
Research-fueled Security Services

June 2023

Gabriel Gonzalez
Director of Hardware Security

Drone Security and Fault 
Injection Attacks

\ RESEARCH \



IOACTIVE.COM 

©2023 IOActive, Inc. All Rights Reserved. 2  |  June 2023 

Table of Contents 
SUMMARY ...................................................................................................................................................................................................... 3 

INTRODUCTION .......................................................................................................................................................................................... 4 

ATTACK SURFACE ...................................................................................................................................................................................... 5 

OCUSYNC...............................................................................................................................................................................................................................5 
MOBILE APPS ....................................................................................................................................................................................................................... 6 
ASSETS ................................................................................................................................................................................................................................... 6 
DRONE ARCHITECTURE .................................................................................................................................................................................................... 6 

TECHNICAL BACKGROUND ................................................................................................................................................................... 8 

XYZ TABLE ........................................................................................................................................................................................................................... 9 
EM PROBE ............................................................................................................................................................................................................................ 9 
OSCILLOSCOPE ................................................................................................................................................................................................................... 11 
SPIDER AND EM-FI PROBE ............................................................................................................................................................................................12 
TARGET DRONE ..................................................................................................................................................................................................................12 
DRONE PCB PREPARATION ...........................................................................................................................................................................................13 

FIRST APPROACH .....................................................................................................................................................................................14 

SECOND APPROACH .............................................................................................................................................................................. 18 

FUTURE WORK ......................................................................................................................................................................................... 22 

MITIGATIONS ............................................................................................................................................................................................. 23 

APPENDIX A: ADDITIONAL INFORMATION .................................................................................................................................. 24 

ABOUT IOACTIVE ............................................................................................................................................................................................................. 24 
ABOUT THE AUTHOR ....................................................................................................................................................................................................... 24 

APPENDIX B: JAVA CODE ..................................................................................................................................................................... 25 

APPENDIX C: FIPY CONTROLLER CODE ........................................................................................................................................ 29 

 

  



IOACTIVE.COM 

©2023 IOActive, Inc. All Rights Reserved. 3  |  June 2023 

Abstract 
The use of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, continues to grow. Drones 
implement varying levels of security, with more advanced modules being resistant to typical embedded 
device attacks. IOActive’s interest is in developing one or more viable Fault Injection attacks against 
hardened UAVs. 

This paper covers IOActive’s work in setting up a platform for launching side-channel and fault injection 
attacks using a commercially available UAV. We describe how we developed a threat model, selected a 
preliminary target, and prepared the components for attack, as well as discussing what we hoped to achieve 
and the final result of the project. 

 

Summary 
IOActive set out to explore the possibility of achieving code execution on a commercially available drone 
with publicly disclosed vulnerabilities using non-invasive techniques, such as electromagnetic (EM) side-
channel attacks and EM fault injection (EMFI). If successful, we could apply the lessons learned to a 
completely black-box approach and attempt to compromise devices with no well-known vulnerabilities. 

As a target, we chose DJI, a seasoned manufacturer that emphasizes security in their products,1 such as 
signed and encrypted firmware, Trusted Execution Environment (TEE), and Secure Boot. We used a 
controlled environment to investigate the impact of side-channel attacks and EMFI techniques.  

We demonstrated that is feasible to compromise the targeted device by injecting a specific EM glitch at the 
right time during a firmware update. This would allow an attacker to gain code execution on the main 
processor, gaining access to the Android OS that implements the core functionality of the drone. 

  

 

 

1 https://security.dji.com/data/resources/ 
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Introduction 
Drones, also known as Unmanned Aerial Vehicles (UAVs), are increasingly being deployed in industries like 
aviation, agriculture, and law enforcement. As the use of these devices has expanded, so have cybersecurity 
concerns. These versatile machines offer many benefits, but they also present unique challenges when it 
comes to maintaining security. 

One of the key challenges is the fact that drones are often operated remotely. This means there is a potential 
for external actors to gain access to the drone's control systems by intercepting the wireless signals used to 
control the drone, compromising the ground-based computer systems used to operate the drone, or gaining 
access to the device itself; if a drone is stolen, the thief could gather sensitive information or plant malware 
on the system. 

This whitepaper covers IOActive’s research into the current security posture of the drone industry. For this 
work, we chose one of the most common drone models, DJI’s Mavic Pro.2  

The goals of this research were to: 

• Learn about the architecture of UAVs 

• Investigate UAVs' weakest points  

• Determine what approaches make sense in real-world attacks 

• Gain experience launching EMFI attacks against high-end, multicore systems running full-fledged, 
multi-task operating systems, vs microcontrollers running bare metal software 

This whitepaper covers the following areas: 

• Attack Surface: Provides an overview of the drone’s components and identifies valuable assets 

• Technical Background: Introduces concepts about the targeted drone and test setup 

• First Approach: Describes IOActive’s attempts to use side-channel attacks to acquire the firmware 
decryption keys 

• Second Approach: Describes IOActive’s attempts to use EMFI to achieve code execution 

• Future Work: Discusses next steps in IOActive’s research 

• Mitigations: Recommendations to address the highlighted issue 

.  

 

 

2 https://www.dji.com/mavic 
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Attack Surface 
Drones are used in variety of applications, including military, commercial, and recreational. Like any other 
technology, drones are vulnerable to various types of attacks that can compromise their functionality and 
safety. 

 

Figure 1: High-level overview of the elements involved in the normal operation of a drone 

As seen in Figure 1, drones expose several attack surfaces, depending on their specific capabilities. Some 
common attack surfaces include: 

1) Backend: Like almost any other modern system, drones are vulnerable to a variety of attacks against 
their backend systems. Attackers can exploit a range of issues (such as SQL injection or server-side 
request forgery) to gain access to sensitive data, manipulate the system, or disrupt operations. 
Additionally, attackers may be able to use the backend system as a pivot point to launch further 
attacks on other components of the ecosystem. 

2) Mobile Apps: Attackers can exploit vulnerabilities in mobile apps to gain access to sensitive data or 
remotely control the drone. Common ways to break into these would be vulnerabilities in the 
applications or operating system, and even targeted attacks. 

3) Radio Frequency (RF) Communication: RF communications systems are used by drones to receive 
and transmit commands, data, and video. RF attacks can use various techniques, such as jamming, 
spoofing, and interference, to disrupt or manipulate the RF signals used by drones. DJI implements a 
custom RF protocol, OcuSync, to send video and commands to and from the remote controller used 
to control the drone. 

4) Physical Device: Hardware or software vulnerabilities could allow an attacker to access key aspects 
of the drone, such as the firmware and sensitive information, and potentially modify its behavior. 

OcuSync 
OcuSync is a wireless communication protocol developed by DJI. It is used in many of DJI's drones, including 
the popular Mavic series, to provide a reliable and low-latency link between the drone and its associated 
remote controller. 

One of the key features of the OcuSync protocol is its ability to support multiple communication channels. 
This allows the drone to automatically switch between channels to maintain a strong and stable connection, 
even in challenging environments where radio interference may be present. 

WiFi

OcuSync
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The OcuSync protocol also includes security features to protect over-the-air (OTA) communications. This 
includes the use of encryption to protect the wireless link between the drone and the remote controller, as 
well as authentication mechanisms to prevent unauthorized users from gaining access to the drone's control 
systems. 

Mobile Apps 
Mobile apps are available for both iOS and Android devices, and they allow users to easily control and 
monitor their drones from a smartphone or tablet. 

Some of the key features of DJI's mobile apps are the ability to remotely control the drone's movement, 
access camera settings and control the camera, and view a live video feed from the drone's camera. 

In addition to these basic control features, DJI's mobile apps also offer a range of advanced capabilities, such 
as automatic flight planning, custom flight path creation, and the ability to access and manage the drone's 
flight logs and other data. 

Assets 
IOActive’s initial goal was to gain access to the drone’s firmware and search for vulnerabilities in the exposed 
attack surface. The following are assets that an attacker may target, depending on the desired outcome. 

Firmware 

The software running on the System-on-Chip (SoC) in the target device is the holy grail for vulnerability 
research. By reverse engineering the most recent version of the software that manage communications, it is 
possible to gain a greater understanding of the system and identify potential security flaws and 
vulnerabilities. 

For the Mavic Pro, DJI only provides signed and encrypted firmware packages. A publicly available exploit for 
the Mavic Pro3 permitted IOActive to enable debugging access to the device. This information allowed us to 
better understand the internals of the device and move forward with our research. 

No-fly Zones 

Most UAVs implement several "no-fly zones" to help prevent accidents and unauthorized use. These no-fly 
zones are areas where the drone is not allowed to take off or fly, and they are designed to protect sensitive 
locations such as airports, military bases, and other areas where drone operation may pose a safety risk. 

Sensitive Information 

The utilization of drones to store information, such as flight plans, images, and other potentially sensitive 
data, warrants consideration in certain contexts. 

Drone Architecture 
DJI incorporates a range of sensors and peripherals in its drones to enable advanced capabilities and 
improve performance. 

 

 

3 https://github.com/CunningLogic/DUMLRacer 
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• Gyroscopes and accelerometers are used to measure the drone's orientation and movement, 
providing the information needed to maintain stability and control. 

• Barometers measure atmospheric pressure, allowing the drone to determine its altitude and 
maintain a consistent flight height. 

• Global Positioning System (GPS) sensors are used to determine the drone's location and enable 
features such as automatic takeoff and landing and geofencing. 

• Compass sensors are used to determine the drone's heading and enable features such as automatic 
waypoint navigation. 

• Ultrasonic sensors are used to measure the distance to the ground or other objects and enable 
features such as automatic hovering and obstacle avoidance. 

• Cameras are used to capture photographs or video footage from a bird's-eye view. Drones are 
equipped with cameras to allow users to see what the drone sees in real time and to capture images 
and video from unique perspectives that would not be possible with a traditional camera 

The two main processors in DJI’s Mavic Pro are: 

1) Video and Image Processing CPU: This SoC is produced by Ambarella International LP (Ambarella), a 
technology company that specializes in the design and development of low-power, high-definition 
video processing semiconductors.4 The company was founded in 2004 and is headquartered in Santa 
Clara, CA. Ambarella's products are used in a range of applications, including security cameras, 
drones, and sports cameras. The company's chips are known for their ability to capture and transmit 
high-quality video while consuming very little power.  

2) Android-based Control CPU: This is an ARM Cortex-A7-based SoC by Leadcore Technology Co. Ltd. 
(Leadcore), a Chinese telecommunications company that is based in Beijing. The company is known 
for its work in developing telecommunications technology, including mobile phone chipsets and 
other related products. Leadcore has been in operation since 2009, and its products include a line of 
mobile phone chipsets used in a variety of smartphones and other devices. 

  

 

 

4 https://www.ambarella.com/ 
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Technical Background 
Side-channel attacks rely on indirectly obtaining information about a target system by taking different types 
of measurements during the execution of specific operations. Some common attacks that use side-channel 
analysis are: 

• Timing Attacks: The time a targeted operation takes to complete is analyzed and exploited, for 
example, to guess a Personal Identification Number (PIN) or break cryptographic implementations. 

• Power Analysis: Simple Power Analysis (SPA) and Differential Power Analysis (DPA) exploit the power 
consumed by targeted operations. Measurements are usually taken by tapping the voltage path of 
the chip. The captured data is mathematically processed to recover secrets, usually cryptographic 
keys. 

• EM Analysis: Instead of retrieving power consumption directly from the voltage rails of the hardware, 
an EM probe is placed close enough to the chip to retrieve EM emanations. This method has the 
advantage of being less invasive and more localized than power analysis. 

Electromagnetic Fault Injection (EMFI) aims to cause a disruption in the hardware when processing certain 
operations. A metal coil (EM probe) is placed close to the surface of the target processor. The current flow 
through this coil will induce current changes inside the processor. This is expected to elicit changes in the 
behavior of the CPU in a way that could be used to gain an advantage; for example, by changing a value in a 
memory cell or register before or after it is processed.  

As mentioned above, the advantages of EMFI include its non-invasive nature and that the perturbation is 
more localized, as opposed to power glitching, where the PCB typically requires physical modifications and 
the glitch affects all internal peripherals and processing units connected to the targeted power rail.  

For this work, IOActive used the widely recognized FI/Side-Channel Analysis (SCA) suite from Riscure.5 In 
particular, we used the components described in the remainder of this section, which are accompanied by a 
powerful and comprehensive software suite designed to support security researchers. 

 

 

5 https://www.riscure.com/security-tools/ 
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XYZ Table 
When using power analysis techniques, the data is retrieved by tapping the voltage path the target 
processor uses to power all the internal processing units. One of the challenges when transitioning from 
voltage to EM readouts is finding the correct position on the surface of the chip. To accomplish this, we 
utilized an XYZ table, shown in Figure 2, to scan the chip area and locate the optimal spots where more 
information is leaked. 

 

Figure 2: XYZ table with a PCB secured to the bottom surface 

In order to correctly use this device, it is essential to properly set the Z-axis. This is a critical factor, as if the 
EM tip is too close to the target, the tip itself could be damaged while moving around the chip's packaging. 
On the other hand, if the EM tip is too high, the measured signal will be too weak to be useful. 

IOActive employed two techniques to address this issue. The first involved using a USB micro-camera to 
observe the gap between the EM tip and the surface. The second was a technique commonly used in 3D 
printing: placing a thin sheet of paper between the EM tip and the chip, positioning the EM tip, and then 
attempting to pull the paper out. If the gap is too small, the paper will not move; conversely, if it is too large, it 
will move freely. A small amount of friction when moving the paper indicates an optimal tip height. 

Once the Z-axis has been set to a fixed position, the next step is to specify a rectangle on the XY axis, that is 
the chip area to be scanned.  

EM Probe 
The high-precision EM probe IOActive used for this research is designed to detect EM emissions from 
semiconductor circuits, and is equipped with three tips of varied diameters (0.2mm, 0.5mm, and 1.2mm) that 
possess a directed coil and a protective Teflon shell. This tool is capable of picking up EM fields of up to 
6GHz and converting them into an AC signal.  
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The EM probe is connected to an amplifier, as illustrated in Figure 3, and the output is directed to the 
oscilloscope via a BNC cable. The software suite then interprets the EM measurements to create a heat map 
in order to pinpoint the area of maximum emanation.  

 

 

Figure 3: Block diagram of the EM probe and amplifier and the XYZ table with the EM probe connected to the amplifier 
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Oscilloscope 
IOActive used the oscilloscope shown in Figure 4 as a key element in both the SCA and FI portions of the 
project.  

 

Figure 4: Oscilloscope used to identify sweet spots and verify EM glitches 

During SCA, the oscilloscope was used to capture signal leakages from the computations performed in the 
target CPU. During EMFI, it was used to verify that glitches were generated with the desired shape and 
timing. 
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Spider and EM-FI Probe 
For EMFI, IOActive used Riscure’s Spider tool and EM-FI Transient Probe, as shown in Figure 5. 

 

Figure 5: Spider (left) and EM-FI Transient Probe (right) from Riscure 

Spider reduces complexity in SCA and EMFI by creating a single control point with all the I/O and reset lines 
for custom or embedded interfaces. As part of this project, IOActive used the Spider tool to generate 
arbitrary glitch waves. The tool allows for adjusting the output voltage, timing, repetition rate/frequency, and 
duration of the pulse. 

Riscure’s EM-FI Transient Probe induces fast, high-power, EM pulses on a user-defined location of the chip. 
Fast and short pulses are configurable from software, providing a fast and predictable response to trigger.  

Target Drone 
IOActive’s approach was to use a controlled testing environment to investigate whether it is feasible to attack 
a hardened drone via side-channel or EMFI techniques. In order to ensure a controlled environment, IOActive 
targeted a drone model and firmware version with publicly known vulnerabilities. This would enable us to 
gain a better understanding and control each of the different stages by reverse engineering the software 
components involved in the firmware upgrade process. Furthermore, it would provide an opportunity to gain 
insight into potential device malfunctions or other behaviors that could delay testing. If successful, we could 
take the lessons learned in this phase and attempt these types of attacks on devices with no well-known 
vulnerabilities using a completely black-box approach. In addition, if any future targets use the same SoC as 
the initial target, we could even reuse the search area identified during this project. This would save valuable 
time by eliminating the need to scan the whole SoC surface and tune parameters such as duration, delay, 
and strength. 

Given these factors, IOActive selected the DJI Mavic Pro. In addition to having leaked keys, it is widely 
availability on the second-hand market, which could be beneficial in the event of an accident resulting in 
damage to the unit during our research process. 
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Drone PCB Preparation 
The first step was to identify the drone’s main PCB and create an isolated environment where it could be 
powered without the original battery and placed under the analysis probes. 

After removing the plastic cases, peripherals, and sensors, the result is shown in Figure 6. The component we 
were interested in is outlined in red: the Leadcore SoC. This SoC runs a custom version of Android and 
handles USB communications and the firmware upgrade process.  

  

Figure 6: Main PCB with all the different components6 

 

 

6 Source: https://github.com/o-gs/dji-firmware-tools/wiki/WM220-Core-Board-A 
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Figure 7 shows the PCB under analysis. It should be noted that IOActive had to include an external fan to 
dissipate the heat generated by the PCB components. Without it, the temperature would quickly rise after 
power-up, leading to a reboot.  

 

Figure 7: PCB on the XYZ table with power from an external power supply 

First Approach 
As mentioned in the Assets section, one of the main priorities of any threat actor when approaching a system 
is gaining access to unencrypted firmware. Therefore, our first goal was to study the feasibility of recovering 
the keys used to encrypt/decrypt the firmware packages using side-channel power leaks. 

Power leakages on cryptographic algorithms are tied to mathematical operations using an attacker-
controlled payload and the unknown key. The instructions where data from both elements are computed will 
consume more or less power depending, for example, on the number of bits in the result. This is typically 
called the leakage model and is sometimes modeled as the hamming distance. 

IOActive’s goal was to construct a setup where we could: 

1) Send random data to the target to be used later in cryptographic computations 

2) Perform repeated tests to collect thousands of power traces 

3) Analyze the retrieved data and recover the encryption key 

As mentioned step 1, a key part in exploiting side-channel leakage is for the targeted operation to process 
data with enough entropy to be statistically analyzed. In this case, we had the ability to submit random data 
that would hit the targeted operations in the cryptographic algorithm. To achieve this, we analyzed the 
format of the package and generated valid packages that could be fed into the decryption process. Figure 8 
shows one of the packages and some of the values that were modified to feed the verification application. 
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Figure 8: Binary view of upgrade packages showing the type of package and length 

The generated packages contain random data that would be used during statistical analysis to correlate with 
the captured EM traces. Therefore, we needed to generate a large number of “fake” update packages. 

Working on step 2 involved understanding the update process so we could automate the task of submitting 
modified packages and recording EM emanations for later analysis. 

Figure 9 describes the steps involved in the firmware update process on a DJI drone. Since we were lucky 
enough to get a model with an ADB shell running on it, we could identify the process dealing with the 
signature and decryption of the software package.  

 

Figure 9: Steps involved in the firmware update process7 

 

 

7 Source: DJI Security White Paper: https://security.dji.com/data/resources/ 
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Signature verification and decryption were performed by the dji_verify application. This executable is 
designed to run as a command-line tool and accept various arguments, including the path to the file 
containing the firmware package. 

Further analysis of the binary allowed us to identify the point where signature verification was performed. 
Since one task is to find the spot on the chip’s surface where the EM signal is stronger, we decided to patch 
the dji_verify binary to bypass the signature check and directly perform firmware package decryption.  

From a high level, the entire process consists of the following steps: 

1) Generate a modified firmware package (although during the first scan phase we use a fixed one). 

2) Copy the file to the drone via ADB. 

3) Execute the patched dji_verify. 

4) Capture the EM data and go back to step 1. 

Step 3 puts the hardware and software needed to perform the power analysis together. Figure 10 shows part 
of the setup used to record the power leak. The EM probe is attached to the XYZ table and positioned on top 
of the Leadcore SoC, where cryptographic operations take place. 

 

Figure 10: Side-channel setup ready to detect power leakage in the form of EM emanations 
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One key feature of the tooling provided with Riscure’s equipment was Inspector, a powerful software suite 
that implements all the statistical, mathematical analysis and data transformation required to perform SCA.  

The only missing parts are those required to interact with each of the different in-scope device. For this 
project, IOActive developed Java code (included in Appendix B) that takes input arguments, such as 
repetitions, and coordinates launching the target binary. Inspector will take care of positioning the XYZ table, 
reading the EM signals, and plotting the results. 

At this stage, the first goal was to find an area with a strong EM signal so we can place the probe and record 
thousands of traces to get enough information to extract the key. 

After the location with strongest signal was identified, we moved from the patched dji_verify binary to 
the pristine setup, which includes the firmware signature verification. We then began studying the feasibility 
of bypassing the signature check with using EMFI. 

At this point, we moved from Inspector to FI Python (FIPy), a web-based framework provided by Riscure to 
help with the FI process. This is described in more detail in the Second Approach section of this document. 
Figure 11 is the plot produced by FI Spotlight, showing the results of this round of testing. 

 

Figure 11: Successful bypass (red), undetermined (orange), reboot (yellow), and normal operation (green) 

After several days of trials and data analysis, we found that the probability of a successful signature bypass 
was lower than 0.5%. This renders key recovery unfeasible, since hardware-based crypto engines like the 
one used by the Leadcore SoC require hundreds of thousands of traces to be collected in order to perform 
an SCA attack. 

At this point we paused further effort into this first approach, analyzed the target again, and came up with a 
second attack scenario. 
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Second Approach 
There were several potential avenues for bypassing security mechanisms using physical attacks, but most of 
them required modifications to the PCB. We typically would have used EMFI with the hopes of enabling 
JTAG to achieve debugging capabilities; however, we chose the path proposed in a research paper from 
Riscure8 instead.  

Riscure’s researchers describe the different results they achieved while applying FI to the target SoC. There 
was one interesting outcome applicable to IOActive’s research, where the glitches caused the processor to 
modify the content of destination registers during memory operations. 

If the above results could be reproduced, we could potentially execute our own payload through the update 
process. This implies the following two requirements: 

1) We have the ability to provide a custom payload to the target system. This we already know holds 
true from our work using the First Approach. 

2) The process will copy memory from one location to another. Also from our work on dji_verify, 
we know the provided payload is first copied into memory to calculate the cryptographic signature to 
see if it matches the signed one. 

In this new attack path, we attempted to demonstrate that gaining code execution using EMFI was plausible 
on the target device. A high-level overview of the process is as follows: 

1) The update process copies the attacker-controlled payload from one memory location to another. 

2) While the copy is taking place, generate a glitch with the goal of changing the behavior of the 
instructions being processed. 

3) Analyze the result to determine what type of instruction modification has taken place. 

To continue with this approach we needed to complete the following tasks: 

1) Generate a firmware package that the dji_verify program would process.  

2) Obtain a stack trace and register information to simplify the process of understanding whether an 
attack was successful. We used GDB for this step; this was one of the perks of having a controllable 
environment. 

3) Setup the Riscure’s glitching gear and adapt FIPy to work with our target. 

To accomplish task 1, we modified the package header and added a file containing 10MB of 0x41 bytes as 
the payload, as described in the First Approach. This helps in evaluating the actual exploitability of the 
injection when analyzing the GDB output. 

One constraint with the EMFI setup is finding an accurate hardware trigger. The density of components and 
the multi-layer PCB make it challenging to find the correct signal without risking the destruction of samples 
(one of the constraints for this project). To overcome this issue we relied on timing, based on the moment we 
received information through the ADB output; however, this approach reduces the repeatability of the 
injection, making it harder to find a successful hit.  

 

 

8 https://www.riscure.com/publication/controlling-pc-arm-using-fault-injection/ 
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Figure 12 shows the setup we used for EMFI to complete task 3. The EM probe is attached to the XYZ table 
and the Spider tool is connected to the computer that provides the timing for the trigger. The oscilloscope is 
used to verify we are injecting the correct pulse shapes at the right time, and its output is shown in Figure 13. 

 
Figure 12: Setup used for FI during the second approach 

 

Figure 13: FIPy application alongside the oscilloscope showing the oscilloscope recording 
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There is one difference between working with Inspector and FIPy: the former provides a Java interface and 
the latter executes a Python script. This time we put together a Python script (included in Appendix C) that 
manages the interactions with the target device, asks the Spider tool to trigger a glitch, and stores the results. 

Once the whole setup was working flawlessly, we needed to run the test multiple times around the XY axis 
with different glitching strengths and timings until we identified a successful or potential error that could help 
us narrow down the surface area.  

After identifying a small enough area, we modified the glitch’s shape and timing until we observed a 
successful glitch. After numerous attempts, we got what we were looking for: the dji_verify program 
crashed, as shown in the following output. 

Program received signal SIGSEGV, Segmentation fault. 

0x2a002f44 in ?? () 

#0  0x2a002f44 in ?? () 

#1  0x2a000f5a in ?? () 

#2  0x2a0011de in ?? () 

#3  0x2a000b04 in ?? () 

#4  0xb6f9b42c in __libc_init () from /system/lib/libc.so 

#5  0x2a00099c in ?? () 

Backtrace stopped: previous frame identical to this frame (corrupt stack?) 

r0             0x41414141  1094795585 

r1             0x41414141  1094795585 

r2             0xbefff6dc  3204445916 

r3             0x41414141  1094795585 

r4             0x41414141  1094795585 

r5             0xbefffbc4  3204447172 

r6             0x85242d9a  2233740698 

r7             0xbefff6f0  3204445936 

r8             0xb6b4e008  3065307144 

r9             0xb6b4e1e8  3065307624 

r10            0xbefffad0  3204446928 

r11            0x2d7160  2978144 

r12            0xbefff6ec  3204445932 

sp             0xbefff6c8  0xbefff6c8 

lr             0xde  222 

pc             0x2a002f44  0x2a002f44 

cpsr           0x60000030  1610612784 

Our payload appeared in several registers. After examining the code at the target address, we determined 
that we had hit a winning combination of timing, position, and glitch shape. 

Figure 14 clearly shows the load instruction copying IOActive’s data to registers R0 and R1. The GDB output 
above shows that registers R3 and R4 also ended up with controlled data.  

 

Figure 14: Instruction where the segmentation error took place 
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Instead of copying data to the destination buffer, the following two instructions would copy R0 and R1 into a 
controlled address. 

What most likely happened here is that we were able to modify the load instruction, and instead of reading 
only two registers, it ended up reading four. The original instruction encoding is: 

LDM R7!, {R0, R1}    0300B7E8 

While the encoding of the instruction that would lead to the results we observed was: 

LDM R7!, {R0, R1, R3, R4}  1B00B7E8 

This meant that the glitch was able to modify one byte by flipping two consecutive bits and converting one 
instruction into another. 

Having achieved this result, the next step would be to write a proper payload that turns this memory 
corruption into a code execution exploit. This could allow an attacker to fully control one device, leak all of its 
sensitive content, enable ADB access, and potentially leak the encryption keys. 
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Future Work 
In this paper we have described the materials and methods we used to successfully implement an attack on 
a UAV (drone) using EMFI techniques.  

The goal of this project was to study the feasibility of such attacks on a complex and modern device. As we 
succeeded in proving that gaining runtime control is possible on the device while processing a firmware 
update, the next step is to apply the knowledge we acquired on another model from DJI with no previously 
known vulnerabilities. 

To accomplish this task and create a reliable exploit within time and budget constraints, several elements 
must be improved: 

1) Hardware Trigger: This is likely the one element that would most significantly reduce the time and 
complexity of the project. As mentioned throughout this paper, we have solely used a software, 
timing-based trigger, which makes it difficult to reliably know how to elicit a successful glitch. 

There are two different avenues to explore in order to implement the desired hardware trigger: (i) find 
an LED or available PCB trace from which we could detect a level change when a firmware update is 
being processed, or (ii) use Riscure’s ICWaves to identify a power signature that coincides with the 
firmware upgrade package being processed. 

2) Integration: Integrate all of the elements introduced in this report along with a hardware trigger and 
the firmware package being sent to the drone as it would work on actual firmware update.  

3) Payload: Create a payload that could easily be checked to determine if the glitch was successful. 
There are different options, but one of the most obvious would be to enable ADB so we could check 
whether the USB connection is active from the host launching the attacks. 
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Mitigations 
An increasing amount of published research has shown promising results of applying EMFI to compromise a 
target system. This opens a new landscape of potential attacks and weaknesses in current and future 
products.  

IOActive recommends that product developers implement EMFI countermeasures in their products, 
mitigating these attacks by implementing hardware and software countermeasures. Hardware 
countermeasures are very efficient at preventing EMFI attacks, but could be expensive and must be planned 
during the early design stages. Software countermeasures, on the other hand, can be added during the final 
stages of development, but might be less effective in mitigating certain attacks. Information on implementing 
EMFI countermeasures is publicly available in academic papers, conference presentations, and blog posts.  

We also recommended evaluating EMFI countermeasures’ effectiveness using a third-party lab like IOActive.  
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Appendix A: Additional Information 
The purpose of this Appendix is to provide additional information on relevant biographies, and present the 
glossaries for the figures, tables and equations utilized in this paper. 

About IOActive 
IOActive, a trusted partner for Global 1000 enterprises, provides research-fueled security services across all 
industries. Our cutting-edge security teams provide highly specialized technical and programmatic services 
including full-stack penetration testing, program efficacy assessments, and hardware hacking. IOActive 
brings a unique attacker’s perspective to every engagement to maximize security investments and improve 
the security posture and operational resiliency of our clients. Founded in 1998, IOActive is headquartered in 
Seattle with global operations.  

IOActive Labs Research Blog: http://blog.ioactive.com 
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Appendix B: Java Code 
The following Java code takes input arguments, such as repetitions and coordinates, and launches the target 
binary. 

/* copyright IOActive */ 

 

import static acquisition2.target.ErrorHandling.*; 

import static com.riscure.common.data.SimpleVerdict.*; 

import java.util.concurrent.TimeoutException; 

import java.io.IOException; 

 

// GUI parameter libraries 

import com.riscure.osgi.annotation.Reference; 

import com.riscure.beans.annotation.DisplayName; 

import acquisition2.target.BasicSequence; 

import org.osgi.framework.ServiceReference; 

import com.riscure.osgi.legacy.Service; 

import javax.validation.constraints.DecimalMax; 

import javax.validation.constraints.DecimalMin; 

import com.riscure.beans.constraints.DecimalStep; 

import com.riscure.beans.annotation.Perturbation; 

import com.riscure.beans.annotation.Presentation; 

import com.riscure.beans.annotation.Unit; 

import java.math.BigDecimal; 

import java.beans.PropertyChangeListener; 

import java.beans.PropertyChangeSupport; 

import javax.validation.constraints.NotNull; 

 

// @Service("DJI_MavicPro1_1st_try") 

public class DJI_MavicPro1_1st_try extends BasicSequence { 

 

    private DJI_MavicPro1_1st_trySettings settings = new 

DJI_MavicPro1_1st_trySettings(); 

 

    @Override 

    protected void init() { 

        // Get all devices from hardware manager 

 

        // Set default devices 

 

        // If any error occurs the sequence will fail 

        onError(FAIL); 

 

        // Open all devices 

    } 

 

    @Override 

    public void run() { 

 

        // Set the default verdict to inconclusive 

        verdict(INCONCLUSIVE); 

 

        // Arm the measurement setup 
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        arm(); 

 

        // Data generator will be selected and configured via Sequence GUI 

settings, 

        // data from the generator data can be fetched using following 

method: 

        byte[] generatorData = getGeneratorData(16); // get 16 bytes from 

the data generator 

 

        // From this point forward ignore errors 

        onError(IGNORE); 

 

        // Get the parameter values from UI 

        System.out.println(String.format("Value of example parameter1 is: 

%d", settings.getPerturParam().intValue())); 

        System.out.println(String.format("Value of example parameter2 is: 

%d", settings.getTargetParam().intValue())); 

 

        //soft-trigger the measurement setup 

        softTrigger(); 

        try { 

            Process process = 

Runtime.getRuntime().exec("C:\\Users\\ioactive\\platform-tools\\adb.exe 

shell \"/cache/dji_verify -n 0100 -o /cache/test3 /cache/0x500.bin\""); 

        } catch (IOException e) { 

            e.printStackTrace(); 

        } 

             

    } 

 

    @Override 

    protected void onError(Throwable t) throws RuntimeException { 

        if (t instanceof TimeoutException) { 

            // Ignore 

        } else { 

            throw new RuntimeException(t); 

        } 

    } 

 

    @Override 

    public void close() { 

        // Close all devices, note that closing does not mean powering 

down 

    } 

 

    @Override 

    public DJI_MavicPro1_1st_trySettings getSettingsBean() { 

        return settings; 

    } 

 

    @Override 

    public void setSettingsBean(Object settings) { 

        this.settings = (DJI_MavicPro1_1st_trySettings) settings; 

    } 
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    @Override 

    public boolean isDataGeneratorEnabled() { 

        return true; 

    } 

 

    public static class DJI_MavicPro1_1st_trySettings { 

 

        // Custom parameter examples 

        @DisplayName("Example Parameter1") 

        @Unit("Unit") 

        @DecimalMin("0") 

        @DecimalMax("10000000") 

        @DecimalStep("4") 

        @Presentation(slider = false) 

        @Perturbation // This makes the parameter show up in the 

Perturbation tab. 

 

        private BigDecimal perturParam = BigDecimal.valueOf(4); 

 

        public BigDecimal getPerturParam() { 

          return perturParam; 

        } 

 

        public void setPerturParam(BigDecimal perturParam) { 

          BigDecimal old = this.perturParam; 

          this.perturParam = perturParam; 

          pcs.firePropertyChange("perturParam", old, this.perturParam); 

        } 

 

        @DisplayName("Example Parameter2") 

        @Unit("Unit") 

        @DecimalMin("4") 

        @DecimalMax("1000000") 

        @DecimalStep("4") 

        @Presentation(slider = false) 

 

        private BigDecimal targetParam = BigDecimal.valueOf(4); 

 

        public BigDecimal getTargetParam() { 

          return targetParam; 

        } 

 

        public void setTargetParam(BigDecimal targetParam) { 

          BigDecimal old = this.targetParam; 

          this.targetParam = targetParam; 

          pcs.firePropertyChange("targetParam", old, this.targetParam); 

        } 

 

        /* 

         * Property change support 

         */ 

        private PropertyChangeSupport pcs = new 

PropertyChangeSupport(this); 
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        public void addPropertyChangeListener(PropertyChangeListener 

listener) { 

            this.pcs.addPropertyChangeListener(listener); 

        } 

 

        public void addPropertyChangeListener(String propertyName, 

PropertyChangeListener listener) { 

            this.pcs.addPropertyChangeListener(propertyName, listener); 

        } 

 

        public void removePropertyChangeListener(PropertyChangeListener 

listener) { 

            this.pcs.removePropertyChangeListener(listener); 

        } 

 

        public void removePropertyChangeListener(String propertyName, 

PropertyChangeListener listener) { 

            this.pcs.removePropertyChangeListener(propertyName, listener); 

        } 

    } 

} 
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Appendix C: FIPy Controller Code 
The following Python script manages interactions with the target device, asks the Spider tool to trigger a 
glitch, and stores the results. 

from time import sleep, time 

import pyvisa as visa 

import subprocess 

import sys 

import os 

 

#### 

 

from threading  import Thread 

 

try: 

    from queue import Queue, Empty 

except ImportError: 

    from Queue import Queue, Empty  # python 2.x 

 

ON_POSIX = 'posix' in sys.builtin_module_names 

 

def enqueue_output(out, queue): 

    for line in iter(out.readline, b''): 

        queue.put(line) 

    out.close() 

 

 

#### 

 

import serial 

from fipy.parameters import (AttemptsParameter, FloatParameter, 

IntParameter, 

                             Parameters, SerialPortParameter) 

from fipy.scriptutils import ResultColor, fipy_script 

from spidersdk.chronology import Chronology 

from spidersdk.spider import Spider 

 

from fipy.parameters import * 

from fipy.scriptutils import ResultColor, fipy_script 

from spidersdk.chronology import Chronology 

from spidersdk.spider import Spider 

from fipy.transformutil import TransformUtil 

 

 

PARAMETERS = Parameters( 

    ('attempts', AttemptsParameter('Attempts')), 

 

    ('xyz_scanner', SimpleXYZScanParameter('XYZ scanner')), 

    ('glitch_power', IntParameter('Glitch Power', unit='%')), 

    ('glitch_delay', IntParameter('Glitch delay', unit='ns')), 

    ('spider_com_port', SerialPortParameter('Spider COM port')), 

 

) 
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EMFI_PULSE_AMPLITUDE = Spider.VOLTAGE_OUT1 

EMFI_DIGITAL_GLITCH = Spider.GLITCH_OUT1 

EMFI_GLITCH_VOLTAGE = 3.3 

EMFI_GLITCH_LENGTH = 52e-9 #Glitch length parameter is fixed for the EMFI 

Transient probe, we will use a 52ns pulse to trigger the EMFI probe; 

output pulse length is 40ns with the 1.5mm probe tips 

EMFI_GLITCH_DELAY = 0 # During this test we are not looking for the right 

Delay just the Amplitud and position parameters 

@fipy_script 

def execute_script(util): 

    counter = 0 

     

    v = visa.ResourceManager() 

    r = v.list_resources() 

    if not r: 

        print("NO POWER SUPPLY") 

        exit(-1) 

    dp832 = v.open_resource(r[0]) 

         

    # Inform the Inspector FI Python framework of our parameters, and 

setup the database. 

    util.set_termination_timeout(5) 

    util.parameter_init(PARAMETERS) 

 

    db = util.create_database_table('database.sqlite', 'database') 

    util.add_to_cleanup(util.close_database) 

 

    # Hardware initialization (see Spider API documentation for more 

details) 

    spider_com_port = serial.Serial() 

    spider_com_port.port = PARAMETERS['spider_com_port'].value 

    spider_com_port.open() 

    util.add_to_cleanup(spider_com_port.close) 

    spider_core1 = Spider(Spider.CORE1, spider_com_port) 

    spider_core1.reset_settings() 

    try: 

        glitcher = Chronology(spider_core1) 

    except IndexError as e: 

        raise Exception(str(e) + 

                        "\n\nDid you select the right COM port for Spider? 

Is it powered on?") 

    glitcher.forget_events()  # clear spider memory 

     

     

    xyz_interface = util.get_xyz() 

    tu = TransformUtil('table', xyz_interface.get_reference_points()) 

 

    # Initialize the digital glitch output 

    glitcher.setVccNow(EMFI_DIGITAL_GLITCH, 0) 

    # Initialize the pulse amplitude output 

    glitcher.setPowerNow(EMFI_PULSE_AMPLITUDE, 0) 

     

    transform = util.get_warping_tool() 
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    do_reset = 0 

    potential = 0 

    pre_result = '' 

    # Each iteration out paramaters receive new values here. 

    for p in PARAMETERS: 

        # Check if the stop or pause button has been pressed. 

        if not util.process_commands(): 

            break 

         

 

        # Record the timestamp for this iteration. 

        tstamp = time() 

 

        glitcher.setPowerNow(EMFI_PULSE_AMPLITUDE, p['glitch_power']) 

 

        chip_pos = p['xyz_scanner'] 

        table_pos = tu.from_chip('table', chip_pos) 

        xyz_interface.move_abs(table_pos.x, table_pos.y, table_pos.z, 

hop_height=100) 

         

        if reboot: 

            localgdb = subprocess.Popen("C:\msys64\mingw64\bin>gdb-

multiarch.exe") 

            \"/sbin/dji_verify -n 0100 -o /tmp/test 

/cache/wm220_0100_v02.06.56.66_20171208.pro.fw.sig-fill-with-A 2>&1 \"", 

stdout=subprocess.PIPE, start_new_session=True) 

 

            q = Queue() 

            t = Thread(target=enqueue_output, args=(localgdb.stdout, q)) 

            t.daemon = True 

            t.start() 

 

            resadb = '' 

 

            localgdb.write("set architecture arm\n\r") 

            localgdb.write("set exec-file /sbin/dji_verify") 

            localgdb.write("target extended-remote localhost:9999") 

             

            while True: 

                try: 

                    resadb = q.get_nowait() 

                    print(resadb, cntloop) 

                except Empty: 

                    break 

        exit(-1) 

             

        glitcher.forgetEvents() 

         

        glitcher.glitch( 

            EMFI_DIGITAL_GLITCH, 

            EMFI_GLITCH_VOLTAGE, 

            p['glitch_delay'] / 1e9, 

            EMFI_GLITCH_LENGTH) 
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        glitcher.start()  

         

        cntloop = 0 

        resadb = "" 

        while True and cntloop < 40: 

            try: 

                resadb = q.get_nowait() 

                print(resadb, cntloop) 

            except Empty: 

                glitcher.forgetEvents() 

 

                glitcher.glitch( 

                    EMFI_DIGITAL_GLITCH, 

                    EMFI_GLITCH_VOLTAGE, 

                    0, 

                    EMFI_GLITCH_LENGTH) 

 

                glitcher.start()  

                cntloop += 1 

            else: 

                print("-->", repr(resadb), table_pos.x, table_pos.y, 

chip_pos.x, chip_pos.y) 

                break 

                     

        # Block for 1 second or until Spider reaches final state. 

         

        spider_timeout = glitcher.wait_until_finish(1000) 

 

        if spider_timeout: 

            color = ResultColor.PINK 

        elif cntloop == 40: 

            print("Maybe reboot?") 

            dp832.write(":OUTP CH1,OFF") 

            sleep(1) 

            dp832.write(":OUTP CH1,ON") 

            color = ResultColor.YELLOW 

            sleep(20) 

        elif resadb.find(b'[dji_image_verify') == 0: 

            color = ResultColor.GREEN 

        else: 

            color = ResultColor.RED 

            print("-->", repr(resadb), table_pos.x, table_pos.y, 

chip_pos.x, chip_pos.y) 

 

        adb.terminate() 

        result = Parameters( 

            ("id", counter), 

            ("timestamp", int(tstamp)), 

            ("iter_t (ms)", int((time() - tstamp) * 1000)), 

            ("attempts", p['attempts']), 

            ("x", chip_pos.x), 

            ("y", chip_pos.y), 

            ("z", chip_pos.z), 
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            ("tx", float(table_pos.x)), 

            ("ty", float(table_pos.y)), 

            ("tz", float(table_pos.z)), 

            ("glitch_power", p['glitch_power']), 

            ("glitch_delay", p['glitch_delay']), 

            ("Data", resadb), 

            ("Color", int(color)) 

        ) 

         

        pre_result = result 

        counter += 1 

 

        # Send the results to the UI and the database. 

        util.monitor(result) 

        db.add(result) 
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