printf("Hacking %s:%d!\n", xipPtr, port)

// Display progress if verbose flag is set

if xverbosePtr {
fmt.Printf("Pew pew!\n")

This program contains a mistake! Can you spot it? If not, don't worry.

-h/-help print usage:

$ go run 03.1-01-flagl.go -h

Usage of ... _obj\exe\03.1-01-flagl.exe:
—-ip string
target IP (default "127.0.0.1")
—-port int
Port (default 8080)
-verbose

verbosity (default true)
exit status 2

Without any flags, default values are used:

$ go run 03.1-01-flagl.go
Hacking 127.0.0.1:8080!
Pew pew!

Flag use

Flag use is standard.

$ go run 03.1-01-flagl.go —-ip 10.20.30.40 —port 12345
Hacking 10.20.30.40:12345!
Pew pew!

The problem is the default value of our boolean flag. A boolean flag is true if it occurs and false
if it. We set the default value of verbose to true meaning with our current knowledge we cannot
set verbose to false (we will see how below but it's not idiomatic).

Fix that line and run the program again:

https://md2pdf netlify.app 59/139

25/03/2023,05:21 Hacking with Go

$ go run 03.1-02-flag2.g9o -ip 10.20.30.40 —-port 12345
Hacking 10.20.30.40:12345!

$ go run 03.1-02-flag2.go —-ip 10.20.30.40 —-port 12345 -verbose
Hacking 10.20.30.40:12345!
Pew pew!

= is allowed. Boolean flags can also be set this way (only way to set verbose to false in our
previous program):

$ go run 03.1-02-flag2.90 —-ip=20.30.40.50 —-port=54321 -verbose=true
Hacking 20.30.40.50:54321!
Pew pew!

$ go run 03.1-02-flag2.90 —-ip=20.30.40.50 —port=54321 -verbose=false
Hacking 20.30.40.50:54321!

——flag is also possible:

$ go run 03.1-02-flag2.go ——ip 20.30.40.50 ——port=12345 ——verbose
Hacking 20.30.40.50:12345!
Pew pew!

Declaring flags in the init function

init function is a good location to declare flags. init function is executed after variable
initialization values and before main . There's one little catch, variables declared in init are out of
focus outside (and in main) hence we need to declare variables outside and use *Var methods:

package main
import (

Ilflagll
Ilfmtll

// Declare flag variables

var (
ip string
port int

verbose bool

func init() {
// Declare flags
// Remember, flag methods return pointers

https://md2pdf netlify.app 60/139

25/03/2023,05:21 Hacking with Go

flag.StringvVar(&ip, "ip", "127.0.0.1", "target IP")

flag.IntVar(&port, "port", 8080, "Port")

flag.BoolVar(&verbose, "verbose", false, "verbosity")

func main() {

// Parse flags
flag.Parse()

// Hack IP:port
fmt.Printf("Hacking %s:%d!\n", ip, port)

// Display progress if verbose flag is set
if verbose {
fmt.Printf("Pew pew!\n")

Custom flag types and multiple values

Custom flag types are a bit more complicated. Each custom type needs to implement the flag.Value
interface. This interface has two methods:

type Value interface {
String() string
Set(string) error

In simple words:

1. Create a new type mytype .

2. Create two methods with *mytype receivers named String() and Set() .
o String() casts the customtype toa string and returnsit.

o Set(string) hasa string argument and populates the type and returns an error if
applicable.

3. Create a new flag without an initial value:
o Call flag.NewFlagSet(&var, instead of flag.String(.

o Call flag.var(instead of flag.StringVar(or flag.IntVar(.

Now we can modify our previous example to accept multiple comma-separated IPs. Note, we are
using the same structure of generateStrings and consumeString from section 02.6 -
sync.WaitGroup. In short, we are going to generate all permutations of IP:ports and then "hack"
each of them in one goroutine.

https://md2pdf netlify.app 61/139

25/03/2023,05:21 Hacking with Go

The permutation happens in its own goroutine and is results are sent to channel one by one. When
all permutations are generated, channel is closed.

In main, we read from channel and spawn a new goroutine to hack each IP:port. When channel is
closed, we wait for all goroutines to finish and then return.

package main

import (
"errors"
"flag"
"fmt"
"strings"
"sync"

// 1. Create a custom type from a string slice
type strList []lstring

// 2.1 implement String()
func (str xstrList) String() string {
return fmt.Sprintf("%v", sxstr)

by

// 2.2 implement Set(kstrList)
func (str kxstrList) Set(s string) error {
// If input was empty, return an error
if s =="" {
return errors.New('"'nil input")
¥
// Split input by ","
*str = strings.Split(s, ",")
// Do not return an error

return nitl
b
// Declare flag variables
var (

ip strList

port strList
verbose bool

var wg sync.WaitGroup

func init() {
// Declare flags
// Remember, flag methods return pointers
flag.Var(&ip, "ip", "target IP")
flag.Var(&port, "port", "Port")

https://md2pdf netlify.app 62/139

25/03/2023,05:21 Hacking with Go

flag.BoolVar(&verbose, '"verbose", false, "verbosity")

// permutations creates all permutations of ip:port and sends them to a channel.
// This is preferable to returing a []lstring because we can spawn it in a

// goroutine and process items in the channel while it's running. Also save

// memory by not creating a large []lstring that contains all permutations.

func permutations(ips strList, ports strList, c chan<- string) {

// Close channel when done
defer close(c)
for _, i := range ips {
for _, p := range ports {
c <— fmt.Sprintf("%s:%s", i, p)

// hack spawns a goroutine that "hacks" each target.
// Each goroutine prints a status and display progres if verbose is true
func hack(target string, verbose bool) {

// Reduce waitgroups counter by one when hack finishes
defer wg.Done()

// Hack the planet!

fmt.Printf("Hacking %s!\n", target)

// Display progress if verbose flag is set
if verbose {
fmt.Printf("Pew pew!\n")

func main() {

// Parse flags
flag.Parse()

// Create channel for writing and reading IP:ports
¢ := make(chan string)

// Perform the permutation in a goroutine and send the results to a channel
// This way we can start "hacking" during permutation generation and

// not create a huge list of strings in memory

go permutations(ip, port, c)

for {
select {
// Read a string from channel
case t, ok := <-c:
// If channel is closed
if lok {

https://md2pdf netlify.app 63/139

25/03/2023,05:21 Hacking with Go
// Wait until all goroutines are done
wg.Wait()
// Print hacking is finished and return
fmt.Println("Hacking finished!")
return

by

// Otherwise increase wg's counter by one

wg.Add(1)

// Spawn a goroutine to hack IP:port read from channel
go hack(t, verbose)

Result:

$ go run 03.1-04-flag4.go -ip 10.20.30.40,50.60.70.80 —port 1234
Hacking 50.60.70.80:1234!

Hacking 10.20.30.40:1234!

Hacking finished!

$ go run 03.1-04-flag4.go —-ip 10.20.30.40,50.60.70.80 —port 1234,4321
Hacking 10.20.30.40:4321!

Hacking 10.20.30.40:1234!

Hacking 50.60.70.80:4321!

Hacking 50.60.70.80:1234!

Hacking finished!

$ go run 03.1-04-flag4.go0 —-ip 10.20.30.40,50.60.70.80 —port 1234,4321 -verbose
Hacking 10.20.30.40:4321!

Pew pew!

Hacking 50.60.70.80:4321!

Pew pew!

Hacking 10.20.30.40:1234!

Pew pew!

Hacking 50.60.70.80:1234!

Pew pew!

Hacking finished!

Required flags

flag does not support this. In Python we can use parser.add_mutually_exclusive_group() .
Instead we have to manually check if a flag is set. This can be done by comparing a flag with it's
default value or the initial zero value of type in case it does not have a default value.

This can get complicated when the flag can contain the zero value. For example an int flag could
be set with value @ which is the same as the default value for int s. Something that can help is

https://md2pdf netlify.app 64/139

25/03/2023,05:21 Hacking with Go

the number of flags after parsing available from flag.NFlag() . If number of flags is less than
expected, we know something is wrong.

Alternate and shorthand flags

flag does not have support for shorthand or alternate flags. They need to be declared in a
separate statement.

flag.BoolVar(&verbose, '"verbose", false, "verbosity")
flag.BoolVar(&verbose, "v'", false, "verbosity")

Non-flag arguments

After flag.Parse() it's possible to read other arguments passed to the application with

flag.Args() . The number of them is available from flag.NArg() and they individually can be

accessed by index using flag.Arg(i) .

// 03.1-05-args.go
package main

import (
Ilf'l-agll
Ilfmtll

)

func main() {

// Set flag

_ = flag.Int("flagl", @, "flagl description")

// Parse all flags

flag.Parse()

// Enumererate flag.Args()

for _, v := range flag.Args() {
fmt.Println(v)

}

// Enumerate using flag.Arg(i)

for i := 0; i < flag.NArg(); i++ {
fmt.Println(flag.Arg(i))

Running the program with non-flag arguments results in:

$ go run 03.1-05-flag5.go -flagl 12 one two 3
one

two

3

https://md2pdf .netlify.app

65/139

25/03/2023,05:21 Hacking with Go
one

two
3

Subcommands

Subcommands are possible using flag.NewFlagSet.
e func NewFlagSet(name string, errorHandling ErrorHandling) *FlagSet

We can decide what happens if parsing that subcommand fails with the second parameter:

const (
ContinueOnError ErrorHandling = iota // Return a descriptive error.
ExitOnError // Call os.Exit(2).
PanicOnError // Call panic with a descriptive error.

After that we need to parse the subcommand. This is usually done by reading os.Args[1] (second
argument after program name should be subcommand) and parsing the detected subcommand.

// 03.1-06-subcommand.go
package main

import (
Ilf'l-agll
Ilfmtll
IIOS

var (
subl *xflag.FlagSet
sub2 *xflag.FlagSet

sublflag =*int
sub2flagl *string
sub2flag2 int

usage string

func init() {
// Declare subcommand subl
subl = flag.NewFlagSet("subl", flag.ExitOnError)
// int flag for subl
sublflag = subl.Int("sublflag", @, "subcommandl flag")

// Declare subcommand sub?2

https://md2pdf netlify.app 66/139

25/03/2023,05:21 Hacking with Go
sub2 = flag.NewFlagSet("sub2", flag.ContinueOnError)
// string flag for sub2
sub2flagl = sub2.String("sub2flagl", "", "subcommand2 flagl")
// int flag for sub2
sub2.IntVar(&sub2flag2, "sub2flag2", @, "subcommand2 flag2")
// Create usage
usage = "subl -sublflag (int)\nsub2 -sub2flagl (string) -sub2flag2 (int)"

func main() {
// If subcommand is not provided, print error, usage and return
if len(os.Args) < 2 {
fmt.Printin(""Not enough parameters")
fmt.Println(usage)
return

// Check the sub command
switch os.Args[1] {

// Parse subl
case '"'subl":
subl.Parse(os.Args[2:])

// Parse sub2
case '"'sub2":
sub2.Parse(os.Args[2:])

// If subcommand is -h or ——help
case "-h":
fallthrough
case "——help":
fmt.Printf(usage)
return
default:
fmt.Printf("Invalid subcommand %v
return

, 0s.Args[1])

// If subl was provided and parse, print the flags

if subl.Parsed() {
fmt.Printf("subcommandl with flag %v\n", *xsublflag)
return

// If sub2 was provided and parse, print the flags

if sub2.Parsed() {
fmt.Printf("subcommand2 with flags %v, %v\n", xsub2flagl, sub2flag2)
return

https://md2pdf netlify.app 67/139

25/03/2023,05:21 Hacking with Go

As you can see there's a lot of manual work in sub commands and they are not as elegant as
normal flags.

Continue reading = 03.2 - log package

log package

log package is used for logging. The examples (unlike some other packages) are not very helpful.
It's very bare bones and has only two logging levels.

For anything complicated use Google's glog package.

e Basic logging
e Custom logger
o Log to file
= | ogging to multiple files/streams
o Flag
o Prefix

e Logging levels

Basic logging
Basic logging is similar to other languages.

// 03.2-01-basic-logging.go
package main

import (

1 'Logll
)

func main() {
a, b :=10, 20
log.Print("Use Print to log.")

log.Println("Ditto for Println.")
log.Printf("Use Printf and format strings. %d + %d = %d", a, b, a+b)

Each log is on a new line:

$ go run 03.2-01-basic-logging.go
2017/12/25 22:18:38 Use Print to log.

https://md2pdf netlify.app 68/139

25/03/2023,05:21 Hacking with Go
2017/12/25 22:18:38 Ditto for Println.
2017/12/25 22:18:38 Use Printf and format strings. 10 + 20 = 30

We can also forward the output to a file (or any number of io.Writer s) with [log.SetOutput]
[setoutput1-log-pkg].

logFile, err := os.Create("logl.txt")
if err !'= nil {
panic("Could not open file")

log.SetOutput(logFile)

Custom logger

We can setup a custom logger with logger.New.

func New(out io.Writer, prefix string, flag int) *Logger

e out : Log destination. Any io.Writer like files.
e prefix : Appears before each log entry. Think Warning/Info/Error .

e flag : Defines logging properties (e.g. the date time format).

Log to file

Using out we can log to files.

// 03.2-02-1log-file.go
package main

import (
1 'Logll
IIOS

func main() {

// Create a file
logFile, err := os.Create("logl.txt")
if err '=nil {

panic("Could not open file")

// Close the file after main returns
defer logFile.Close()

https://md2pdf netlify.app 69/139

25/03/2023, 05:21 Hacking with Go
a, b :=10, 20

// We will not use the other options
myLog := log.New(logFile, "", 0)

myLog.Print("Use Print to log.")

myLog.Println("Ditto for Println.")
myLog.Printf("Use Printf and format strings. %d + %d = %d", a, b, a+b)

logl.txt will contain:

Use Print to log.
Ditto for Println.
Use Printf and format strings. 10 + 20 = 30

After New , mylog.SetOutput(w io.Writer) can redirect the logger.

Logging to multiple files/streams

It's also possible to log to multiple files (or io.Writer s) with io.MultiWriter. This is useful when we

want to both output to stdout and to files.

// 03.2-03-log-multiple-files.go
package main

import (
"bytes"
"fmt"
"io

"log"

IIOS

func main() {

// Create a file
logFile, err := os.Create("logl.txt")
if err !'= nil {

panic("Could not open file")

// Close the file after main returns
defer logFile.Close()

// Create a second file
logFile2, err := os.Create("log2.txt")
if err '= nil {

https://md2pdf netlify.app

70/139

25/03/2023,05:21 Hacking with Go
panic("Could not open file2")

defer logFile2.Closel()

// Create a buffer
var buflog bytes.Buffer

multiW := io.MultiWriter(logFile, logFile2, &buflog, os.Stdout)
a, b :=10, 20

// Log to multiW
myLog := log.New(multiw, "", @)

myLog.Print("Use Print to log.")
myLog.Println("Ditto for Println.")
myLog.Printf("Use Printf and format strings. %d + %d = %d", a, b, a+b)

// Print buffer
fmt.Println("Buffer:")
fmt.Println(buflog.String())

We can see what we logged in both stdout and buffer:

$ go run 03.2-03-log-multiple-files.go
Use Print to log.
Ditto for Println.

Use Printf and format strings. 10 + 20 = 30
Buffer:

Use Print to log.

Ditto for Println.

Use Printf and format strings. 10 + 20 = 30

Flag

Prefix should be next but by discussing flag we can see if it appears before flag format or not.
flag is aninteger and is a collection of bits (like FLAGS CPU register). The flags are defined as
constants:

// https://godoc.org/log#pkg—constants

const (
// Bits or'ed together to control what's printed.
// There is no control over the order they appear (the order listed
// here) or the format they present (as described in the comments).
// The prefix is followed by a colon only when Llongfile or Lshortfile
// is specified.

https://md2pdf netlify.app 71/139

25/03/2023,05:21 Hacking with Go
// For example, flags Ldate | Ltime (or LstdFlags) produce,
// 2009/01/23 01:23:23 message
// while flags Ldate | Ltime | Lmicroseconds | Llongfile produce,
// 2009/01/23 01:23:23.123123 /a/b/c/d.go:23: message

Ldate = 1 << iota // the date in the local time zone: 2009/01/23

Ltime // the time in the local time zone: 01:23:23
Lmicroseconds // microsecond resolution: ©01:23:23.123123. assumes
Llongfile // full file name and line number: /a/b/c/d.go:23
Lshortfile // final file name element and line number: d.go:23.
LUTC // if Ldate or Ltime is set, use UTC rather than the
LstdFlags = Ldate | Ltime // initial values for the standard logger

There's only room for a few bits of customization (see what | did there?).

// 03.2-04-1og-flags.go
package main

import (

func main() {
a, b :=10, 20
// New logger will output to stdout with flags
// Only log date and file
myLog := log.New(os.Stdout, "", log.Ldate|log.Lshortfile)
myLog.Print("Use Print to log.")

myLog.Println("Ditto for Println.")
myLog.Printf("Use Printf and format strings. %d + %d = %d", a, b, a+b)

We log date and filename:

$ go run 03.2-04-1log-flags.go

2017/12/26 03.2-04-1og-flags.go:25: Use Print to log.

2017/12/26 03.2-04-log-flags.go:26: Ditto for Println.

2017/12/26 03.2-04-1log-flags.go:27: Use Printf and format strings. 10 + 20 = 30

Prefix

prefix adds a string to the beginning of each log line.

https://md2pdf netlify.app 72/139

25/03/2023,05:21 Hacking with Go

// 03.2-05-1log-prefix.go
package main

import (

[1] 'Logll
“OS

func main() {
a, b :=10, 20

// New logger will output to stdout with prefix "Logl: " and flags
// Note the space in prefix
myLog := log.New(os.Stdout, "Logl: ", log.Ldate|log.Lshortfile)

myLog.Print("Use Print to log.")

myLog.Printin("Ditto for Println.")
myLog.Printf("Use Printf and format strings. %d + %d = %d", a, b, a+b)

Prefix is printed before flags:

$ go run 03.2-05-log-prefix.go

Logl: 2017/12/26 03.2-05-log-prefix.go:16: Use Print to log.

Logl: 2017/12/26 03.2-05-1log-prefix.go:17: Ditto for Println.

Logl: 2017/12/26 03.2-05-log-prefix.go:18: Use Printf and format strings. 10 + 20 = 30

Logging levels

log only supports two logging levels:

e Fatal: log.Print and calls os.Exit(1) .

e [Panic][panic-log-pkg]: log.Print and calls panic() .

Both of these support ln and f variants (e.g. Fatalf, Panicln).

Continue reading = 04 - Go networking

[panic-log-pkg]: https://godoc.org/log#Panic# 04 - Go networking Now that we are done with the
basics and packages, we can start learning about networking. Following Black Hat Python, let's
start with networking basics and then move on.

Go's networking capabilities are in the net package and its sub-packages like net/http. The Python
equivalent to net is socket and net/http can be compared to the 3rd party Requests module.

https://md2pdf netlify.app 73/139

25/03/2023,05:21 Hacking with Go

Table of Contents

e 04.1 - Basic TCP and UDP clients
e 04.2 - TCP servers

e 04.3 - TCP proxy

e 04.4 - SSH clients

e 04.5 - SSH Harvester

04.1 - Basic TCP and UDP clients

e TCP client
o net.Dial - TCP
o net.DialTCP
e UDP client
o net.Dial - UDP
o net.DialUDP

e Lessons learned

TCP client

The building blocks for the basic TCP client is explained in the net package overview.

net.Dial - TCP

net.Dial is the general-purpose connect command.

e First parameter is a string specifying the network. In this case we are using tcp .

e Second parameter is a string with the address of the endpoint in format of host:port .

// 04.1-01-basic-tcpl.go
package main

import (
"bufio"
"flag"
"fmt"
"net"

var (
host, port string

https://md2pdf .netlify.app

74/139

25/03/2023,05:21 Hacking with Go
func init() {
flag.StringVar(&port, "port'", "80", "target port")
flag.StringVar(&host, "host", "example.com", "target host")

func main() {
flag.Parse()

// Converting host and port to host:port
t := net.JoinHostPort(host, port)

// Create a connection to server
conn, err := net.Dial("tcp", t)
if err '= nil {

panic(err)

// Write the GET request to connection

// Note we are closing the HTTP connection with the Connection: close header
// Fprintf writes to an io.writer

req := "GET / HTTP/1l.1\r\nHost: example.com\r\nConnection: close\r\n\r\n"
fmt.Fprintf(conn, req)

// Another way to do it to directly write bytes to conn with conn.Write
// However we must first convert the string to bytes with []lbyte("string")
// reqBytes := [lbyte(req)

// conn.Write(reqBytes)

// Reading the response

// Create a new reader from connection
connReader := bufio.NewReader(conn)

// Create a scanner
scanner := bufio.NewScanner(connReader)

// Combined into one line
// scanner := bufio.NewScanner(bufio.NewReader(conn))

// Read from the scanner and print

// Scanner reads until an I/0 error

for scanner.Scan() {
fmt.Printf("%s\n", scanner.Text())

// Check if scanner has quit with an error
if err := scanner.Err(); err != nil {
fmt.Printin("Scanner error", err)

https://md2pdf netlify.app 75/139

25/03/2023, 05:21 Hacking with Go
The only drawback with scanner is having to close the HTTP connection with the Connection:
close header. Otherwise we have to manually kill the application.

$ go run 04.1-01-basic-tcpl.go —host example.com —port 80
HTTP/1.1 200 OK

Cache-Control: max—-age=604800

Content-Type: text/html

Date: Sat, 16 Dec 2017 05:21:33 GMT

Etag: "359670651+gzip+ident"

Expires: Sat, 23 Dec 2017 ©5:21:33 GMT
Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
Server: ECS (dca/53DB)

Vary: Accept-Encoding

X-Cache: HIT

Content-Length: 1270

Connection: close

<!doctype html>
<html>
<head>
<title>Example Domain</title>

<meta charset="utf-8" />

Instead of using a scanner we can use ReadString(0x00) and stop when we reach an error (in
this case EOF):

// 04.1-02-basic-tcp2.go

// Read until a null byte (not safe in general)

// Response will not be completely read if it has a null byte

if status, err := connReader.ReadString(byte(0x00)); err != nil {
fmt.Println(err)
fmt.Println(status)

Using 0x00 as delimiter is not ideal. If the response payload contains NULL bytes, we are not
reading everything. But it works in this case.

net.DialTCP
net.DialTCP is the TCP specific version of Dial . It's a bit more complicated to call:

e func DialTCP(network string, laddr, raddr xTCPAddr) (xTCPConn, error)
e network isthe same as net.Dial butcanonly be tcp, tcp4 and tcpé6 .

https://md2pdf netlify.app 76/139

25/03/2023,05:21 Hacking with Go

e laddr islocal address and can be chosen. If nil, alocal address is automatically chosen.

e raddr is remote address and is the endpoint.

The type for both local and remote address is *TCPAddr :

type TCPAddr struct {
IP 1IP
Port int
Zone string // IPv6 scoped addressing zone

We can pass the network (e.g. "tcp") along with host:port or ip:port stringto
net.ResolveTCPAddr to get a *TCPAddr .

DialTCP returns a *TCPConn. It's a normal connection but with extra methods like SetLinger
SetKeepAlive or SetKeepAlivePeriod .

Let's re-write the TCP client with TCP-specific methods:

// 04.1-03-basic-tcp-dialtcp.go
// Basic TCP client using TCPDial and TCP specific methods
package main

import (
"bufio"
"flag"
"fmt"
"net"

var (
host, port string

func init() {
flag.StringVar(&port, "port'", "80", "target port")
flag.StringVar(&host, "host", "example.com", "target host")

// CreateTCPAddr converts host and port to *TCPAddr
func CreateTCPAddr(target, port string) (xnet.TCPAddr, error) {
return net.ResolveTCPAddr("tcp", net.JoinHostPort(host, port))

func main() {
// Converting host and port
a, err := CreateTCPAddr(host, port)
if err '= nil {

https://md2pdf netlify.app 77/139

25/03/2023,05:21 Hacking with Go
panic(err)

// Passing nil for local address
tcpConn, err := net.DialTCP("tcp", nil, a)
if err !'= nil {

panic(err)

// Write the GET request to connection

// Note we are closing the HTTP connection with the Connection: close header

// Fprintf writes to an io.writer

req := "GET / HTTP/1l.1\r\nHost: example.com\r\nConnection: close\r\n\r\n"

fmt.Fprintf(tcpConn, req)
// Reading the response

// Create a scanner

scanner := bufio.NewScanner(bufio.NewReader(tcpConn))

// Read from the scanner and print

// Scanner reads until an I/0 error

for scanner.Scan() {
fmt.Printf("%s\n", scanner.Text())

// Check if scanner has quit with an error
if err := scanner.Err(); err !'= nil {
fmt.Println("Scanner error", err)

This is a bit better.

UDP client

Similar to TCP, we can make a UDP client with both net.Dial and net.DialUDP .

net.Dial - UDP

Creating a UDP client is very similar. We will just call net.Dial("udp", t) .Being UDP, we will use

net.DialTimeout to pass atimeout value.

// 04.1-04-basic-udp.go
// Create a connection to server with 5 second timeout

conn, err := net.DialTimeout("udp", t, 5%time.Second)
if err !'= nil {

https://md2pdf netlify.app

78/139

25/03/2023,05:21 Hacking with Go
panic(err)

Each second is one time.Second (remember to importthe time package).

net.DialUDP

net.DialUDP is similar to the TCP equivalent:

e func DialUDP(network string, laddr, raddr *UDPAddr) (%UDPConn, error)

e xUDPAddr is acquired through net.ResolveUDPAddr.

* network should be udp .

// 04.1-05-udp-dialudp.go
package main

import (
"bufio"
"flag"
"fmt"
"net"

var (
host, port string

func init() {
flag.StringVar(&port, "port", "80", "target port")

flag.StringVar(&host, "host", "example.com", "target host")

// CreateUDPAddr converts host and port to *xUDPAddr

func CreateUDPAddr(target, port string) (xnet.UDPAddr, error) {
return net.ResolveUDPAddr("udp", net.JoinHostPort(host, port))

func main() {

// Converting host and port to host:port
a, err := CreateUDPAddr(host, port)
if err !'= nil {

panic(err)

// Create a connection with DialUDP
connUDP, err := net.DialUDP("udp", nil, a)
if err '= nil {

panic(err)

}

https://md2pdf netlify.app

79/139

25/03/2023,05:21 Hacking with Go

// Write the GET request to connection

// Note we are closing the HTTP connection with the Connection: close header
// Fprintf writes to an io.writer

req := "UDP PAYLOAD"

fmt.Fprintf(connUDP, req)

// Reading the response

// Create a scanner
scanner := bufio.NewScanner(bufio.NewReader(connUDP))

// Read from the scanner and print

// Scanner reads until an I/0 error

for scanner.Scan() {
fmt.Printf("%s\n", scanner.Text())

// Check if scanner has quit with an error
if err := scanner.Err(); err != nil {
fmt.Println("Scanner error", err)

Lessons learned

-_

. Convert int to string using strconv.ltoa. strconv.Atoi does the opposite (note Atoi also
returns an err so check for errors after using it.

String(int) converts the integer to corresponding Unicode character.

. Create TCP connections with net.Dial.

. We can read/write bytes directly to connections returned by net.Dial or createa Scanner .
. Convert a string to bytes with []byte("12345") .

. Get seconds of type Duration with time.Second .

N o o~ w N

net package has TCP and UDP specific methods.

Continue reading = 04.2 - TCP servers

04.2 - TCP servers

Now we will create TCP and UDP servers.

e net.Listen
o No logging with io.Copy()

o Logging with extra goroutines
e net.TCPListen

https://md2pdf netlify.app 80/139

25/03/2023,05:21

e Lessons learned

Hacking with Go

net package overview also shows us how to create a generic TCP server. When creating a server

we can take advantage of goroutines and spawn one for each connection.

net.Listen

The generic net.Listen method is capable of doing both TCP and UDP.

No logging with io.Copy()

Building on the example from net package we can build a simple TCP server:

// 04.2-01-tcpserverl.go
package main

import (
IIf'Lagll
II.fm.tll

10
Ilnetll

var (
host, port string

func init() {

flag.StringVar(&port, "port'", "12345", "target port")
flag.StringVar(&host, "host", "example.com", "target host")

// handleConnectionNoLog echoes everything back without logging (easiest)
func handleConnectionNoLog(conn net.Conn) {

rAddr := conn.RemoteAddr().String()
defer fmt.Printf("Closed connection from %v\n'",

// This will accomplish the echo if we do not want to log

io.Copy(conn, conn)

func main() {

flag.Parse()

// Converting host and port to host:port
t := net.JoinHostPort(host, port)

// Listen for connections on BindIP:BindPort

https://md2pdf netlify.app

rAddr)

81/139

25/03/2023,05:21 Hacking with Go

1n, err := net.Listen("tcp", t)
if err !'= nil {
// If we cannot bind, print the error and quit
panic(err)
}
// Wait for connections
for {
// Accept a connection
conn, err := ln.Accept()
if err !'= nil {
// If there was an error, print it and go back to listening
fmt.Println(err)
continue
b

fmt.Printf("Received connection from %v\n'", conn.RemoteAddr().String())

// Spawn a new goroutine to handle the connection
go handleConnectionNoLog(conn)

Most of the code in main is similar to Python. We listen on a host:port and then accept each
connection. With each new connection, a new goroutine is spawned to handle it.

// handleConnectionNoLog echoes everything back without logging (easiest)
func handleConnectionNoLog(conn net.Conn) {

rAddr := conn.RemoteAddr().String()
defer fmt.Printf("Closed connection from %v\n', rAddr)

// This will accomplish the echo if we do not want to log
io.Copy(conn, conn)

This is where the magic happens:

e io.Copy(conn, conn)
You copy one connection to the other. It's super easy! And it works.
We can telnet to the server and see.

QTCP server 1 test

Logging with extra goroutines

https://md2pdf netlify.app 82/139

25/03/2023,05:21

Hacking with Go

Things become complicated when we want to log info that we have received. The main structure of

the program is the same but we spawn two extra goroutines inside the handleConnection

goroutine.

// 04.2-02-tcpserver2.go

// handleConnectionLog echoes everything back and logs messages received

func handleConnectionLog(conn net.Conn) {

// Create buffered channel to pass data around

c := make(chan [lbyte, 2048)

// Spawn up two goroutines, one for reading and another for writing

go readSocket(conn, c)
go writeSocket(conn, c)

A buffered channel is created and passed to each goroutine. As you can imagine readSocket
reads from the connection and writes to channel. Note the argument is a directed channel (this
prevents from accidentally reading from it instead of writing):

// readSocket reads data from socket if
// Note the directed write-only channel
func readSocket(conn net.Conn, c chan<-

// Create a buffer to hold data

buf :=

make([1byte, 2048)

// Store remote IP:port for logging

rAddr

for {
//
n’
//
if

//
if

b
//
//

:= conn.RemoteAddr().String()

Read from connection
err := conn.Read(buf)

If connection is closed from the other side

err == i0.EOF {
// Close the connction and return

fmt.Println("Connection closed from",

return

For other errors, print the error and return

err '= nil {

fmt.Println("Error reading from socket", err)

return

Print data read from socket

Note we are only printing and sending the first n bytes.
// n is the number of bytes read from the connection

fmt.Printf("Received from %v: %s\n",

//

Send data to channel

https://md2pdf netlify.app

available and passes it to channel
designation
[Tbyte) {

rAddr, bufl[:n]l)

83/139

25/03/2023,05:21 Hacking with Go
c <—- bufl:n]

This is pretty straightforward. The only important partis n. n is the number of bytes read from
the socket after conn.Read . When sending the data to the channel we are only interested in the
first n bytes (if we send the whole buffer, the other side will get 2048 bytes every time).

// writeSocket reads data from channel and writes it to socket
func writeSocket(conn net.Conn, c <-chan []lbyte) {

// Create a buffer to hold data

buf := make([]lbyte, 2048)

// Store remote IP:port for logging
rAddr := conn.RemoteAddr().String()

for {

// Read from channel and copy to buffer

buf = <-c

// Write buffer

n, err := conn.Write(buf)

// If connection is closed from the other side

if err == io.EOF {
// Close the connction and return
fmt.Println("Connection closed from", rAddr)
return

// For other errors, print the error and return
if err '= nil {
fmt.Println("Error writing to socket", err)
return

b
// Log data sent
fmt.Printf("Sent to %v: %s\n", rAddr, bufl[:n])

writeSocket is easier. We use a directed channel to read data into a buffer and send it off. This
server is also not echo-ing back the first character.

QTCP server 2 test

net.TCPListen
As we have seen, there are TCP specific methods in the net package. The code is pretty much the
same. We just use TCPListen and pass a *TCPAddr toit. The resultisa TCPConn whichis

net.Conn under the hoods. Everything else remains the same.

https://md2pdf netlify.app 84/139

25/03/2023,05:21 Hacking with Go
// 04.2-03-tcpserver3.go
// CreateTCPAddr converts host and port to xTCPAddr
func CreateTCPAddr(host, port string) (xnet.TCPAddr, error) {

return net.ResolveTCPAddr("tcp", net.JoinHostPort(host, port))
¥

func main() {
// Converting host and port to TCP address

t, err := CreateTCPAddr(bindHost, bindPort)

// Listen for connections on bindHost:bindPort
ln, err := net.ListenTCP("tcp", t)

for {
conn, err := ln.AcceptTCP()

go handleConnectionLog(conn)

Lessons learned

1. io.Copy(conn, conn) is magic.

2. Goroutines are pretty easy to spawn for socket read/writes.

Continue reading = 04.3 - TCP proxy# 04.3 - TCP Proxy

Building a non-TLS terminating TCP proxy is pretty easy. It's very similar to the TCP server we have
already created.

We listen for TCP connections. After one is established, we create a new connection to the
forwarding IP:port and send all data. Without logging this can be done with a simple

io.Copy(connDest, connSrc) . With logging we have to use multiple goroutines (as we have seen
before).

Only forwardConnection is different. Instead of calling handleConnection we call
forwardConnection in a new goroutine.

Inside, we create a TCP connection to server and two channels. Then we handle each side of the
connection like the echo TCP server.

https://md2pdf netlify.app 85/139

25/03/2023,05:21

// 04.3-01-tcp-proxy.go
package main

import (
IIf'Lagll
IIfm.tll

10
Ilnetll

var (

Hacking with Go

bindIP, bindPort, destIP, destPort string

func init() {

flag.StringVar(&bindPort, "bindPort", '"12345", "bind port")
flag.StringVar(&bindIP, "bindIP", "127.0.0.1", "bind IP")
flag.StringVar(&destPort, "destPort", "12345", "bind port")
flag.StringVar(&destIP, "destIP", "127.0.0.1", "bind IP")

// readSocket reads data from socket if
func readSocket(conn net.Conn, c chan<-

// Create a buffer to hold data

buf := make([]lbyte, 2048)

// Store remote IP:port for logging
rAddr := conn.RemoteAddr().String()

for {
// Read from connection
n, err := conn.Read(buf)

// If connection is closed from
if err == i0.EOF {

available and passes it to channel
[Tbyte) {

the other side

// Close the connction and return
fmt.Println("Connection closed from", rAddr)

return

// For other errors, print the error and return

if err '= nil {

fmt.Println("Error reading from socket", err)

return

}

// Print data read from socket

// Note we are only printing and sending the first n bytes.
// n is the number of bytes read from the connection
fmt.Printf(""Received from %v: %s\n", rAddr, bufl[:n])

// Send data to channel
c <- buf[:n]

https://md2pdf netlify.app

86/139

25/03/2023,05:21 Hacking with Go

// writeSocket reads data from channel and writes it to socket
func writeSocket(conn net.Conn, c <-chan [lbyte) {

// Create a buffer to hold data

buf := make([]lbyte, 2048)

// Store remote IP:port for logging
rAddr := conn.RemoteAddr().String()

for {

// Read from channel and copy to buffer

buf = <-c

// Write buffer

n, err := conn.Write(buf)

// If connection is closed from the other side

if err == io.EOF {
// Close the connction and return
fmt.Println("Connection closed from", rAddr)
return

¥

// For other errors, print the error and return

if err !'= nil {
fmt.Println("Error writing to socket", err)
return

¥

// Log data sent

fmt.Printf("Sent to %v: %s\n", rAddr, bufl[:n])

// forwardConnection creates a connection to the server and then passes packets
func forwardConnection(clientConn net.Conn) {

// Converting host and port to destIP:destPort
t := net.JoinHostPort(destIP, destPort)

// Create a connection to server
serverConn, err := net.Dial("tcp", t)
if err !'= nil {

fmt.Println(err)

clientConn.Close()

return

// Client to server channel
c2s := make(chan [lbyte, 2048)
// Server to client channel
s2c := make(chan [lbyte, 2048)

go readSocket(clientConn, c2s)
go writeSocket(serverConn, c2s)
go readSocket(serverConn, s2c)
go writeSocket(clientConn, s2c)

https://md2pdf netlify.app 87/139

25/03/2023,05:21 Hacking with Go

by

func main() {
flag.Parse()

// Converting host and port to bindIP:bindPort
t := net.JoinHostPort(bindIP, bindPort)

// Listen for connections on BindIP:BindPort

ln, err := net.Listen("tcp", t)

if err !'= nil {
// If we cannot bind, print the error and quit
panic(err)

¥

fmt.Printf("Started listening on %v\n", t)

// Wait for connections
for {
// Accept a connection
conn, err := ln.Accept()
if err !'= nil {
// If there was an error print it and go back to listening
fmt.Println(err)

continue
}

fmt.Printf("Received connection from %v\n", conn.RemoteAddr().String())

go forwardConnection(conn)

Continue reading = 04.4 - SSH clients# 04.4 - SSH clients

Next in line is creating SSH clients. The /x/crypto/ssh provides SSH support. It's not one of the
standard libraries so you need to go get golang.org/x/crypto/ssh before use.

We can authenticate using either user/pass or certificate.

Basic interactive session with user/pass

Verifying host
o ssh.FixedHostKey

o Custom host verifier
Login with SSH key

Login and run a command

o Run a command with CombinedQOutput

o Run a command with Run

https://md2pdf netlify.app

88/139

25/03/2023,05:21 Hacking with Go

Basic interactive session with user/pass

First program is a typical interactive session based on the example in the docs. We login with a
user/pass combo.

// 04.4-01-sshclient-login-password.go
// Interactive SSH login with user/pass.

package main

import (
"flag"
"fmt"
"io

"net"

IIOS

// Importing crypto/ssh
"golang.org/x/crypto/ssh"

var (
username, password, serverIP, serverPort string

// Read flags

func init() {
flag.StringVar(&serverPort, "port", '"22", "SSH server port")
flag.StringVar(&serverIP, "ip", "127.0.0.1", "SSH server IP")
flag.StringVar(&username, "user", "', "username')
flag.StringVar(&password, 'pass', "', "password")

func main() {
// Parse flags
flag.Parse()

// Check if username has been submitted - password can be empty

if username == "" {
fmt.Printin("Must supply username")
0s.Exit(2)

}

// Create SSH config
config := &ssh.ClientConfig{
// Username
User: username,
// Each config must have one AuthMethod. In this case we use password
Auth: []ssh.AuthMethod{
ssh.Password(password),

}

https://md2pdf netlify.app

89/139

25/03/2023,05:21 Hacking with Go
// This callback function validates the server.

// Danger! We are ignoring host info
HostKeyCallback: ssh.InsecureIgnoreHostKey(),

// Server address
t := net.JoinHostPort(serverIP, serverPort)

// Connect to the SSH server

sshConn, err := ssh.Dial("tcp", t, config)

if err '= nil {
fmt.Printf("Failed to connect to %v\n", t)
fmt.Println(err)
0s.Exit(2)

// Create new SSH session

session, err := sshConn.NewSession()

if err !'= nil {
fmt.Printf("Cannot create SSH session to %v\n", t)
fmt.Println(err)
0s.Exit(2)

// Close the session when main returns
defer session.Close()

// For an interactive session we must redirect IO
session.Stdout = os.Stdout
session.Stderr = os.Stderr
input, err := session.StdinPipe()
if err !'= nil {
fmt.Printin("Error redirecting session input", err)
0s.Exit(2)

// Setup terminal mode when requesting pty. You can see all terminal modes at
// https://github.com/golang/crypto/blob/master/ssh/session.go#L56 or read
// the RFC for explanation https://tools.ietf.org/html/rfc4254#section-8
termModes := ssh.TerminalModes{

ssh.ECHO: @, // Disable echo

// Request pty

// https://tools.ietf.org/html/rfc4254#section-6.2

// First variable is term environment variable value which specifies terminal.
// term doesn't really matter here, we will use "vt220".

// Next are height and width: (40,80) characters and finall termModes.

err = session.RequestPty("vt220", 40, 80, termModes)

if err !'= nil {
fmt.Println("RequestPty failed", err)
0s.Exit(2)

¥

https://md2pdf netlify.app 90/139

25/03/2023,05:21 Hacking with Go

// Also

// if err = session.RequestPty("vt220", 40, 80, termModes); err != nil {
// fmt.Println("RequestPty failed", err)

// 0s.Exit(2)

// }

// Now we can start a remote shell
err = session.Shell()

if err '= nil {
fmt.Println("shell failed", err)
0s.Exit(2)

}

// Same as above, a different way to check for errors
// if err = session.Shell(); err != nil {

// fmt.Println("shell failed", err)

// 0s.Exit(2)

/7 }

// Endless loop to capture commands
// Note: After exit, we need to ctrl+c to end the application.
for {

io.Copy(input, o0s.Stdin)

First we create a config (note it's a pointer):

// Create SSH config
config := &ssh.ClientConfig{
// Username
User: username,
// Each config must have one AuthMethod. In this case we use password
Auth: []ssh.AuthMethod{
ssh.Password(password),
}l
// This callback function validates the server.
// Danger! We are ignoring host info
HostKeyCallback: ssh.InsecureIgnoreHostKey(),

Each config should have an AuthMethod . We are using a password in this program.
Next on the config is HostKeyCallback and is used to verify the server.

The familiar Dial method connects to the server. Then we create a session (each connection can
have multiple sessions).

https://md2pdf netlify.app 91/139

25/03/2023, 05:21 Hacking with Go

We set stdin, stdout and stderr for session and then terminal modes. Finally we request a pseudo-
terminal with RequestPty and a shell. We capture commands on stdin by basically copying
0s.Stdin to the connection's input.

Note: Depending on your SSH server and the terminal mode, you might see color codes. For
example you will see ANSI color codes if you run it from Windows cmd, but not in PowerShell. With
Windows OpenSSH, it does not matter what TERM is sent, the color codes will not go away in cmd.

Verifying host

Usually when creating small programs in security, we do not care about the host. But it's always
good to check.

HostKeyCallback in config can be used in three ways:

e ssh.InsecureIgnoreHostKey() :Ignore everything!
e ssh.FixedHostKey(key PublicKey) : Returns a function to check the hostkey.

e Custom host verifier: Return nil if host is ok, otherwise return an error.

ssh.FixedHostKey

This is an easy check. We pass a host key and the method checks if it matches the one returned by
the connection.

// https://github.com/golang/crypto/blob/master/ssh/client.go#L265
// FixedHostKey returns a function for use in
// ClientConfig.HostKeyCallback to accept only a specific host key.
func FixedHostKey(key PublicKey) HostKeyCallback {

hk := &fixedHostKey{key}

return hk.check

Looking at the source, it just unmarshals two publickeys and checks if they match.

// https://github.com/golang/crypto/blob/master/ssh/client.go#L253
func (f xfixedHostKey) check(hostname string, remote net.Addr, key PublicKey) error {
if f.key == nil {
return fmt.Errorf('"ssh: required host key was nil")

b
if !bytes.Equal(key.Marshal(), f.key.Marshal()) {
return fmt.Errorf('"ssh: host key mismatch")

}

return nil

It's straightforward to use. The new program is only a little different from the old one:
https://md2pdf .netlify.app 92/139

25/03/2023,05:21 Hacking with Go

e Create a variable of type ssh.PublicKey to hold the key.

e Pass HostKeyCallback: ssh.FixedHostKey(var_from_above) in config.

// Define host's public key
var hostPubKey ssh.PublicKey

// Populate hostPubKey

// Create SSH config
config := &ssh.ClientConfig{
// Username
User: username,
// Each config must have one AuthMethod. In this case we use password
Auth: []ssh.AuthMethod{
ssh.Password(password),
I
// Danger! We are ignoring host info
HostKeyCallback: ssh.FixedHostKey(hostPubKey),

Custom host verifier

This has more flexibility. We can also use this callback function to grab and store a server's public
key. It can have any number of arguments (usually we use these arguments to pass info to the host
checker). It should return a function of type ssh.HostKeyCallback:

type HostKeyCallback func(hostname string, remote net.Addr, key PublicKey) error

In other words, it's a function of this type:

func hostChecker(argl typel, arg2 type2, ...) ssh.HostKeyCallback {
/] s
b

Returned function can be a separate function or an anonymous function created inside
hostChecker . Here's an example of an anonymous function used by InsecureIgnoreHostKey
from ssh package's source:

// https://github.com/golang/crypto/blob/master/ssh/client.go#L240

// InsecureIgnoreHostKey returns a function that can be used for
// ClientConfig.HostKeyCallback to accept any host key. It should
// not be used for production code.
func InsecureIgnoreHostKey() HostKeyCallback {
return func(hostname string, remote net.Addr, key PublicKey) error {
return nil

https://md2pdf netlify.app 93/139

25/03/2023,05:21 Hacking with Go

by

Now we know enough to create our own custom host checker and pass it to HostKeyCallback :

// 04.4-02-sshclient-check-host.go

// hostChecker returns a function to be used as callback for HostKeyCallback.
func hostChecker() ssh.HostKeyCallback {
return printServerKey

by

// printServerKey prints server's info instead of checking it.
// It's of type HostKeyCallback
func printServerKey(hostname string, remote net.Addr, key ssh.PublicKey) error {
// Just print everything
fmt.Printf("Hostname: %v\nRemote address: %v\nServer key: %+v\n",
hostname, remote, key)
// Return nil so connection can continue without checking the server
return nil

We can see server info in the callback function:

$ go run 04.4-02-sshclient2.go —-user user —pass 12345

Hostname: 127.0.0.1:22

Remote address: 127.0.0.1:22

Server key: &{Curve:{CurveParams:0xc04204e100}
X:+95446563830190539723549646387134804373421025763629370453495481728809028570967
Y:+71690030922286766932148563959160819051208718262353076812036347925006921654863}

Login with SSH key

It's also possible to pass another AuthMethod and login with a key. Luckily, the package has
another example. We read the PEM encoded private key and use it in ClientConfig .

// 04.4-03-sshclient-1login-key.go

// Now we must read the private key
pKey, err := ioutil.ReadFile(pKeyFile)

if err !'=nil {
fmt.Println("Failed to read private key from file", err)
0s.Exit(2)

}

// Create a signer with the private key

https://md2pdf netlify.app 94/139

25/03/2023,05:21 Hacking with Go
signer, err := ssh.ParsePrivateKey(pKey)
if err !'=nil {
fmt.Println("Failed to parse private key", err)
0s.Exit(2)

// Create SSH config
config := &ssh.ClientConfig{
// Username
User: username,
// Each config must have one AuthMethod. Now we use key
Auth: []ssh.AuthMethod{
ssh.PublicKeys(signer),

I

// This callback function validates the server.
// Danger! We are ignoring host info
HostKeyCallback: ssh.InsecureIgnoreHostKey(),

Login and run a command

Interactive login is useful but there are SSH clients for that. Automated tools usually want to login,
run commands, capture the output and move on to the next host.

Each session can only run one command. A new session must be created for each new command
(one SSH connection can support multiple sessions). We can run commands using one of these
methods:

e Start: Runs a single command on the server.
e Run: Same as above. In fact, run calls start internally.
e Qutput: Runs the command but returns standard output.

e CombinedOutput: Runs the command and returns both stdout and stderr.

1. Not all of these methods return the output directly (in [1byte). For those that do not, we need
to read session.Stdout/Stderr .

2. All of them return errors. After execution, check the errors.
3. For obvious reasons, it seems like CombinedOutput will work best.

Run a command with CombinedOutput

We re-use the code from first example but stop after the session is created. Then we run the
command, check for errors and print the output.

// 04.4-04-sshclient-run-combinedoutput.go

// Close the session when main returns

https://md2pdf netlify.app 95/139

25/03/2023,05:21 Hacking with Go
defer session.Close()

// Run a command with CombinedOutput
0, err := session.CombinedOutput(command)
if err !'= nil {
fmt.Println("Error running command", err)

fmt.Printf("Output:\n%s", o)

Results from my VM (don't get excited, it's the default user/pass for https://modern.ie VMs):

$ go run .\04.4-04-sshclient-run-combinedoutput.go —user IEUser —-pass Passw@rd! -cmd d
OQutput:

Volume in drive C is Windows 10

Volume Serial Number is (C436-9552

Directory of C:\Users\IEUser
12/19/2017 08:28 PM <DIR>

12/19/2017 08:28 PM <DIR> -
10/02/2017 12:50 AM <DIR> .gradle

12/24/2017 07:02 PM <DIR> . Ssh
03/23/2017 12:29 PM 6 .vbox_version
03/23/2017 11:18 AM <DIR> Contacts
12/24/2017 01:50 AM <DIR> Desktop

Of course, we can always cheat by running multiple commands. On Windows use & and && .

$ go run .\04.4-04-sshclient-run-combinedoutput.go —user IEUser —-pass Passw@rd! -cmd "
OQutput:

Volume in drive C is Windows 10

Volume Serial Number is C436-9552

Directory of C:\Users
12/24/2017 01:53 AM <DIR>

12/24/2017 01:53 AM <DIR> -
12/19/2017 ©8:28 PM <DIR> IEUser

03/23/2017 11:18 AM <DIR> Public
12/24/2017 01:53 AM <DIR> SSHD
0 File(s) 0 bytes

5 Dir(s) 21,863,829,504 bytes free

Run a command with Run

https://md2pdf netlify.app 96/139

25/03/2023,05:21 Hacking with Go

Using Run is similar, we buffer session.Stdout/Stderr before we execute the command and
print them after. This is based on the package example:

// 04.4-05-sshclient-run-run.go

// Close the session when main returns
defer session.Close()

// Create buffers for stdout and stderr
var o, e bytes.Buffer

&o
&e

session.Stdout
session.Stderr

// Run a command with Run and read stdout and stderr
if err := session.Run(command); err !'= nil {
fmt.Println("Error running command", err)

// Convert buffer to string
fmt.Printf("stdout:\n%s\nstderr:\n%s", o0.String(), e.String())

Continue reading = 04.5 - SSH Harvester

04.5 - SSH harvester

This is a copy of my blog Simple SSH Harvester in Go. Sometime in the future, | will return and
continue working on the tool. For now | want to move on to new things.

| realized | cannot find any examples of SSH certificate verification. There are a few examples for
host keys here and there. Even the certs_test.go file just checks the host name. There was a
typo in an error message[~1] in the crypto/ssh package but | think because this is not very much
used, had gone unreported.

Here's my step by step guide to writing this tool by piggybacking on SSH host verification
callbacks. Hopefully this will make it easier for the next person.

TL;DR: verifying SSH servers

1. Create an instance of ssh.CertChecker.

2. Set callback functions for IsHostAuthority , IsRevoked and optionally HostKeyFallback .
o TIsHostAuthority 's callback should return true for valid certificates.

o IsRevoked 's callback should return false for valid certificates.
°© HostKeyFallback 's callback should return nil for valid certificates.

3. Create an instance of ssh.ClientConfig.

https://md2pdf netlify.app 97/139

25/03/2023,05:21

4. Set HostKeyCallback in ClientConfig to &ssh.CertChecker.CheckHostKey .

Hacking with Go

5. CheckHostKey will verify the certificate based on other callback functions.

6. The certificate can be accessed in IsRevoked callback function.

Goto Parsing SSH certificates to skip the fodder.

Table of Contents

¢ Code analysis

(o]

(o]

o

(o]

o

(o]

o

Constants and usage
Init function

Custom flag type
SSHServer struct
SSHServers struct
Struct to JSON
Utilities

e Parsing SSH certificates <-- This is the important part

o

[¢]

Step 1: Create ssh.CertChecker
Step 2: Set Callback functions

IsHostAuthority
= |sHostAuthority callback

IsRevoked
= |sRevoked callback
= Question!!!!
HostKeyFallback
Step 3: Create ssh.ClientConfig
= Banner callback
Step 4: ClientConfig.HostKeyCallback
= QOther ways of verifying servers
Step 5: Connecting to SSH servers
= discover method

= Goroutines and sync.WaitGroups

e SSH Harvester in action

e Conclusion

Code analysis

Let's look at the code.

Constants and usage

https://md2pdf netlify.app

98/139

25/03/2023,05:21

We can either pass a file with -in . The file should have one address on each line:

127.0.0.

Hacking with Go

1:22

[2001:db8::68]:1234

Or we can pass addresses with -t separated by commas:

® SSHHarvester.exe -t 127.0.0.1:22,[2001:db8::68]:1234

Output file is specified with -out .

const (

mUsage = "SSH Harvester gathers and publishes info about SSH servers.\n" +

"Addresses should be in format of 'host:port'.\n" +
"Input file should have one address on each line " +

"and addresses provided to -targets should be separated by commas.\n" +

"—in and -targets are mutually exclusive, use one.\n" +
"Examples:\n" +

"go run SSHHarvesterl.go -t 127.0.0.1:12334,192.168.0.10:22\n" +

"go run SSHHarvesterl.go -i inputfile.txt\n" +

""go run SSHHarvesterl.go -i inputfile.txt —-out output.txt\n"

outUsage = "output report file"
inUsage = "input file"
tUsage = "addresses separated by comma"

vUsage

"print extra info"

// Delimiter for host:port

AddressDelim =

// // Delimiter for IPv6 addresses
// IPv6Delim = "[]"

// Log prefix — note the trailing space
LogPrefix = "[x] "

// Test SSH username/password — not really important
TestUser = "user"
TestPassword = "password"

// Timeout in seconds
Timeout = 5 % time.Second

// Usage string
func usage() {

usg
usg
usg
usg
usg
usg

:= mUsage
+= fmt.Sprintf("\n -i, —-in\tstring\t%s'", inUsage)
+= fmt.Sprintf("\n -o, —out\tstring\t%s", outUsage)
+= fmt.Sprintf("\n -t, —-targets\tstring\t%s", tUsage)
("\n
(

+= fmt.Sprintf(" -v, —verbose\tstring\t%s", vUsage)
+= fmt.Sprintf("\n")

https://md2pdf netlify.app

99/139

25/03/2023,05:21

Hacking with Go

fmt.Printin(usg)

This is pretty standard. You might want to change the default username/password. Ultimately we

do not care about logging in, we just want to connect and get host info.

Init function

We setup flags, logging and check flags. flag package does not have

mutually_exclusive_group from Python's Argparse package. It needs to be done manually. | will
most likely move to a community cli package after this.

func init() {
// Setup flags

flag

flag
flag
flag

.StringVar(&out, "out", "", outUsage)
flag.
flag.
flag.

StringVar(&out, "o", "", outUsage)
StringVar(&in, "in", "", inUsage)

StringVar(&in, "i", "", inUsage)

.Var(&targets, "targets", tUsage)
.Var(&targets, "t", tUsage)
.Boolvar(&verbose, "verbose", false, vUsage)
flag.

BoolVar(&verbose, "v', false, vUsage)

// Set flag usage

flag.

Usage = usage

// Parse flags

flag.

Parse()

// Setting up logging

logSSH = log.New(os.Stdout, LogPrefix, log.Ltime)

// Check if we have enough arguments
if len(os.Args) < 2 {

flag.Usage()
errorExit("not enough arguments", nil)

// Check if both in and targets are supported
if (in = "") && (targets != nil) {

by

errorExit("-in and -targets are mutually exclusive, use one", nil)

errorExit just calls logger.Fatalf with a message. Logging the message and returning from
main with status code 1.

https://md2pdf .netlify.app

100/139

25/03/2023,05:21 Hacking with Go

// errorExit logs an error and then exits with status code 1.
func errorExit(m string, err error) {
// If err is provided print it, otherwise don't
if err '=nil {
logSSH.Fatalf("%sv — stopping\n%v\n", m, err)

b
logSSH.Fatalf("%v — stopping\n", m)
b
Custom flag type

We are using a custom flag type for -t . This allows us to pass multiple addresses separated by ,
and get a slice of addresses directly. This is done through implementing the flag.value which
contains two methods String() and Set() .In simple words:

1. Create a new type mytype .

2. Create two methods with *mytype receivers named String() and Set() .
o String() casts the customtype toa string and returns it.

o Set(string) hasa string argument and populates the type, returns an error if
applicable.

3. Create a new flag without an initial value:
o Call flag.NewFlagSet(&var, instead of flag.String(.

o Call flag.var(instead of flag.StringVar(or flag.IntVar(.

| have written more about the flag package in Hacking with Go - 03.1.

// Custom flag type for -t (code re-used from flag section)
// Create a custom type from a string slice
type strList []string

// Implement String()
func (str *xstrList) String() string {
return fmt.Sprintf("%v", xstr)

by

// Implement Set(xstrList)
func (str *xstrList) Set(s string) error {
// If input was empty, return an error
if s == ""{
return errors.New('"'nil input")
b
// Split input by ","
xstr = strings.Split(s, ",")
// Do not return an error
return nil

https://md2pdf netlify.app 101/139

25/03/2023,05:21

SSHServer struct

Hacking with Go

We use a struct and some methods to hold server info. The SSHServer struct has these fields:

// Struct to hold server data
type SSHServer struct {

Address string

Host string

Port int

IsSSH bool

Banner string

Cert ssh.Certificate
Hostname string

PublicKey ssh.PublicKey

//
//
//
//
//
//
//
//

host:port

IP address

port

true if server is running SSH on address:port
banner text, if any

server's certificate

hostname

server's public key

Not all fields will be populated. For example Hostname and PublicKey are only populated if the
server responds with a public key. If it has a cert, then Cert will be populated instead.

New xSSHServer s are created by NewSSHServer .

// NewSSHServer returns a new SSHServer with address, host and port populated.
// If address cannot be processed, an error will be returned.
func NewSSHServer(address string) (*SSHServer, error) {

// Process address,

host, port, err :=

if err '= nil {
return nil, err

var s SSHServer

s.Address = address
s.Host = host
s.Port, err =
if err '= nil {
return nil, err

}

return error if it's not in the correct format
net.SplitHostPort(address)

strconv.Atoi(port)

// If port is not in (0,65535]
if @ > s.Port || s.Port > 65535 {

return nil, errors.New(port + "

}

return &s, nil

invalid port")

net.SplitHostPort splits host:port into two strings but it does not check the validity of either
part. Meaning you can pass 500.500.500.500:70000 and it will be accepted because the format is

correct.

https://md2pdf .netlify.app

102/139

25/03/2023,05:21 Hacking with Go

To check if the IP is valid, we can use net.ParseIP and check the result (it's nil if it was not
parsed correctly). However, we do not know if we are dealing with hostnames like
example.com:1234 . But we can check if ports are in the correct range.

SSHServers struct

SSHServers is a slice of SSHServer pointers. It has a Stringer method (a String method that
returns a string representation of receiver).

type SSHServers []xSSHServer

// String converts []xSSHServer to JSON. If it cannot convert to JSON, it
// will convert each member to string using fmt.Sprintf("s+v'").
func (servers xSSHServers) String() string {

var report string

// Try converting to JSON

report, err := ToJSON(servers, true)

// If cannot convert to JSON

if err '=nil {
// Save all servers as string (this is not as good as JSON)
for _, v i= range xservers {

report += fmt.Sprintf("%+v\n%s\n", v, strings.Repeat("-", 30))

b
return report

b

return report

b
Struct to JSON

ToJSON converts a struct to a JSON string. If the second argument is true , it pretty prints it by
indenting.

// ToJSON converts input to JSON. If prettyPrint is set to True it will call
// MarshallIndent with 4 spaces.
// If your struct does not work here, make sure struct fields start with a
// capital letter. Otherwise they are not visible to the json package methods.
// We could also rewrite this as a method for ([]xSSHServer).
func ToJSON(s interface{}, prettyPrint bool) (string, error) {

var js [lbyte

var err error

// Pretty print if specified
if prettyPrint {

js, err = json.MarshalIndent(s, "", " ") // 4 spaces
} else {

js, err = json.Marshal(s)

https://md2pdf netlify.app 103/139

25/03/2023,05:21 Hacking with Go
// Check for marshalling errors
if err !'= nil {
return "", nil

}

return string(js), nil

This is one of the useful things | learned while working on this code. It's a pretty cool way of
converting structs into strings. When printing with "s+v" format string, field pointers are not
dereferenced and it will print the memory address. However, marshalling to JSON dereferences
every field.

Note: When JSON-ing structs, make sure to mark fields as exportable by starting their names with
capital letters. The JSON package cannot see them otherwise.

Utilities
There are a couple of misc functions.

readTargetFile reads addresses from a file (one address on each line) and returnsa [lstring .

writeReport gets a slice of SSHServer s (SSHServers to be exact), converts it to string (the
Stringer we saw earlier will try to convert it to JSON first) and writes it to a file. The final file will be a
JSON object that can be parsed.

Parsing SSH certificates <-- This is the important part

Inside ssh.ClientConfig there's a callback HostKeyCallback . This function should return nitl if
host is verified. Read Phil Pennock's blogpost Golang SSH Security for the history behind it.

Let's expand the tl;dr steps:

Step 1: Create ssh.CertChecker

We are interested in the following three ssh.CertChecker fields. All of them are callback functions:

certCheck := &ssh.CertChecker{
IsHostAuthority: hostAuthCallback(),
IsRevoked: certCallback(s),
HostKeyFallback: hostCallback(s),

Don't worry about the functions for now. But remember these callback functions are only required
to have a specific return value but can have any number of arguments. This is very useful we can
pass our SSHServer objects and populate them inside these functions.

https://md2pdf netlify.app 104/139

25/03/2023,05:21 Hacking with Go

Step 2: Set Callback functions

Set callback functions for these three fields.

IsHostAuthority

IsHostAuthority must be defined. If not, we get a run-time error:

golang.org/x/crypto/ssh. (xCertChecker).CheckHostKey(0xc04206a140, 0xc0420080c0,
0xc, 0x68d700, 0xc042058450, 0x68df80, 0xc0420a2000, 0x1l, 0x8)
Z:/Go/src/golang.org/x/crypto/ssh/certs.go:301 +0xae
golang.org/x/crypto/ssh. (xCertChecker).CheckHostKey—-fm(0xc0420080c0, 0xc,
0x68d700, 0xc042058450, 0x68df80, 0xc0420a2000, 0x0, 0x0)
Z:/Go/src/hackingwithgo/04.5-01-ssh—-harvester.go:205 +0x70

To discover the error cause, one must look at the source code for CheckHostKey. We'll see that
CheckHostKey calls IsHostAuthority .

// CheckHostKey checks a host key certificate. This method can be
// plugged into ClientConfig.HostKeyCallback.
func (c xCertChecker) CheckHostKey(addr string, remote net.Addr, key PublicKey) error
cert, ok := key.(xCertificate)
if lok {
if c.HostKeyFallback != nil {
return c.HostKeyFallback(addr, remote, key)
b
return errors.New('"ssh: non-certificate host key")
}
if cert.CertType != HostCert {
return fmt.Errorf('"ssh: certificate presented as a host key has type %d", cert
}
// If IsHostAuthority is not defined, run-time error occurs here
if !c.IsHostAuthority(cert.SignatureKey, addr) {
return fmt.Errorf("ssh: no authorities for hostname: %v'", addr)

}
hostname, _, err := net.SplitHostPort(addr)
if err '= nil {
return err
}

// Pass hostname only as principal for host certificates (consistent with OpenSSH)
return c.CheckCert(hostname, cert)

So what does this function do?

https://md2pdf netlify.app 105/139

25/03/2023, 05:21 Hacking with Go
First it tries to get a certificate from key PublicKey (by casting). If the cast is not successful, it
uses HostKeyFallBack to verity server's public key instead.

Then the function checks if the certificate type is HostCert . SSH differentiates between host and
client certificates. For example OpenSSH's keygen uses the -h switch to sign and create a host
key.

Another of our callbacks, IsHostAuthority is called next. If it returns false , the certificate is not
valid. The docs say:

// IsHostAuthority should report whether the key is recognized as
// an authority for this host. This allows for certificates to be
// signed by other keys, and for those other keys to only be valid
// signers for particular hostnames. This must be set if this

// CertChecker will be checking host certificates.

This is just fancy talk for verifying the CA and performing certificate pinning. In other words we can
check:

1. Is the certificate signed by a valid CA? Note, unlike TLS certs, most SSH certs are signed by
internal CAs. Often we are relying on a hardcoded CA for verification.

2. Is the certificate signed by the valid CA? We don't want certs signed by other CAs.

net.SplitHostPort (we already used it above) splits host:port into host and port and
passes hostname to CheckCert .

CheckCert does a couple of more checks. Most notably it calls another one of our functions

IsRevoked .

// CheckCert checks CriticalOptions, ValidPrincipals, revocation, timestamp and
// the signature of the certificate.
func (c xCertChecker) CheckCert(principal string, cert xCertificate) error {
if c.IsRevoked != nil && c.IsRevoked(cert) {
return fmt.Errorf("ssh: certicate serial %d revoked", cert.Serial)

IsHostAuthority callback

Not every function can be a callback function. Each function needs to return certain type.
IsHostAuthority requires the callback function to have this return type:

e func(ssh.PublicKey, string) bool

In other words, our callback function needs to return a function of that type.

https://md2pdf netlify.app 106/139

25/03/2023, 05:21 Hacking with Go
First we create a custom type (it's not defined in the package) and then create a function that
returns that type:

// Define custom type for IsHostAuthority
type HostAuthorityCallBack func(ssh.PublicKey, string) bool

// hostAuthCallback is the callbackfunction for IsHostAuthority. Without
// it, ssh.CertChecker will not work.
func hostAuthCallback() HostAuthorityCallBack {
// Return true because we just want to make this work
return func(p ssh.PublicKey, addr string) bool {
return true

by

If we want the connection to continue, the internal function needs to return true .

IsRevoked

IsRevoked is not mandatory. If it's not set, it's ignored. Meaning there's no automatic certificate
revocation checks happening without it. Nete-the-typo-inthe-errormessage:- certicate . The typo
has now been corrected. Honestly, | think this just means programs do not use this function (or |
am terribly wrong and am using something which should not be used). If certificate is valid, this
function must return nil or false.

IsRevoked callback

For the goal of grabbing the certificate and processing it, IsRevoked is the most useful. It gets the
certificate as a parameter and we can do parse or verify it inside the function. IsRevoked must
return:

e func(cert *xCertificate) bool

Again we define that function type and declare our own function:

// Create IsRevoked function callback type
type IsRevokedCallback func(cert xssh.Certificate) bool

// certCallback processes the SSH certificate. It is piggybacked on the
// IsRevoked callback function. It must return false (or nil) to keep the
// connection alive.

func certCallback(s *SSHServer) IsRevokedCallback {

return func(cert *ssh.Certificate) bool {
// Grab the certificate
s.Cert = xcert
s.IsSSH = true

https://md2pdf netlify.app 107/139

25/03/2023,05:21 Hacking with Go
// Always return false
return false

Inside IsRevoked we have access to the SSH certificate. Here we just assign it to the Cert field.

If you want to verify the certificate, this is the place.

Question!!!!

Help me if you can. | don't like returning unnamed functions like this. But unless | create global
variables, | need to be able to access s xSSHServer inside certCallback to populate it. The
function type is strict so | cannot add arguments.

| think defining the inside function as a method will work. Am | write? Wrong? Please let me know if
you know the answer.

HostKeyFallback

Not all servers have SSH certificates. In fact, most servers probably do not. If server does not send
a certificate, this function will be called (and the connection will terminate if this function is not
defined).

If server is valid this function should return nil.

// hostCallback is the callback function for HostKeyCallback in SSH config.
// It can access hostname, remote address and server's public key.
func hostCallback(s *xSSHServer) ssh.HostKeyCallback {
return func(hostname string, remote net.Addr, key ssh.PublicKey) error {

s.Hostname = hostname

s.PublicKey = key

// Return nil because we want the connection to move forward

return nil

Here we grab server's public key and hostname.

With these three callbacks set, we can move to the next step.

Step 3: Create ssh.ClientConfig

ssh.ClientConfig is needed for every SSH connection in Go. You can read about creating SSH
connections in Hacking with Go - 04.4.

https://md2pdf netlify.app 108/139

25/03/2023,05:21 Hacking with Go

// Create SSH config
config := &ssh.ClientConfig{
// Test username and password
User: TestUser,
Auth: []lssh.AuthMethod{
ssh.Password(TestPassword),
H
HostKeyCallback: certCheck.CheckHostKey,
BannerCallback: bannerCallback(s),
Timeout: Timeout, // timeout

Timeout is also important. we do not want goroutines to wait forever connecting to inaccessible
addresses. It's set to 5 seconds by default. Can be changed in the constants.

Banner callback

Banner callback is another important function for information gathering. By now, you know the drill.

// bannerCallback is the callback function for BannerCallback in SSH config.
// Grabs server banner and stores it in the SSHServer object.
func bannerCallback(s *SSHServer) ssh.BannerCallback {
return func(message string) error {

// Store the banner

s.Banner = message

// Return nil because we want the connection to move forward

return nil

We store the banner message and return nil . Any other return value will terminate the
connection.

Step 4: ClientConfig.HostKeyCallback
This callback starts the server verification chain. It needs a function with ssh.HostKeyCallback type:
e type HostKeyCallback func(hostname string, remote net.Addr, key PublicKey) error

The package actually suggests (*CertChecker) CheckHostKey (we looked at its source code
earlier). Looking inside ClientConfig , you can see | am passing it like this:

e HostKeyCallback: certCheck.CheckHostKey,

This is where everything clicks. We created a certCheck and set its callback functions. Now we
are passing it to be called when we connect to a server.

Other ways of verifying servers
https://md2pdf netlify.app 109/139

25/03/2023, 05:21 Hacking with Go
If you do not want to verify server's certificate, you can plug in three different types of functions
here.

e ssh.FixedHostKey(key PublicKey) : Returns a function to check the hostkey.
e ssh.InsecureIgnoreHostKey() :Ignore everything! Danger! Will Robinson!

e Custom host verifier : Return nil if host is ok, otherwise return an error.
Read more about them in the verifying host.

A note about ssh.InsecurelgnoreHostKey()

After the breaking change as a consequence of the Golang SSH security blog post linked earlier,
everyone seems to be using this. | am not in the position to tell you how to write your code. But
make sure you know what you are doing when using this function. cough hashicorp packer cough.

Step 5: Connecting to SSH servers

Here comes the concurrent part. We have a list of addresses and our callbacks are set correctly.
Time to connect to servers with discover .

discover method

// discover connects to ip:port and attempts to make an SSH connection.
// If successful, some SSH properties will be populated (most importantly isSSH
// and isAlive).
func (s *SSHServer) discover() {
// Release waitgroup after returning
defer discoveryWG.Done()

defer 10gSSH.Println("finished connecting to", s.Address)

certCheck := &ssh.CertChecker{
IsHostAuthority: hostAuthCallback(),
IsRevoked: certCallback(s),
HostKeyFallback: hostCallback(s),

// Create SSH config
config := &ssh.ClientConfig{
// Test username and password
User: TestUser,
Auth: []ssh.AuthMethod{
ssh.Password(TestPassword),
}'
HostKeyCallback: certCheck.CheckHostKey,
BannerCallback: bannerCallback(s),
Timeout: Timeout, // timeout

1ogSSH.Println("starting SSH connection to ", s.Address)

https://md2pdf netlify.app 110/139

25/03/2023, 05:21 Hacking with Go
sshConn, err := ssh.Dial("tcp", s.Address, config)
if err '= nil {
// If error contains "unable to authenticate", there's something there
logSSH.Println("error ", err)
return

// Close connection if we succeed (almost never happens)
sshConn.Close()

First we defer releasing the waitgroup and the log message. This waitgroup will be explained later.
In short, it's here to ensure that all discover goroutines are finished before starting the next
stage.

Next are CertCheck and ClientConfig . We have already seen them. And finally we are
connecting with ssh.Dial.

Goroutines and sync.WaitGroups

Each connection is done in its own goroutine. This means, we have to wait for these to complete
before processing the results. We use sync.WaitGroups . For a longer version please read Hacking
with Go - 02.6 - Syncing goroutines. But a tl;dr description is:

1. Every time a goroutine is started, we add one to the waitgroup (note we need to do this in the
calling function, not inside the goroutine).

2. When the goroutine returns we subtract one (the defer discoveryWG.Done() in discover).

3. Wait in main for all goroutines to finish with discoveryWG.Wait() . This will block the program
until they all return.

for _, v := range servers {
// Before each goroutine add 1 to waitgroup
discoveryWG.Add(1)
go v.discover()

// Wait for all discovery goroutines to finish
discoveryWG.Wait()

SSH Harvester in action

And finally we can see the tool in action.

If the server returns a certificate:

https://md2pdf netlify.app 111/139

25/03/2023,05:21 Hacking with Go

If it returns a public key, HostKeyFallBack is triggered and we can it:

Note, server's have different keys for different ciphersuits. For example dsa, ecdsa, rsa and
ed25519 (the DJB curve). Depending what ciphersuite client supports, you may see one of these.
That's another TODO.

Conclusion

It took me a couple of days to figure everything out because | could not find any examples or
tutorials. But now we know how to verify SSH certificates. Hope this is useful, if you have any
feedback please let me know.

[*1]: 1 should have actually sent a patch. But signing up for Gerrit was a pain. Would have been the
easiest way to become a "Golang contributor" and put it in my Twitter bio/resume (kidding).

Continue reading = 05 - Parsing Files

05 - Parsing Files

Usually when we need to open and parse file formats, the normal parsers are not useful. Either files
are badly formatted or something is hidden. Making our own file parser is the way to go.

Table of Contents

e 05.1 - Extracting PNG Chunks

05.1 - Extracting PNG Chunks

This is a copy of my [blog post][png-chunk].

| wrote some quick code that parses a PNG file, extracts some information, identifies chunks and
finally extracts chunk data. The code has minimal error handling (if chunks are not formatted
properly). We also do not care about parsing PLTE and tRNS chunks although we will extract
them.

Code isinthe 05/05.1 directory.

Golang's https://golang.org/src/image/png/reader.go does a decent job of explaining the rendering.
But we are not interested in rendering.

Instead we look at libpng documentation at http://www.libpng.org/pub/png/spec/1.2/PNG-
Contents.html. | am going to use a simple example (just a black rectangle which was supposed to

https://md2pdf netlify.app 112/139

25/03/2023,05:21 Hacking with Go

be a square lol) to demonstrate:

00000000 89 50 4e 47 0d 0a la 0a 00 00 00 ©0d 49 48 44 52 |.PNG........ IHDR|
00000010 00 00 00 6f 00 00 00 73 08 02 00 00 00 19 b3 cb |...0...S.vuuus SE|
00000020 d7 00 00 00 01 73 52 47 42 00 ae ce 1c €9 00 00 |x....SRGB.®I.é..|
00000030 00 04 67 41 4d 41 00 00 bl 8f @b fc 61 05 00 00 |..gAMA..*..Ua...|
00000040 00 09 70 48 59 73 00 00 Qe c3 00 00 0e c3 01 c7 |..pHYs...A...A.C
00000050 6f a8 64 00 00 00 3c 49 44 41 54 78 5e ed c1 01 |o"d...<IDATx"iA. |
00000060 0Od 00 00 00 c2 ad f7 4f 6d Of 07 04 00 00 00 00 |....A <Om....... |

00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |...vvvuwnnnnnsss |
00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |.....:evswsnnnsss |
00000090 70 ae 06 96 0a 00 01 le c4 f7 41 00 00 00 00 49 |p®...... A+A....TI|
000000a0@ 45 4e 44 ae 42 60 82 | END@B" . |

PNG Header

PNG starts with an 8-byte magic header:

°* 89 50 4E 47 0D 0A 1A 0A

e const pngHeader = "\x89PNG\r\n\xla\n" from https://golang.org/src/image/png/reader.go.

When you open a PNG file, you can see PNG in the signature.

After the signature, there are a number of chunks.

PNG Chunks

Each chunk has four fields:

unint32 length in big-endian. This is the length of the data field.

Four-byte chunk type. Chunk type can be anything [Footnote 1].

Chunk data is a bunch of bytes with a fixed length read before.
Four-byte CRC-32 of Chunk 2nd and 3rd field (chunk type and chunk data).

// Each chunk starts with a uint32 length (big endian), then 4 byte name,
// then data and finally the CRC32 of the chunk data.
type Chunk struct {

Length int // chunk data length

CType string // chunk type

Data [lbyte // chunk data

https://md2pdf .netlify.app

113/139

25/03/2023,05:21 Hacking with Go
Crc32 []byte // CRC32 of chunk data

First chunk or IHDR looks like this:

Converting big-endian uint32 s to int is straightforward:

// uInt32ToInt converts a 4 byte big-endian buffer to int.
func uInt32ToInt(buf []lbyte) (int, error) {
if len(buf) == 0 || len(buf) > 4 {
return @, errors.New("invalid buffer")
b
return int(binary.BigEndian.Uint32(buf)), nil

Trick #1: When reading chunks, | did something | had not done before. | passed in an io.Reader .
This let me pass anything that implements that interface to the method. As each chunk is
populated, reader pointer moves forward and gets to the start of next chunk. Note this assumes
chunks are formatted correctly and does not check the CRC32 hash.

// Populate will read bytes from the reader and populate a chunk.
func (c xChunk) Populate(r io.Reader) error {

// Four byte buffer.
buf := make([lbyte, 4)

// Read first four bytes == chunk length.
if _, err := io.ReadFull(r, buf); err !'= nil {
return err
b
// Convert bytes to int.
// c.length = int(binary.BigEndian.Uint32(buf))
var err error
c.Length, err = uInt32ToInt(buf)
if err = nil {
return errors.New('"cannot convert length to int")

b

// Read second four bytes == chunk type.

if _, err := io.ReadFull(r, buf); err != nil {
return err

}

c.CType = string(buf)

// Read chunk data.
tmp := make([]byte, c.Length)
if _, err := io.ReadFull(r, tmp); err != nil {

https://md2pdf netlify.app 114/139

25/03/2023,05:21 Hacking with Go
return err
b
c.Data = tmp
// Read CRC32 hash
if _, err := io.ReadFull(r, buf); err !'= nil {

return err

}

// We don't really care about checking the hash.

c.Crc32 = buf

return nil

IHDR Chunk

IHDR is a special chunk that contains file information. It's always 13 bytes and has:

// Width:

// Height:

// Bit depth:

// Color type:

// Compression method:
// Filter method:

// Interlace method:

P PP RPRRPR MDD

These will go directly into the

type PNG struct {
Width
Height
BitDepth
ColorType
CompressionMethod
FilterMethod
InterlaceMethod
chunks
Number0fChunks

int
int
int
int
int
int
int

[1xChunk // Not exported == won't appear in JSON string.

int

bytes
bytes
byte
byte
byte
byte
byte

PNG struct:

Trick #2: chunks does not start with a capital letter. It's not exported, so it is not parsed when we

convert the struct to JSON.

Parsing the header pretty easy:

// Parse IHDR chunk.

// https://golang.org/src/image/png/reader.go?#L142 is your friend.

https://md2pdf .netlify.app

115/139

25/03/2023,05:21 Hacking with Go
func (png *PNG) parseIHDR(iHDR xChunk) error {
if iHDR.Length !'= iHDRlength {
errString := fmt.Sprintf("invalid IHDR length: got %d - expected %d",
iHDR.Length, iHDRlength)
return errors.New(errString)

tmp := iHDR.Data
var err error

png.Width, err = uInt32ToInt(tmp[0:4])

if err !'=nil || png.Width <= 0 {
errString := fmt.Sprintf("invalid width in iHDR - got %x", tmp[0:4])
return errors.New(errString)

png.Height, err = uInt32ToInt(tmp[4:8])

if err !'= nil || png.Height <= 0 {
errString := fmt.Sprintf("invalid height in iHDR - got %x", tmp[4:8])
return errors.New(errString)

png.BitDepth = int(tmp[81)
png.ColorType = int(tmp[9])

// Only compression method @ is supported
if int(tmp[10]) '= 0 {
errString := fmt.Sprintf("invalid compression method - expected @ - got %x",
tmp[10])
return errors.New(errString)

}
png.CompressionMethod = int(tmp[10])

// Only filter method @ is supported
if int(tmp[11]) !'= 0 {
errString := fmt.Sprintf("invalid filter method - expected @ - got %x",
tmp[11])
return errors.New(errString)

}
png.FilterMethod = int(tmp[11])

// Only interlace methods @ and 1 are supported
if int(tmpl[12]) =0 {
errString := fmt.Sprintf("invalid interlace method - expected @ or 1 - got %x"
tmp[12])
return errors.New(errString)

b
png.InterlaceMethod = int(tmp[12])

return nil

https://md2pdf netlify.app 116/139

25/03/2023,05:21 Hacking with Go

Our example's IHDR is:

"Width": 111,

"Height": 115,
"BitDepth": 8,
"ColorType": 2,
"CompressionMethod": 0,
"FilterMethod": 0,
"InterlaceMethod": 0,
"NumberOfChunks": 6

IDAT Chunks

IDAT chunks contain the image data. They are compressed using deflate. If you look at the first
chunk, you will see the z1ib magic header. This stackoverflow answer lists them:

e 78 01 - No Compression/low
e 78 9C - Default Compression

e 78 DA - Best Compression

Another answer has more info:

Level | ZLIB | GZIP
1 | 78 01 | 1F 8B
2 | 78 5E | 1F 8B
3 | 78 5E | 1F 8B
4 | 78 5E | 1F 8B
5 | 78 5E | 1F 8B
6 | 78 9C | 1F 8B
7 | 78 DA | 1F 8B
8 | 78 DA | 1F 8B
9 | 78 DA | 1F 8B

| have seen a lot of random looking blobs starting with 78 9C when reversing custom protocols at

work. | have never seen the other two headers.

In Go we can inflate the blob (decompress them) with zlib.NewReader:

package main

import (
"compress/zlib"

10
0s

https://md2pdf netlify.app

117/139

25/03/2023,05:21 Hacking with Go

)

func main() {
zlibFile, err := os.Open("test.zlib")
if err !'= nil {
panic(err)

}
defer zlibFile.Close()

r, err := zlib.NewReader(zlibFile)
if err '= nil {
panic(err)

}

defer r.Close()

outFile, err := os.Create("out-zlib")
if err !'= nil {
panic(err)

}
defer outFile.Close()

io.Copy(outFile, r)

Note that each chunk is not compressed individually. All IDAT chunks need to be extracted,
concatenated and decompressed together.

In our case, IDAT chunk hasthe 78 5E header:

00000000 78 5e ed cl 01 0d 00 00 00 c2 a0 f7 4f 6d Of 07 |x"~iA..... A +0m.. |
00000010 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |...vvsuwnnnnnsss |
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |....vvsessunnssns |
00000030 00 00 00 00 00 70 ae 06 96 0a 00 01 [eness P®. . |

Everything else is straightforward after this.

Tool Operation

Operation is pretty simple. PNG is passed by -file . Tool will display the PNG info like height and
width. -c flag will display the chunks and their first 20 bytes. Chunks can be saved to file
individually. Modifying the program to collect, decompress and store the IDAT chunks is also
simple.

[Footnote 1]: We can hide data in random chunks. The hidden chunk must be added before/after

https://md2pdf netlify.app 118/139

25/03/2023, 05:21 Hacking with Go

IDAT chunks. The standard expects the chain of IDAT chunks to be uninterrupted.

[png-chunk]: https://parsiya.net/blog/2018-02-25-extracting-png-chunks-with-go/# 06 - Go-Fuzz
This section talks about [Go-Fuzz][go-fuzz]. Go-Fuzz is a coverage-guided fuzzer for Go code.
This section might be renamed to Fuzzing when new content arrives.

Start by reading the Quickstart guide and a few of the examples. Then move to sections 2 and 3 for
hands-on practice.

Table of Contents

e 06.1- Go-Fuzz Quickstart
e 06.2 - Fuzzing iprange with Go-Fuzz
e 06.2 - Fuzzing goexif2 with Go-Fuzz

[go-fuzz]: https://github.com/dvyukov/go-fuzz# Go-Fuzz Quickstart
1. Get Go-fuzz with go get github.com/dvyukov/go-fuzz .

2. Build and install go-fuzz and go-fuzz-build .
o cd src\github.com\dvyukov\go-fuzz\go-fuzz

© go install
o c¢d ..\go-fuzz-build

© go install

w

. Get the target package and store it in GOPATH . | usually keep it under
src\github.com\author\project .

IS

. Create a new file in the target package named Fuzz.go .

o1

. Create a function named Fuzz inside Fuzz.go with this signature func Fuzz(data []byte)
int .

»

. Fuzz should return 1 if inputis good and @ otherwise.

N

. Create fuzzing directory, e.g. go-fuzz-project-name .

00

. go—fuzz-build github.com/author/project (note forward slashes even on Windows). Copy
the resulting file (project-fuzz.zip) to the fuzzing directory.

©

. Make a directory called corpus and store samples there.

10. go-fuzz -bin=project-fuzz.zip -workdir=. to begin fuzzing.

Examples

e "Fuzzing the new unit testing" by Dmitry Vyukov (Go-Fuzz creator): https://go-
talks.appspot.com/github.com/dvyukov/go-fuzz/slides/fuzzing.slide#1

e "go-fuzz github.com/arolek/ase" by Damian Gryski: https://medium.com/@dgryski/go-fuzz-
github-com-arolek-ase-3c74d5a3150c

e "Going down the rabbit hole with go-fuzz" by Nemanja Mijailovic:
https://mijailovic.net/2017/07/29/go-fuzz/

https://md2pdf netlify.app 119/139

25/03/2023, 05:21 Hacking with Go
e DNS parser, meet Go fuzzer by Filippo Valsorda: https://blog.cloudflare.com/dns-parser-meet-
go-fuzzer/
o "Automated Testing with Go-Fuzz" GothamGo 2015: https://www.youtube.com/watch?
v=kOZbFSM7Pul
e "Fuzzing Markdown parser written in Go" by Krzysztof Kowalczyk:
https://blog.kowalczyk.info/article/n/fuzzing-markdown-parser-written-in-go.html

Continue reading = 06.2 - Fuzzing iprange with Go-Fuzz# 06.2 - Fuzzing iprange with Go-Fuzz
This article will show how to use Go-Fuzz to fuzz a Go library named iprange at:
e [https://github.com/malfunkt/iprange][iprange-github]

Code and fuzzing artifacts are at code/06/06.2/.

Setup

The article assumes you have a working Go installation and have go-fuzz and go-fuzz-build
executables in PATH . If not, use the quickstart or any other tutorial to do so and return here when
you are done.

The Fuzz Function

The Fuzz function is the fuzzer's entry point. It's a function with the following signature:
e func Fuzz(data [lbyte) int

It takes a byte slice from the fuzzer and returns an integer. This gives us great flexibility in deciding
what we want to fuzz. Fuzz is part of the target package so we can also fuzz package internals.

The output of Fuzz is our feedback to the fuzzer. If the input was valid (usually in the correct
format), it should return 1 and @ otherwise.

Having roughly correctly formatted input is important. Usually, we are dealing with formatted data.
Just randomly sending byte blobs to the target is not going to do much. We want data that can
bypass preliminary format checks. We pass the blob to either the target package or another
function (e.g. some format converter) and check if it passes the parser check without any errors. If
so, Fuzz mustreturn 1 totell go-fuzz that our format was good.

For a good example, look at the PNG fuzz function from the readme file:

func Fuzz(data []byte) int {
img, err := png.Decode(bytes.NewReader(data))
if err = nil {
if img !'= nil {

https://md2pdf netlify.app 120/139

25/03/2023,05:21 Hacking with Go
panic("img != nil on error")
b
return 0
b
var w bytes.Buffer
err = png.Encode(&w, img)

if err '= nil {
panic(err)

}

return 1

Fuzzing iprange
We can use the usage section in the [iprange][iprange-github] readme to become familiar with the

package.

Then we need to get the package with go get github.com/malfunkt/iprange . This will copy
package files to $GOPATH\src\github.com\malfunkt\iprange .

Note: | am using commit 3a31f5ed42d2d8alfc46f1lbe91fd693bdef2dds52 , if the bug gets fixed, use
this specific commit to reproduce the crashes.

Fuzz Function
Now we create a new file inside the package named Fuzz.go and write our fuzz function:

package iprange

func Fuzz(data []lbyte) int {

_, err := ParselList(string(data))
if err !'= nil {
return 0
b
return 1

bjFuzz function

We are converting the input from go-fuzz to a string and passing itto ParselList . If the parser
returns an error, then it's not good input and we will return @ . If it passes the check, we return 1.
Good input will be added to the original corpus.

If go—fuzz achieves more coverage with a specific input, it will be added to corpus even if we
return 0 . But we do not need to care about that.

https://md2pdf netlify.app 121/139

25/03/2023,05:21 Hacking with Go

go-fuzz-build

Next step is using go-fuzz-build to make the magic blob. Create a directory (I always use my
src directory) and run this command inside it:

e go—-fuzz-build github.com/malfunkt/iprange

Note you need to use forward slashes on Windows too. If Fuzz was written correctly we will get a
zip file named iprange-fuzz.zip .

Note: This step usually takes a while. If the command line is not responsive after a few minutes,
press enter a couple of times to check if it has finished. Sometimes the file is created but the
command line windows is not updated.

bjBuiIding go-fuzz-build

Corpus

To have meaningful fuzzing, we need to provide good samples. Create a directory named corpus
inside the work directory and add one sample per file (file name does not matter).

Copy the items from [supported formats][iprange-supported] section of iprange readme. |
created three files test1/2/3:

testl: 10.0.0.1, 10.0.0.5-10, 192.168.1.%, 192.168.10.0/24

test2: 10.0.0.1-10,10.0.0.0/24,
10.0.0.0/24

test3: 10.0.0.%, 192.168.0.%, 192.168.1-256

Fuzzing

Now we can run go-fuzz .
e go-fuzz -bin=iprange-fuzz.zip -workdir=.

Note workdir should point to the parent of corpus directory.

Fuzzing Results

We will quickly get a crash and some new files will be added to the corpus .

bjRunning go-fuzz

https://md2pdf netlify.app 122/139

25/03/2023,05:21 Hacking with Go

Analyzing the Crash

While we are fuzzing, we can analyze the current crash. go-fuzz has created two other directories
besides corpus .

e suppressions contains crash logs. This allows go-fuzz to skip reporting the same exact
crash.

e crashers has our loot. Each crash has three files and the file name is SHA-1 hash of input. In
this crash we have:
o 17ee301be06245aa20945bc3ff3c4838abel3b52 contains the input that caused the crash
0.0.0.0/40 .

o 17ee301be06245aa20945bc3ff3c4838abel3b52.quoted is the input but quoted as a string.
o 17ee301be06245aa20945bc3ff3c4838abel3b52.output contains the crash dump.

Crash dump is:

panic: runtime error: index out of range

goroutine 1 [running]:

encoding/binary.binary.bigEndian.Uint32(...)
/Temp/go-fuzz-build@49016974/goroot/src/encoding/binary/binary.go:111

github.com/malfunkt/iprange. (*xipParserImpl).Parse(@0xc04209d800, 0x526cc@, 0xc042083040
/Temp/go-fuzz-build049016974/gopath/src/github.com/malfunkt/iprange/y.go:510 +0x2b

github.com/malfunkt/iprange.ipParse(0x526cc@, 0xc042083040, 0xa)
/Temp/go-fuzz-build049016974/gopath/src/github.com/malfunkt/iprange/y.go:308 +0x8f

github.com/malfunkt/iprange.ParselList(0xc042075ed@, 0xa, 0xa, 0x200000, 0xc042075ed0,
/Temp/go-fuzz-build049016974/gopath/src/github.com/malfunkt/iprange/y.go:63 +0xd6

github.com/malfunkt/iprange.Fuzz(0x3750000, 0xa, 0x200000, 0x3)

/Temp/go-fuzz-build@49016974/gopath/src/github.com/malfunkt/iprange/fuzz.go:4 +0x8
go-fuzz-dep.Main(0x5196€e0)
/Temp/go-fuzz-build@49016974/goroot/src/go-fuzz-dep/main.go:49 +0xb4
main.main()
/Temp/go-fuzz-build@49016974/gopath/src/github.com/malfunkt/iprange/go.fuzz.main/m
exit status 2

bigEndian.Uint32

First stop is the Go standard library for encoding/binary.binary.bigEndian.Uint32 . The source
code for this method is at:

e [https://github.com/golang/go/blob/master/src/encoding/binary/binary.go#L110][bigendian-
uint32]

func (bigEndian) Uint32(b [lbyte) uint32 {
_ = bI3] // bounds check hint to compiler; see golang.org/issue/14808

https://md2pdf netlify.app 123/139

25/03/2023,05:21 Hacking with Go
return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24

Going to the issue in the comment, we land at [https://github.com/golang/go/issues/14808][issue-
14808]. We can see what the bounds check is for. It's checking if the input has enough bytes and if
not, it will panic before bytes are accessed. So this part of the chain is "working as intended."

This small piece of code results in a panic:

// Small program to test panic when calling Uint32(nil).
package main

import (
"encoding/binary"

)

func main() {
_ = binary.BigEndian.Uint32(nil)
// _ = binary.BigEndian.Uint32([]byte(nil))

And the crash is similar to what we have seen:

$ go run testl.go
panic: runtime error: index out of range

goroutine 1 [running]:
encoding/binary.binary.bigEndian.Uint32(...)

C:/Go/src/encoding/binary/binary.go:111
main.main()

C:/Users/test-user/Go/src/gofuzz-stuff/malfunkt-iprange/testl.go:9 +0x11
exit status 2

Parse

Next item in the chain is at [https://github.com/malfunkt/iprange/blob/master/y.go#L309][iprange-
parse]. It's a huge method but we know the method that was called so we can just search for
Uint32 . The culpritis inside [case 5][iprange-caseb].

case 5:

ipDollar = ipS[ippt-3 : ippt+1]

//line ip.y:54

{
mask := net.CIDRMask(int(ipDollar[3].num), 32)
min := ipDollar[1].addrRange.Min.Mask(mask)
maxInt := binary.BigEndian.Uint32([lbyte(min)) + // <————

Oxffffffff —

https://md2pdf netlify.app 124/139

25/03/2023,05:21

Hacking with Go
binary.BigEndian.Uint32([]byte(mask)) // <——
maxBytes := make([]byte, 4)
binary.BigEndian.PutUint32(maxBytes, maxInt)
maxBytes = maxBytes[len(maxBytes)-4:]
max := net.IP(maxBytes)
ipVAL.addrRange = AddressRange{
Min: min.To4(),
Max: max.To4(),

We can see two calls. The first is for min and the second is for mask . mask comes from the
output of [net.CIDRMask][godoc-net-cidrmask]. Looking at the source code, we can see that it
returns nil if mask is not valid:

// CIDRMask returns an IPMask consisting of “ones' 1 bits
// followed by @s up to a total length of "bits' bits.
// For a mask of this form, CIDRMask is the inverse of IPMask.Size.
func CIDRMask(ones, bits int) IPMask {
if bits !'= 8xIPv4len && bits != 8xIPv6len {

}

return nil

if ones < @ || ones > bits {

}

return nil

// removed

We can investigate this by modifying the local iprange package code and printing
ipDollar[3].num and mask .

case 5:

ipDollar = ipS[ippt-3 : ippt+1]
//line ip.y:54

{

fmt.Printf("ipdollar([3]1: %v\n", ipDollar([3].num) // print ipdollar[3]
mask := net.CIDRMask(int(ipDollar[3].num), 32)

fmt.Printf("mask: %v\n", mask) // print mask
min := ipDollar[1].addrRange.Min.Mask(mask)
fmt.Printf("min: %v\n", min) // print min
maxInt := binary.BigEndian.Uint32([]lbyte(min)) +

OxXffffffff —

binary.BigEndian.Uint32([]byte(mask))
maxBytes := make([]lbyte, 4)
binary.BigEndian.PutUint32(maxBytes, maxInt)
maxBytes = maxBytes[len(maxBytes)-4:]
max := net.IP(maxBytes)
ipVAL.addrRange = AddressRange{

Min: min.To4(),

https://md2pdf netlify.app 125/139

25/03/2023,05:21 Hacking with Go
Max: max.To4(),

Reproducing the Crash

Reproducing the crash is easy, we already have input and can just plug it into a small program using
our Fuzz function:

// Small program to investigate a panic in iprange for invalid masks.
package main

import "github.com/malfunkt/iprange"

func main() {
_ = Fuzz([lbyte("0.0.0.0/40"))

}
func Fuzz(data []byte) int {
_, err := iprange.ParselList(string(data))
if err = nil {
return 0
b
return 1

Note: We could write an easier test but | wanted to keep the Fuzz function intact.

$ go run test2.go

ipdollar[3]: 40

mask: <nil>

min: <nil>

panic: runtime error: index out of range

goroutine 1 [running]:

encoding/binary.binary.bigEndian.Uint32(...)
C:/Go/src/encoding/binary/binary.go:111

github.com/malfunkt/iprange. (xipParserImpl).Parse(0xc04209e000, 0x500920, 0xc04209c050
yaccpar:354 +0x202f

github.com/malfunkt/iprange.ipParse(0x500920, 0xc04209c050, 0xa)
yaccpar:153 +0x5f

github.com/malfunkt/iprange.ParselList(0xc042085ef8, 0xa, 0xa, 0x20, 0xc042085ef8, Oxa,
ip.y:93 +0xbe

main.Fuzz(0xc042085f58, 0xa, 0x20, 0xc042085f58)
C:/Users/test-user/Go/src/gofuzz-stuff/malfunkt-iprange/testl.go:10 +0x6¢

main.main()
C:/Users/test-user/Go/src/gofuzz-stuff/malfunkt-iprange/testl.go:6 +0x69

exit status 2

https://md2pdf netlify.app 126/139

25/03/2023,05:21 Hacking with Go

We can see 40 is passedto net.CIDRMask function and the resultis nil . That causes the crash.
We can see min isalso nil.

Both min and mask are nil and result in a panic.

More Crashes?

| let the fuzzer run for another 20 minutes but it did not find any other crashes. Corpus was up to
60 items like:

e 2.8.0.0/4,0.0.0.5/0,2.8.0.0/4,0.0.0.5/0,2.8.0.0/4,0.0.0.5/0
* 0.0.0.0/4,0.0.0.5-0,2.8.1.%,2.8.0.0/2

Solution

Just pointing out bugs is not useful. Being a security engineer is not just finding vulnerabilities.
The quick solution is checking the values of min and mask before calling Uint32 .

A better solution is to check the input for validity and good format before processing. For example,
for IPv4 masks we can check if they are in the 16-30 range.

Continue reading = 06.3 - Fuzzing goexif2 Go-Fuzz

[go-fuzz]: https://github.com/dvyukov/go-fuzz [iprange-github]:
https://github.com/malfunkt/iprange [iprange-supported]:
https://github.com/malfunkt/iprange#supported-formats [bigendian-uint32]:
https://github.com/golang/go/blob/master/src/encoding/binary/binary.go#L110 [issue-14808]:
https://github.com/golang/go/issues/14808 [iprange-parse]:
https://github.com/malfunkt/iprange/blob/master/y.go#L309 [iprange-caseb]:
https://github.com/malfunkt/iprange/blob/master/y.go#L498 [godoc-net-cidrmask]:
https://golang.org/pkg/net/#CIDRMask [net-cidrmask-github]:
https://github.com/golang/go/blob/master/src/net/ip.go#L68 # 06.3 - Fuzzing goexif2 with Go-Fuzz
This time we will be looking After "goexif ™ at [https://github.com/rwcarlsen/goexif][goexif-github].
Being a file parser, it's a prime target for *Go-Fuzz . Unfortunately it has not been updated for a
while. Instead, we will be looking at a fork at [https://github.com/xor-gate/goexif2][goexif2-github].
Code and fuzzing artifacts are at code/06/06.3/.

TL:DR

Steps are similar to the previous part.

1. go get github.com/xor-gate/goexif2/exif
2. go get github.com/xor-gate/goexif2/tiff

https://md2pdf netlify.app 127/139

25/03/2023,05:21 Hacking with Go
3. Create Fuzz.go .

4. Build with go-fuzz-build .
o go-fuzz-build github.com/xor—-gate/goexif2/exif

5. Fuzz
6. 7?7

7. Crashes!

If panics have been fixed, you can clone the commit
€5al111b2b4bd00d5214b1030deb301780110358d .

Fuzz

The Fuzz function is easy straight forward:

// +build gofuzz
package exif
import "bytes"

func Fuzz(data []lbyte) int {

_, err := Decode(bytes.NewReader(data))
if err !'= nil {
return @
¥
return 1
by
Samples

For samples, we need some pictures that contain exif data. The package comes with some samples
inside the samples directory but | used samples at the following repository minus corrupted.jpg :

e https://github.com/ianare/exif-samples/tree/master/jpg

Running Out of Memory

During fuzzing | got a lot of crashes that were caused by lack of memory. This usually happens
when random bytes are read as field sizes and the size is not evaluated, thus the package will
allocate very large chunks of memory.

We are instrumenting the application around 10000 times a second, this adds up and the garbage

collector cannot keep up. Soon we need to download more RAM . You can see memory usage in the
https://md2pdf netlify.app 128/139

25/03/2023,05:21

following picture:

jGo's GC hard at work

Hacking with Go

Looking at the fuzzer, we can see our restarts ratiois crap. This is the ratio of restarts to

executions. We want it to be around 1/10000 but we have fallento 1/1500 . This means we are
crashing a lot. After a while, Go-Fuzz might even stop working (see stagnating total number of

execs in the picture below).

#.Go-Fuzz stops

Looking inside crash dumps, we see most of them are about running out of memory:

runtime: out of memory: cannot allocate 25769803776-byte block (25832882176 in use)

fatal error: out of memory

runtime stack:

runtime.throw(0x547da6, 0xd)

/go—-fuzz-build214414686/goroot/src/runtime/panic.go:616 +0x88
runtime.largeAlloc(0x600000000, 0x440001, 0x5f8330)
/go-fuzz-build214414686/goroot/src/runtime/malloc.go:828 +0x117

runtime.mallocgc. funcl()

/g9o-fuzz-build214414686/goroot/src/runtime/malloc.go:721 +0x4d

runtime.systemstack(0x0)

/go-fuzz-build214414686/goroot/src/runtime/asm_amd64.s:409 +0x7e
runtime.mstart()
/go-fuzz-build214414686/goroot/src/runtime/proc.go:1175

This means we are running out of memory and it's not a legitimate crash. Before continuing we

need to go and investigate the root cause.

Lesson #0: Fix Go-Fuzz running out of memory:

* Fix bugs that result in the allocation of large chunks of memory.

e Run fewer workers with -procs . By default Go-Fuzz uses all of your CPU cores (including

virtual).

Analyzing Crashes

Let's look at our crashes.

05/03/2018
05/03/2018
05/03/2018
05/01/2018
05/01/2018
05/01/2018

https://md2pdf .netlify.app

12:
12:
12:
11:
11:
11:

16
16
16
53
53
53

AM
AM
AM
PM
PM
PM

365
3,651
912
186
1,928
312

171e8e5ca3e3d609322376915dcfa3dd56938845
171e8e5ca3e3d609322376915dcfa3dd56938845
171e8e5ca3e3d609322376915dcfa3dd56938845
3f5b7d448a0791t5739fa0a2371bb2492b641835
3f5b7d448a0791f5739fa0a2371bb2492b64835
3f5b7d448a0791t5739fa0a2371bb2492b641835

.output
.quoted

.output
.quoted

129/139

25/03/2023, 05:21
05/01/2018
05/01/2018
05/01/2018
05/01/2018
05/01/2018
05/01/2018

Reproducing Crashes

11:
11:
11:
11:
11:
11:

25
25
25
26
26
26

PM
PM
PM
PM
PM
PM

114
1,383
186
22
1,677
63

Hacking with Go
49dfc363adbbe5aac9c2f8afbb0591c3eflde2c3
49dfc363adbbe5aac9c2f8afbb0591c3eflde2c3
49dfc363adbbe5aac9c2f8afbb0591c3eflde2c3
a59a2ad5701156b88c6a132e1340fe@06167280cC
a59a2ad5701156b88c6al132e1340fe006T67280cC
a59a2ad5701156b88c6a132e1340fe@06167280cC

.output
.quoted

.output
.quoted

As we know Go-Fuzz conveniently stores the inputs in files. We can use the following code snippet

to reproduce crashes:

// Sample app to test crash a5 for xor—-gate/goexif2.

package main
import (

Ilfmtll
IIOS

"github.

func main()

com/xor-gate/goexif2/exif"

{

0s.0pen('"crashers\\a59a2ad5701156b88c6a132e1340fe006f67280c")

f, err :=

if err !'= nil {
panic(err)

b

defer f.Close()

_, err = exif.Decode(f)

if err !'= nil {
fmt.Println("err:", err)
return
b
fmt.Println("no err'")
b
A5 and 3F Crashes

These two panics are similar:

panic: runtime error: makeslice: len out of range

goroutine 1 [running]:

github.com/xor-gate/goexif2/tiff. (xTag).convertVals(0xc04205a280, 0xc042080480, 0xc042
/go—fuzz-build214414686/gopath/src/github.com/xor-gate/goexif2/tiff/tag.go:258 +0x
github.com/xor-gate/goexif2/tiff.DecodeTag(0x30a0000, 0xc042080480, 0x5605c0, 0x613170

https://md2pdf .netlify.app

130/139

25/03/2023,05:21 Hacking with Go
/g9o-fuzz-build214414686/gopath/src/github.com/xor—-gate/goexif2/tiff/tag.go:182 +0x
github.com/xor-gate/goexif2/tiff.DecodeDir(0x30a0000, 0xc042080480, 0x5605c0, 0x613170

// removed

A5 crash payload is:

00000000 49 49 2a 00 08 00 00 00 30 30 30 30 05 00 00 00 |IIx..... 0000....|
00000010 00 a0 30 30 30 30 |. 0000]|

The panic is happening at https://github.com/xor-gate/goexif2/blob/develop/tiff/tag.go#L258:

case DTRational:
t.ratVals = make([][]int64, int(t.Count))
for i := range t.ratVals {

We can add some print statements to the local copy the package and investigate it:

case DTRational:

fmt.Printin("t.count: ", t.Count)
t.ratVals = make([][1int64, int(t.Count))
for i := range t.ratVals {

Running test-crash-a5.go we get the value:

$ go run test-crash-a5.go
t.count: 2684354560
panic: runtime error: makeslice: len out of range

goroutine 1 [running]:
github.com/xor-gate/goexif2/tiff. (xTag).convertVals(0xc04205aled, 0xc042082018, 0xc042

Bonus: int Overflow and Go Playground's Operating System

As you have noticed, the constant 2684354560 is more than the maximum of signed int32
(2147483647). However, when trying to cast this value locally in Windows 10 64-bit VM or on the
Go playground we get different results.

Consider this mini-example:

// Testing overflow on int.
package main

import "fmt"

https://md2pdf netlify.app 131/139

25/03/2023,05:21 Hacking with Go

func main() {
i := int(2684354560)
fmt.Println(i)

Running this in the Windows 10 64-bit VM, does not return an error. While running the same
program in Go playground returns this error prog.go:8:11: constant 2684354560 overflows
int32 .

This means the playground is using 32 bit int s and locally we are using 64 bit ones. Local is
obvious because we are in a 64 bit OS. To get the OS of the Go playground we can use this other
small program:

// Get 0S and architecture.
package main

import (
Ilfmtll
"runtime"

func main() {
fmt.Println(runtime.G00S)
fmt.Println(runtime.GOARCH)

And we get:

nacl
amd64p32

amd64p32 means it's a 64-bit OS using 32-bit pointers and int s. We can use unsafe.Sizeof to
see this.

// Get int and pointer size.
package main

import (
Ilfmtll
"unsafe"

func main() {
var i int
var p xint
var p2 *xfloat32

https://md2pdf netlify.app 132/139

25/03/2023,05:21 Hacking with Go

On Go

Size
Size
Size

fmt.Printf("Size of int : %d\n", unsafe.Sizeof(1i))
fmt.Printf("Size of *int : %d\n", unsafe.Sizeof(p))
fmt.Printf("Size of xfloat32 : %d\n", unsafe.Sizeof(p2))

playground we get:

of int 1 4
of xint H
of xfloat32 : 4

But locally we get:

$ go
Size
Size
Size

run int-pointer-size.go
of int : 8

of intx: 8

of xfloat32 : 8

Note: Pointers are just memory addresses. It does not matter what they are pointing to. As you can

see xf

loat32 has the same size asa *int32 or xint64 .

Lesson #1: int is OS dependent. It's better to use data types with explicit lengths like int32 and

int64
underf

. Also if you do not need negative numbers, use unsigned versions (but be careful of
lows).

makeslice: len out of range

Now le

t's get back to the crash. We are trying to create a large slice and the result is an error. We

can trace back this error to slice.go in Go source:

func

makeslice(et *_type, len, cap int) slice {
// NOTE: The len > maxElements check here is not strictly necessary,
// but it produces a 'len out of range' error instead of a 'cap out of range' erro
// when someone does make([]T, bignumber). 'cap out of range' is true too,
// but since the cap is only being supplied implicitly, saying len is clearer.
// See issue 4085.
maxElements := maxSliceCap(et.size)
if len < @ || uintptr(len) > maxElements {
panic(errorString("makeslice: len out of range"))

}

if cap < len || uintptr(cap) > maxElements {
panic(errorString("makeslice: cap out of range"))

by

p := mallocgc(et.sizexuintptr(cap), et, true)

https://md2pdf netlify.app 133/139

25/03/2023,05:21 Hacking with Go
return slice{p, len, cap}

// maxSliceCap from the same file.
// maxSliceCap returns the maximum capacity for a slice.
func maxSliceCap(elemsize uintptr) uintptr {
if elemsize < uintptr(len(maxElems)) {
return maxElems[elemsize]

by

return _MaxMem / elemsize

_MaxMenm is calculated in malloc.go and it dictates how much memory can be allocated. On
Windows 64-bit it seems to be 32GB or 35 bits.

Root cause analysis: We are allocating too much memory.
Lesson #2: Amount of memory available for malloc is OS dependent and somewhat arbitrary.
Lesson #3: Manually check size before allocating memory for slices.

But t.Count has to come from somewhere.

t.Count's Origin

t.Count is calculated a bit further up at line 133.

err = binary.Read(r, order, &t.Count)
if err '= nil {
return nil, newTiffError('tag component count read failed", err)

// There seems to be a relatively common corrupt tag which has a Count of
// MaxUint32. This is probably not a valid value, so return early.
if t.Count == 1<<32-1 {

return t, newTiffError("invalid Count offset in tag", nil)

We are reading 4 bytes (Count is uint32) and populating t.Count . According to RFC2306 - Tag
Image File Format (TIFF) - F Profile for Facsimile:

TIFF fields (also called entries) contain a tag, its type (e.g. short, long, rational, etc.), a count
(which indicates the number of values/offsets) and a value/offset.

So we get 2684354560 when we read A0 00 00 00 from our payload in little-endian:

00000000 49 49 2a 00 08 00 00 00 30 30 30 30 05 00 00 00 |IIx..... 0000....|
00000010 00 a0 30 30 30 30 |. 0000]|

https://md2pdf netlify.app 134/139

25/03/2023,05:21

Lesson #4: After reading data, check them for validity. This is more important for field lengths.

Fix A5 and 3F Crashes

Hacking with Go

| could not find anything about the maximum number of types in a tag in the RFC. But it's a dword

(4 bytes) so it can contain values that cause the panic in makeslice . We can choose a large

enough value that does not cause the panic. | think 2147483647 or 1<<31-1 is a good

compromise.

We can add our new check to the current check:

// There seems to be a relatively common corrupt tag which has a Count of
// MaxUint32. This is probably not a valid value, so return early.

for invalid count values.
1<<32-1 || t.Count >= 1<<31-1 {
return t, newTiffError("invalid Count offset in tag", nil)

// Also check
if t.Count ==

Now both crashes are avoided:

$ go run test-crash-a5.go

err: exif: decode failed (tiff: invalid Count offset in tag)

$ go run test-crash-3f.go

err: loading EXIF sub-IFD: exif: sub-IFD ExifIFDPointer decode failed: tiff: invalid C

49 Crash

This crash payload is:

00000000 4d
00000010 30
00000020 30
00000030 30
00000040 00
00000050 30
00000060 30
00000070 30

And results in:

4d
30
30
30
00
30
30
30

00
30
30
30
30
30
30

2a
30
30
30
30
30
30

panic: runtime error:

goroutine 1 [running]:

00
30
30
30
30
30
30

00
30
30
30
30
30
30

index

00
30
30
30
30
30
30

out of range

08
30
30
30
30
30
30

00
30
30
30
30
30
30

07
30
30
30
30
30
30

30
30
30
87
30
30
30

30
30
30
69
30
30
30

30
30
30
00
30
30
30

30
30
30
04
30
30
30

github.com/xor-gate/goexif2/tiff.(xTag).Int64(...)

https://md2pdf .netlify.app

30
30
30
00
30
30
30

30
30
30
00
30
30
30

IMM. %4 o s . 000000 |
|0000000000000000 |
|0000000000000000 |
|0000000000. i. ... |
|..00000000000000 |
|0000000000000000 |
|0000000000000000 |
|00 |

135/139

25/03/2023,05:21 Hacking with Go
go-fuzz-build214414686/gopath/src/github.com/xor—-gate/goexif2/tiff/tag.go:363
github.com/xor-gate/goexif2/exif.loadSubDir(0xc042080510, 0x547f15, Oxe, 0xc042080390,
go—-fuzz-build214414686/gopath/src/github.com/xor—-gate/goexif2/exif/exif.go:211 +0x
github.com/xor-gate/goexif2/exif. (xparser).Parse(0x613170, 0xc042080510, 0xc0420804b0,
go—-fuzz-build214414686/gopath/src/github.com/xor—-gate/goexif2/exif/exif.go:190 +0x
github.com/xor-gate/goexif2/exif.Decode(0x560240, 0xc042080480, 0x5ae92f8f, 0x212abedc
go-fuzz-build214414686/gopath/src/github.com/xor—-gate/goexif2/exif/exif.go:331 +0x
github.com/xor-gate/goexif2/exif.Fuzz(0x38f0000, 0x72, 0x200000, 0xc042047f48)
go-fuzz-build214414686/gopath/src/github.com/xor—-gate/goexif2/exif/Fuzz.go:8 +0xba
go-fuzz-dep.Main(0x550580)
go-fuzz-build214414686/goroot/src/go—-fuzz-dep/main.go:49 +0xb4
main.main()
go—-fuzz-build214414686/gopath/src/github.com/xor—gate/goexif2/exif/go.fuzz.main/ma
exit status 2

This can be reproduced by running test-crash-49.go . At this point we know the drill. Looking at
tag.go:363:

// Int64 returns the tag's i'th value as an integer. It returns an error if the
// tag's Format is not IntVal. It panics if i is out of range.
func (t %Tag) Int64(i int) (int64, error) {
if t.format != IntVal {
return 0, t.typeErr(Intval)
b

return t.intVals[i], nil

It's known that this method can panic. We need to modify it (and the other similar ones) to return
an error instead.

Fix 49 Crash

The fix is straightforward. Before accessing t.intVals[i]l we need to check if the index is valid.
This can be accomplished by checking it against len(t.intVals[i]l) .

// Int64 returns the tag's i'th value as an integer. It returns an error if the
// tag's Format is not IntVal. It panics if i is out of range.
func (t %Tag) Int64(i int) (int64, error) {
if t.format != IntVal {
return @, t.typeErr(IntVal)
}
if i >= len(t.intVals) {
return @, newTiffError("index out of range in intVals", nil)
b

return t.intVals[i], nil

Lesson #5: Check index against array length before access.

https://md2pdf netlify.app 136/139

25/03/2023,05:21 Hacking with Go

Now we do not panic but there's no error because it's suppressed at exif.go:211:

func loadSubDir(x xExif, ptr FieldName, fieldMap map[uintl6]FieldName) error {
tag, err := Xx.Get(ptr)
if err '= nil {
return nil
}
offset, err := tag.Int64(0)
if err !'= nil { // error is suppressed here
return nil

}

// removed

The new error check needs to be added to these methods:

e Rat2
e Int64d
e Int

e Float

A bit further down inside the MarshallJSON method we can see errors being ignored:

// removed
for i 1= @; i < int(t.Count); i++ {
switch t.format {
case RatVal:
n, d, _ := t.Rat2(1i)
rv = append(rv, fmt.Sprintf("%v/%v"", n, d))
case FloatVval:
v, _ := t.Float(i)
rv = append(rv, fmt.Sprintf("%sv", v))
case IntVal:
v, _ = t.Int(1i)
rv = append(rv, fmt.Sprintf("sv", v))

by

// removed

Looking at the function we can see by ignoring the errors, we will have garbage data in the JSON.
However, | don't think we need to return errors here but | could be wrong.

Adding Crashes to Tests

After things are fixed, we need to add the crashes to tests. This will discover if these bug regress in
the future. Unfortunately, the package uses go generate to generate tests and | have no clue how

https://md2pdf netlify.app 137/139

25/03/2023, 05:21 Hacking with Go
to use it. But | know how to write normal Go test using the testing package. Our payloads are pretty
small so we will embed them in the test file instead of adding extra files to the package.

package exif

import (
"bytes"
"fmt"
"os
"testing"

var goFuzzPayloads = make(map[stringlstring)

// Populate payloads.
func populatePayloads() {

goFuzzPayloads ["3F"] = "IIx\x00\b\x00\x00\x00\t\x000000000000" +
""00000000000000000000" +
'"00000000000000000000" +
""00000000000000000000" +
'"00000000000000000000" +
"0000001\x87\x04\x00\x01\x00\x00\x00\xac\x00\x00\x0000" +
'"00000000000000000000" +
""00000000000000000000" +
""0000000000000000\x05\x00\x00\x00" +
"\x00\xe00000"

goFuzzPayloads["49"] = "MM\x00x\x00\x00\x00\b\x00\a0000000000" +
""00000000000000000000" +
'"000000000000000000\x871" +
"\x00\x04\x00\x00\x00\x0000000000000000" +
'"00000000000000000000" +
""00000000000000"

goFuzzPayloads ["A5"] = "IIx\x00\b\x00\x00\x000000\x05\x00\x00\x00\x00\xa000" +
IIG@II

// Test for Go-fuzz crashes.
func TestGoFuzzCrashes(t *testing.T) {
for k, v := range goFuzzPayloads {
t.Log("Testing gofuzz payload", k)
v, err := Decode(bytes.NewReader([]byte(v)))
t.Log("Results:", v, err)

}

b

func TestMain(m xtesting.M) {
populatePayloads()
ret := m.Run()

https://md2pdf netlify.app 138/139

25/03/2023, 05:21 Hacking with Go
0s.Exit(ret)

Lesson #6: Add Go-Fuzz crashes to unit tests. This is useful for regression testing.

Lessons Learned

e Go-Fuzz can crash when running out of memory and return false positives. We can throttle it
or fix memory allocation bugs before resuming.

e Use data types with explicit lengths such as int32 and int64 instead of OS dependent ones
like int .

e Amount of memory available for malloc is OS dependent and somewhat arbitrary.
e Manually check the size before allocating memory for slices.

e Check data (esp. field lengths) for validity after reading them.

e Check index against array length before access.

e Add Go-Fuzz crashes to unit tests.

https://md2pdf netlify.app 139/139

