
Research-fueled Security Services

June 2023

Gabriel Gonzalez
Director of Hardware Security

Drone Security and Fault
Injection Attacks

\ RESEARCH \

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 2 | June 2023

Table of Contents
SUMMARY .. 3

INTRODUCTION .. 4

ATTACK SURFACE .. 5

OCUSYNC...5
MOBILE APPS ... 6
ASSETS ... 6
DRONE ARCHITECTURE .. 6

TECHNICAL BACKGROUND ... 8

XYZ TABLE ... 9
EM PROBE .. 9
OSCILLOSCOPE ... 11
SPIDER AND EM-FI PROBE ..12
TARGET DRONE ..12
DRONE PCB PREPARATION ...13

FIRST APPROACH ...14

SECOND APPROACH .. 18

FUTURE WORK ... 22

MITIGATIONS ... 23

APPENDIX A: ADDITIONAL INFORMATION .. 24

ABOUT IOACTIVE ... 24
ABOUT THE AUTHOR ... 24

APPENDIX B: JAVA CODE ... 25

APPENDIX C: FIPY CONTROLLER CODE .. 29

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 3 | June 2023

Abstract
The use of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, continues to grow. Drones
implement varying levels of security, with more advanced modules being resistant to typical embedded
device attacks. IOActive’s interest is in developing one or more viable Fault Injection attacks against
hardened UAVs.

This paper covers IOActive’s work in setting up a platform for launching side-channel and fault injection
attacks using a commercially available UAV. We describe how we developed a threat model, selected a
preliminary target, and prepared the components for attack, as well as discussing what we hoped to achieve
and the final result of the project.

Summary
IOActive set out to explore the possibility of achieving code execution on a commercially available drone
with publicly disclosed vulnerabilities using non-invasive techniques, such as electromagnetic (EM) side-
channel attacks and EM fault injection (EMFI). If successful, we could apply the lessons learned to a
completely black-box approach and attempt to compromise devices with no well-known vulnerabilities.

As a target, we chose DJI, a seasoned manufacturer that emphasizes security in their products,1 such as
signed and encrypted firmware, Trusted Execution Environment (TEE), and Secure Boot. We used a
controlled environment to investigate the impact of side-channel attacks and EMFI techniques.

We demonstrated that is feasible to compromise the targeted device by injecting a specific EM glitch at the
right time during a firmware update. This would allow an attacker to gain code execution on the main
processor, gaining access to the Android OS that implements the core functionality of the drone.

1 https://security.dji.com/data/resources/

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 4 | June 2023

Introduction
Drones, also known as Unmanned Aerial Vehicles (UAVs), are increasingly being deployed in industries like
aviation, agriculture, and law enforcement. As the use of these devices has expanded, so have cybersecurity
concerns. These versatile machines offer many benefits, but they also present unique challenges when it
comes to maintaining security.

One of the key challenges is the fact that drones are often operated remotely. This means there is a potential
for external actors to gain access to the drone's control systems by intercepting the wireless signals used to
control the drone, compromising the ground-based computer systems used to operate the drone, or gaining
access to the device itself; if a drone is stolen, the thief could gather sensitive information or plant malware
on the system.

This whitepaper covers IOActive’s research into the current security posture of the drone industry. For this
work, we chose one of the most common drone models, DJI’s Mavic Pro.2

The goals of this research were to:

• Learn about the architecture of UAVs

• Investigate UAVs' weakest points

• Determine what approaches make sense in real-world attacks

• Gain experience launching EMFI attacks against high-end, multicore systems running full-fledged,
multi-task operating systems, vs microcontrollers running bare metal software

This whitepaper covers the following areas:

• Attack Surface: Provides an overview of the drone’s components and identifies valuable assets

• Technical Background: Introduces concepts about the targeted drone and test setup

• First Approach: Describes IOActive’s attempts to use side-channel attacks to acquire the firmware
decryption keys

• Second Approach: Describes IOActive’s attempts to use EMFI to achieve code execution

• Future Work: Discusses next steps in IOActive’s research

• Mitigations: Recommendations to address the highlighted issue

.

2 https://www.dji.com/mavic

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 5 | June 2023

Attack Surface
Drones are used in variety of applications, including military, commercial, and recreational. Like any other
technology, drones are vulnerable to various types of attacks that can compromise their functionality and
safety.

Figure 1: High-level overview of the elements involved in the normal operation of a drone

As seen in Figure 1, drones expose several attack surfaces, depending on their specific capabilities. Some
common attack surfaces include:

1) Backend: Like almost any other modern system, drones are vulnerable to a variety of attacks against
their backend systems. Attackers can exploit a range of issues (such as SQL injection or server-side
request forgery) to gain access to sensitive data, manipulate the system, or disrupt operations.
Additionally, attackers may be able to use the backend system as a pivot point to launch further
attacks on other components of the ecosystem.

2) Mobile Apps: Attackers can exploit vulnerabilities in mobile apps to gain access to sensitive data or
remotely control the drone. Common ways to break into these would be vulnerabilities in the
applications or operating system, and even targeted attacks.

3) Radio Frequency (RF) Communication: RF communications systems are used by drones to receive
and transmit commands, data, and video. RF attacks can use various techniques, such as jamming,
spoofing, and interference, to disrupt or manipulate the RF signals used by drones. DJI implements a
custom RF protocol, OcuSync, to send video and commands to and from the remote controller used
to control the drone.

4) Physical Device: Hardware or software vulnerabilities could allow an attacker to access key aspects
of the drone, such as the firmware and sensitive information, and potentially modify its behavior.

OcuSync
OcuSync is a wireless communication protocol developed by DJI. It is used in many of DJI's drones, including
the popular Mavic series, to provide a reliable and low-latency link between the drone and its associated
remote controller.

One of the key features of the OcuSync protocol is its ability to support multiple communication channels.
This allows the drone to automatically switch between channels to maintain a strong and stable connection,
even in challenging environments where radio interference may be present.

WiFi

OcuSync

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 6 | June 2023

The OcuSync protocol also includes security features to protect over-the-air (OTA) communications. This
includes the use of encryption to protect the wireless link between the drone and the remote controller, as
well as authentication mechanisms to prevent unauthorized users from gaining access to the drone's control
systems.

Mobile Apps
Mobile apps are available for both iOS and Android devices, and they allow users to easily control and
monitor their drones from a smartphone or tablet.

Some of the key features of DJI's mobile apps are the ability to remotely control the drone's movement,
access camera settings and control the camera, and view a live video feed from the drone's camera.

In addition to these basic control features, DJI's mobile apps also offer a range of advanced capabilities, such
as automatic flight planning, custom flight path creation, and the ability to access and manage the drone's
flight logs and other data.

Assets
IOActive’s initial goal was to gain access to the drone’s firmware and search for vulnerabilities in the exposed
attack surface. The following are assets that an attacker may target, depending on the desired outcome.

Firmware

The software running on the System-on-Chip (SoC) in the target device is the holy grail for vulnerability
research. By reverse engineering the most recent version of the software that manage communications, it is
possible to gain a greater understanding of the system and identify potential security flaws and
vulnerabilities.

For the Mavic Pro, DJI only provides signed and encrypted firmware packages. A publicly available exploit for
the Mavic Pro3 permitted IOActive to enable debugging access to the device. This information allowed us to
better understand the internals of the device and move forward with our research.

No-fly Zones

Most UAVs implement several "no-fly zones" to help prevent accidents and unauthorized use. These no-fly
zones are areas where the drone is not allowed to take off or fly, and they are designed to protect sensitive
locations such as airports, military bases, and other areas where drone operation may pose a safety risk.

Sensitive Information

The utilization of drones to store information, such as flight plans, images, and other potentially sensitive
data, warrants consideration in certain contexts.

Drone Architecture
DJI incorporates a range of sensors and peripherals in its drones to enable advanced capabilities and
improve performance.

3 https://github.com/CunningLogic/DUMLRacer

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 7 | June 2023

• Gyroscopes and accelerometers are used to measure the drone's orientation and movement,
providing the information needed to maintain stability and control.

• Barometers measure atmospheric pressure, allowing the drone to determine its altitude and
maintain a consistent flight height.

• Global Positioning System (GPS) sensors are used to determine the drone's location and enable
features such as automatic takeoff and landing and geofencing.

• Compass sensors are used to determine the drone's heading and enable features such as automatic
waypoint navigation.

• Ultrasonic sensors are used to measure the distance to the ground or other objects and enable
features such as automatic hovering and obstacle avoidance.

• Cameras are used to capture photographs or video footage from a bird's-eye view. Drones are
equipped with cameras to allow users to see what the drone sees in real time and to capture images
and video from unique perspectives that would not be possible with a traditional camera

The two main processors in DJI’s Mavic Pro are:

1) Video and Image Processing CPU: This SoC is produced by Ambarella International LP (Ambarella), a
technology company that specializes in the design and development of low-power, high-definition
video processing semiconductors.4 The company was founded in 2004 and is headquartered in Santa
Clara, CA. Ambarella's products are used in a range of applications, including security cameras,
drones, and sports cameras. The company's chips are known for their ability to capture and transmit
high-quality video while consuming very little power.

2) Android-based Control CPU: This is an ARM Cortex-A7-based SoC by Leadcore Technology Co. Ltd.
(Leadcore), a Chinese telecommunications company that is based in Beijing. The company is known
for its work in developing telecommunications technology, including mobile phone chipsets and
other related products. Leadcore has been in operation since 2009, and its products include a line of
mobile phone chipsets used in a variety of smartphones and other devices.

4 https://www.ambarella.com/

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 8 | June 2023

Technical Background
Side-channel attacks rely on indirectly obtaining information about a target system by taking different types
of measurements during the execution of specific operations. Some common attacks that use side-channel
analysis are:

• Timing Attacks: The time a targeted operation takes to complete is analyzed and exploited, for
example, to guess a Personal Identification Number (PIN) or break cryptographic implementations.

• Power Analysis: Simple Power Analysis (SPA) and Differential Power Analysis (DPA) exploit the power
consumed by targeted operations. Measurements are usually taken by tapping the voltage path of
the chip. The captured data is mathematically processed to recover secrets, usually cryptographic
keys.

• EM Analysis: Instead of retrieving power consumption directly from the voltage rails of the hardware,
an EM probe is placed close enough to the chip to retrieve EM emanations. This method has the
advantage of being less invasive and more localized than power analysis.

Electromagnetic Fault Injection (EMFI) aims to cause a disruption in the hardware when processing certain
operations. A metal coil (EM probe) is placed close to the surface of the target processor. The current flow
through this coil will induce current changes inside the processor. This is expected to elicit changes in the
behavior of the CPU in a way that could be used to gain an advantage; for example, by changing a value in a
memory cell or register before or after it is processed.

As mentioned above, the advantages of EMFI include its non-invasive nature and that the perturbation is
more localized, as opposed to power glitching, where the PCB typically requires physical modifications and
the glitch affects all internal peripherals and processing units connected to the targeted power rail.

For this work, IOActive used the widely recognized FI/Side-Channel Analysis (SCA) suite from Riscure.5 In
particular, we used the components described in the remainder of this section, which are accompanied by a
powerful and comprehensive software suite designed to support security researchers.

5 https://www.riscure.com/security-tools/

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 9 | June 2023

XYZ Table
When using power analysis techniques, the data is retrieved by tapping the voltage path the target
processor uses to power all the internal processing units. One of the challenges when transitioning from
voltage to EM readouts is finding the correct position on the surface of the chip. To accomplish this, we
utilized an XYZ table, shown in Figure 2, to scan the chip area and locate the optimal spots where more
information is leaked.

Figure 2: XYZ table with a PCB secured to the bottom surface

In order to correctly use this device, it is essential to properly set the Z-axis. This is a critical factor, as if the
EM tip is too close to the target, the tip itself could be damaged while moving around the chip's packaging.
On the other hand, if the EM tip is too high, the measured signal will be too weak to be useful.

IOActive employed two techniques to address this issue. The first involved using a USB micro-camera to
observe the gap between the EM tip and the surface. The second was a technique commonly used in 3D
printing: placing a thin sheet of paper between the EM tip and the chip, positioning the EM tip, and then
attempting to pull the paper out. If the gap is too small, the paper will not move; conversely, if it is too large, it
will move freely. A small amount of friction when moving the paper indicates an optimal tip height.

Once the Z-axis has been set to a fixed position, the next step is to specify a rectangle on the XY axis, that is
the chip area to be scanned.

EM Probe
The high-precision EM probe IOActive used for this research is designed to detect EM emissions from
semiconductor circuits, and is equipped with three tips of varied diameters (0.2mm, 0.5mm, and 1.2mm) that
possess a directed coil and a protective Teflon shell. This tool is capable of picking up EM fields of up to
6GHz and converting them into an AC signal.

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 10 | June 2023

The EM probe is connected to an amplifier, as illustrated in Figure 3, and the output is directed to the
oscilloscope via a BNC cable. The software suite then interprets the EM measurements to create a heat map
in order to pinpoint the area of maximum emanation.

Figure 3: Block diagram of the EM probe and amplifier and the XYZ table with the EM probe connected to the amplifier

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 11 | June 2023

Oscilloscope
IOActive used the oscilloscope shown in Figure 4 as a key element in both the SCA and FI portions of the
project.

Figure 4: Oscilloscope used to identify sweet spots and verify EM glitches

During SCA, the oscilloscope was used to capture signal leakages from the computations performed in the
target CPU. During EMFI, it was used to verify that glitches were generated with the desired shape and
timing.

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 12 | June 2023

Spider and EM-FI Probe
For EMFI, IOActive used Riscure’s Spider tool and EM-FI Transient Probe, as shown in Figure 5.

Figure 5: Spider (left) and EM-FI Transient Probe (right) from Riscure

Spider reduces complexity in SCA and EMFI by creating a single control point with all the I/O and reset lines
for custom or embedded interfaces. As part of this project, IOActive used the Spider tool to generate
arbitrary glitch waves. The tool allows for adjusting the output voltage, timing, repetition rate/frequency, and
duration of the pulse.

Riscure’s EM-FI Transient Probe induces fast, high-power, EM pulses on a user-defined location of the chip.
Fast and short pulses are configurable from software, providing a fast and predictable response to trigger.

Target Drone
IOActive’s approach was to use a controlled testing environment to investigate whether it is feasible to attack
a hardened drone via side-channel or EMFI techniques. In order to ensure a controlled environment, IOActive
targeted a drone model and firmware version with publicly known vulnerabilities. This would enable us to
gain a better understanding and control each of the different stages by reverse engineering the software
components involved in the firmware upgrade process. Furthermore, it would provide an opportunity to gain
insight into potential device malfunctions or other behaviors that could delay testing. If successful, we could
take the lessons learned in this phase and attempt these types of attacks on devices with no well-known
vulnerabilities using a completely black-box approach. In addition, if any future targets use the same SoC as
the initial target, we could even reuse the search area identified during this project. This would save valuable
time by eliminating the need to scan the whole SoC surface and tune parameters such as duration, delay,
and strength.

Given these factors, IOActive selected the DJI Mavic Pro. In addition to having leaked keys, it is widely
availability on the second-hand market, which could be beneficial in the event of an accident resulting in
damage to the unit during our research process.

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 13 | June 2023

Drone PCB Preparation
The first step was to identify the drone’s main PCB and create an isolated environment where it could be
powered without the original battery and placed under the analysis probes.

After removing the plastic cases, peripherals, and sensors, the result is shown in Figure 6. The component we
were interested in is outlined in red: the Leadcore SoC. This SoC runs a custom version of Android and
handles USB communications and the firmware upgrade process.

Figure 6: Main PCB with all the different components6

6 Source: https://github.com/o-gs/dji-firmware-tools/wiki/WM220-Core-Board-A

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 14 | June 2023

Figure 7 shows the PCB under analysis. It should be noted that IOActive had to include an external fan to
dissipate the heat generated by the PCB components. Without it, the temperature would quickly rise after
power-up, leading to a reboot.

Figure 7: PCB on the XYZ table with power from an external power supply

First Approach
As mentioned in the Assets section, one of the main priorities of any threat actor when approaching a system
is gaining access to unencrypted firmware. Therefore, our first goal was to study the feasibility of recovering
the keys used to encrypt/decrypt the firmware packages using side-channel power leaks.

Power leakages on cryptographic algorithms are tied to mathematical operations using an attacker-
controlled payload and the unknown key. The instructions where data from both elements are computed will
consume more or less power depending, for example, on the number of bits in the result. This is typically
called the leakage model and is sometimes modeled as the hamming distance.

IOActive’s goal was to construct a setup where we could:

1) Send random data to the target to be used later in cryptographic computations

2) Perform repeated tests to collect thousands of power traces

3) Analyze the retrieved data and recover the encryption key

As mentioned step 1, a key part in exploiting side-channel leakage is for the targeted operation to process
data with enough entropy to be statistically analyzed. In this case, we had the ability to submit random data
that would hit the targeted operations in the cryptographic algorithm. To achieve this, we analyzed the
format of the package and generated valid packages that could be fed into the decryption process. Figure 8
shows one of the packages and some of the values that were modified to feed the verification application.

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 15 | June 2023

Figure 8: Binary view of upgrade packages showing the type of package and length

The generated packages contain random data that would be used during statistical analysis to correlate with
the captured EM traces. Therefore, we needed to generate a large number of “fake” update packages.

Working on step 2 involved understanding the update process so we could automate the task of submitting
modified packages and recording EM emanations for later analysis.

Figure 9 describes the steps involved in the firmware update process on a DJI drone. Since we were lucky
enough to get a model with an ADB shell running on it, we could identify the process dealing with the
signature and decryption of the software package.

Figure 9: Steps involved in the firmware update process7

7 Source: DJI Security White Paper: https://security.dji.com/data/resources/

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 16 | June 2023

Signature verification and decryption were performed by the dji_verify application. This executable is
designed to run as a command-line tool and accept various arguments, including the path to the file
containing the firmware package.

Further analysis of the binary allowed us to identify the point where signature verification was performed.
Since one task is to find the spot on the chip’s surface where the EM signal is stronger, we decided to patch
the dji_verify binary to bypass the signature check and directly perform firmware package decryption.

From a high level, the entire process consists of the following steps:

1) Generate a modified firmware package (although during the first scan phase we use a fixed one).

2) Copy the file to the drone via ADB.

3) Execute the patched dji_verify.

4) Capture the EM data and go back to step 1.

Step 3 puts the hardware and software needed to perform the power analysis together. Figure 10 shows part
of the setup used to record the power leak. The EM probe is attached to the XYZ table and positioned on top
of the Leadcore SoC, where cryptographic operations take place.

Figure 10: Side-channel setup ready to detect power leakage in the form of EM emanations

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 17 | June 2023

One key feature of the tooling provided with Riscure’s equipment was Inspector, a powerful software suite
that implements all the statistical, mathematical analysis and data transformation required to perform SCA.

The only missing parts are those required to interact with each of the different in-scope device. For this
project, IOActive developed Java code (included in Appendix B) that takes input arguments, such as
repetitions, and coordinates launching the target binary. Inspector will take care of positioning the XYZ table,
reading the EM signals, and plotting the results.

At this stage, the first goal was to find an area with a strong EM signal so we can place the probe and record
thousands of traces to get enough information to extract the key.

After the location with strongest signal was identified, we moved from the patched dji_verify binary to
the pristine setup, which includes the firmware signature verification. We then began studying the feasibility
of bypassing the signature check with using EMFI.

At this point, we moved from Inspector to FI Python (FIPy), a web-based framework provided by Riscure to
help with the FI process. This is described in more detail in the Second Approach section of this document.
Figure 11 is the plot produced by FI Spotlight, showing the results of this round of testing.

Figure 11: Successful bypass (red), undetermined (orange), reboot (yellow), and normal operation (green)

After several days of trials and data analysis, we found that the probability of a successful signature bypass
was lower than 0.5%. This renders key recovery unfeasible, since hardware-based crypto engines like the
one used by the Leadcore SoC require hundreds of thousands of traces to be collected in order to perform
an SCA attack.

At this point we paused further effort into this first approach, analyzed the target again, and came up with a
second attack scenario.

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 18 | June 2023

Second Approach
There were several potential avenues for bypassing security mechanisms using physical attacks, but most of
them required modifications to the PCB. We typically would have used EMFI with the hopes of enabling
JTAG to achieve debugging capabilities; however, we chose the path proposed in a research paper from
Riscure8 instead.

Riscure’s researchers describe the different results they achieved while applying FI to the target SoC. There
was one interesting outcome applicable to IOActive’s research, where the glitches caused the processor to
modify the content of destination registers during memory operations.

If the above results could be reproduced, we could potentially execute our own payload through the update
process. This implies the following two requirements:

1) We have the ability to provide a custom payload to the target system. This we already know holds
true from our work using the First Approach.

2) The process will copy memory from one location to another. Also from our work on dji_verify,
we know the provided payload is first copied into memory to calculate the cryptographic signature to
see if it matches the signed one.

In this new attack path, we attempted to demonstrate that gaining code execution using EMFI was plausible
on the target device. A high-level overview of the process is as follows:

1) The update process copies the attacker-controlled payload from one memory location to another.

2) While the copy is taking place, generate a glitch with the goal of changing the behavior of the
instructions being processed.

3) Analyze the result to determine what type of instruction modification has taken place.

To continue with this approach we needed to complete the following tasks:

1) Generate a firmware package that the dji_verify program would process.

2) Obtain a stack trace and register information to simplify the process of understanding whether an
attack was successful. We used GDB for this step; this was one of the perks of having a controllable
environment.

3) Setup the Riscure’s glitching gear and adapt FIPy to work with our target.

To accomplish task 1, we modified the package header and added a file containing 10MB of 0x41 bytes as
the payload, as described in the First Approach. This helps in evaluating the actual exploitability of the
injection when analyzing the GDB output.

One constraint with the EMFI setup is finding an accurate hardware trigger. The density of components and
the multi-layer PCB make it challenging to find the correct signal without risking the destruction of samples
(one of the constraints for this project). To overcome this issue we relied on timing, based on the moment we
received information through the ADB output; however, this approach reduces the repeatability of the
injection, making it harder to find a successful hit.

8 https://www.riscure.com/publication/controlling-pc-arm-using-fault-injection/

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 19 | June 2023

Figure 12 shows the setup we used for EMFI to complete task 3. The EM probe is attached to the XYZ table
and the Spider tool is connected to the computer that provides the timing for the trigger. The oscilloscope is
used to verify we are injecting the correct pulse shapes at the right time, and its output is shown in Figure 13.

Figure 12: Setup used for FI during the second approach

Figure 13: FIPy application alongside the oscilloscope showing the oscilloscope recording

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 20 | June 2023

There is one difference between working with Inspector and FIPy: the former provides a Java interface and
the latter executes a Python script. This time we put together a Python script (included in Appendix C) that
manages the interactions with the target device, asks the Spider tool to trigger a glitch, and stores the results.

Once the whole setup was working flawlessly, we needed to run the test multiple times around the XY axis
with different glitching strengths and timings until we identified a successful or potential error that could help
us narrow down the surface area.

After identifying a small enough area, we modified the glitch’s shape and timing until we observed a
successful glitch. After numerous attempts, we got what we were looking for: the dji_verify program
crashed, as shown in the following output.

Program received signal SIGSEGV, Segmentation fault.

0x2a002f44 in ?? ()

#0 0x2a002f44 in ?? ()

#1 0x2a000f5a in ?? ()

#2 0x2a0011de in ?? ()

#3 0x2a000b04 in ?? ()

#4 0xb6f9b42c in __libc_init () from /system/lib/libc.so

#5 0x2a00099c in ?? ()

Backtrace stopped: previous frame identical to this frame (corrupt stack?)

r0 0x41414141 1094795585

r1 0x41414141 1094795585

r2 0xbefff6dc 3204445916

r3 0x41414141 1094795585

r4 0x41414141 1094795585

r5 0xbefffbc4 3204447172

r6 0x85242d9a 2233740698

r7 0xbefff6f0 3204445936

r8 0xb6b4e008 3065307144

r9 0xb6b4e1e8 3065307624

r10 0xbefffad0 3204446928

r11 0x2d7160 2978144

r12 0xbefff6ec 3204445932

sp 0xbefff6c8 0xbefff6c8

lr 0xde 222

pc 0x2a002f44 0x2a002f44

cpsr 0x60000030 1610612784

Our payload appeared in several registers. After examining the code at the target address, we determined
that we had hit a winning combination of timing, position, and glitch shape.

Figure 14 clearly shows the load instruction copying IOActive’s data to registers R0 and R1. The GDB output
above shows that registers R3 and R4 also ended up with controlled data.

Figure 14: Instruction where the segmentation error took place

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 21 | June 2023

Instead of copying data to the destination buffer, the following two instructions would copy R0 and R1 into a
controlled address.

What most likely happened here is that we were able to modify the load instruction, and instead of reading
only two registers, it ended up reading four. The original instruction encoding is:

LDM R7!, {R0, R1} 0300B7E8

While the encoding of the instruction that would lead to the results we observed was:

LDM R7!, {R0, R1, R3, R4} 1B00B7E8

This meant that the glitch was able to modify one byte by flipping two consecutive bits and converting one
instruction into another.

Having achieved this result, the next step would be to write a proper payload that turns this memory
corruption into a code execution exploit. This could allow an attacker to fully control one device, leak all of its
sensitive content, enable ADB access, and potentially leak the encryption keys.

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 22 | June 2023

Future Work
In this paper we have described the materials and methods we used to successfully implement an attack on
a UAV (drone) using EMFI techniques.

The goal of this project was to study the feasibility of such attacks on a complex and modern device. As we
succeeded in proving that gaining runtime control is possible on the device while processing a firmware
update, the next step is to apply the knowledge we acquired on another model from DJI with no previously
known vulnerabilities.

To accomplish this task and create a reliable exploit within time and budget constraints, several elements
must be improved:

1) Hardware Trigger: This is likely the one element that would most significantly reduce the time and
complexity of the project. As mentioned throughout this paper, we have solely used a software,
timing-based trigger, which makes it difficult to reliably know how to elicit a successful glitch.

There are two different avenues to explore in order to implement the desired hardware trigger: (i) find
an LED or available PCB trace from which we could detect a level change when a firmware update is
being processed, or (ii) use Riscure’s ICWaves to identify a power signature that coincides with the
firmware upgrade package being processed.

2) Integration: Integrate all of the elements introduced in this report along with a hardware trigger and
the firmware package being sent to the drone as it would work on actual firmware update.

3) Payload: Create a payload that could easily be checked to determine if the glitch was successful.
There are different options, but one of the most obvious would be to enable ADB so we could check
whether the USB connection is active from the host launching the attacks.

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 23 | June 2023

Mitigations
An increasing amount of published research has shown promising results of applying EMFI to compromise a
target system. This opens a new landscape of potential attacks and weaknesses in current and future
products.

IOActive recommends that product developers implement EMFI countermeasures in their products,
mitigating these attacks by implementing hardware and software countermeasures. Hardware
countermeasures are very efficient at preventing EMFI attacks, but could be expensive and must be planned
during the early design stages. Software countermeasures, on the other hand, can be added during the final
stages of development, but might be less effective in mitigating certain attacks. Information on implementing
EMFI countermeasures is publicly available in academic papers, conference presentations, and blog posts.

We also recommended evaluating EMFI countermeasures’ effectiveness using a third-party lab like IOActive.

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 24 | June 2023

Appendix A: Additional Information
The purpose of this Appendix is to provide additional information on relevant biographies, and present the
glossaries for the figures, tables and equations utilized in this paper.

About IOActive
IOActive, a trusted partner for Global 1000 enterprises, provides research-fueled security services across all
industries. Our cutting-edge security teams provide highly specialized technical and programmatic services
including full-stack penetration testing, program efficacy assessments, and hardware hacking. IOActive
brings a unique attacker’s perspective to every engagement to maximize security investments and improve
the security posture and operational resiliency of our clients. Founded in 1998, IOActive is headquartered in
Seattle with global operations.

IOActive Labs Research Blog: http://blog.ioactive.com

About the Author
As the Director of Hardware Security for IOActive and a vulnerability researcher,
Gabriel Gonzalez has completed hundreds of projects in the areas of reverse
engineering, code review, and integrated hardware and software penetration
testing. His primary focus is hardware and embedded system technologies, with
specialized expertise in low-level attack vectors and fault-injection and side-
channel analysis. Gabriel has engaged his research efforts in the fields of
automotive, avionics, smart grid/utilities, SATCOM, banking devices, IoT, and
many others.

Gabriel is actively engaged with the security research community, and has
presented numerous original cybersecurity research projects at major
conferences such as Black Hat Europe.

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 25 | June 2023

Appendix B: Java Code
The following Java code takes input arguments, such as repetitions and coordinates, and launches the target
binary.

/* copyright IOActive */

import static acquisition2.target.ErrorHandling.*;

import static com.riscure.common.data.SimpleVerdict.*;

import java.util.concurrent.TimeoutException;

import java.io.IOException;

// GUI parameter libraries

import com.riscure.osgi.annotation.Reference;

import com.riscure.beans.annotation.DisplayName;

import acquisition2.target.BasicSequence;

import org.osgi.framework.ServiceReference;

import com.riscure.osgi.legacy.Service;

import javax.validation.constraints.DecimalMax;

import javax.validation.constraints.DecimalMin;

import com.riscure.beans.constraints.DecimalStep;

import com.riscure.beans.annotation.Perturbation;

import com.riscure.beans.annotation.Presentation;

import com.riscure.beans.annotation.Unit;

import java.math.BigDecimal;

import java.beans.PropertyChangeListener;

import java.beans.PropertyChangeSupport;

import javax.validation.constraints.NotNull;

// @Service("DJI_MavicPro1_1st_try")

public class DJI_MavicPro1_1st_try extends BasicSequence {

 private DJI_MavicPro1_1st_trySettings settings = new

DJI_MavicPro1_1st_trySettings();

 @Override

 protected void init() {

 // Get all devices from hardware manager

 // Set default devices

 // If any error occurs the sequence will fail

 onError(FAIL);

 // Open all devices

 }

 @Override

 public void run() {

 // Set the default verdict to inconclusive

 verdict(INCONCLUSIVE);

 // Arm the measurement setup

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 26 | June 2023

 arm();

 // Data generator will be selected and configured via Sequence GUI

settings,

 // data from the generator data can be fetched using following

method:

 byte[] generatorData = getGeneratorData(16); // get 16 bytes from

the data generator

 // From this point forward ignore errors

 onError(IGNORE);

 // Get the parameter values from UI

 System.out.println(String.format("Value of example parameter1 is:

%d", settings.getPerturParam().intValue()));

 System.out.println(String.format("Value of example parameter2 is:

%d", settings.getTargetParam().intValue()));

 //soft-trigger the measurement setup

 softTrigger();

 try {

 Process process =

Runtime.getRuntime().exec("C:\\Users\\ioactive\\platform-tools\\adb.exe

shell \"/cache/dji_verify -n 0100 -o /cache/test3 /cache/0x500.bin\"");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 protected void onError(Throwable t) throws RuntimeException {

 if (t instanceof TimeoutException) {

 // Ignore

 } else {

 throw new RuntimeException(t);

 }

 }

 @Override

 public void close() {

 // Close all devices, note that closing does not mean powering

down

 }

 @Override

 public DJI_MavicPro1_1st_trySettings getSettingsBean() {

 return settings;

 }

 @Override

 public void setSettingsBean(Object settings) {

 this.settings = (DJI_MavicPro1_1st_trySettings) settings;

 }

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 27 | June 2023

 @Override

 public boolean isDataGeneratorEnabled() {

 return true;

 }

 public static class DJI_MavicPro1_1st_trySettings {

 // Custom parameter examples

 @DisplayName("Example Parameter1")

 @Unit("Unit")

 @DecimalMin("0")

 @DecimalMax("10000000")

 @DecimalStep("4")

 @Presentation(slider = false)

 @Perturbation // This makes the parameter show up in the

Perturbation tab.

 private BigDecimal perturParam = BigDecimal.valueOf(4);

 public BigDecimal getPerturParam() {

 return perturParam;

 }

 public void setPerturParam(BigDecimal perturParam) {

 BigDecimal old = this.perturParam;

 this.perturParam = perturParam;

 pcs.firePropertyChange("perturParam", old, this.perturParam);

 }

 @DisplayName("Example Parameter2")

 @Unit("Unit")

 @DecimalMin("4")

 @DecimalMax("1000000")

 @DecimalStep("4")

 @Presentation(slider = false)

 private BigDecimal targetParam = BigDecimal.valueOf(4);

 public BigDecimal getTargetParam() {

 return targetParam;

 }

 public void setTargetParam(BigDecimal targetParam) {

 BigDecimal old = this.targetParam;

 this.targetParam = targetParam;

 pcs.firePropertyChange("targetParam", old, this.targetParam);

 }

 /*

 * Property change support

 */

 private PropertyChangeSupport pcs = new

PropertyChangeSupport(this);

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 28 | June 2023

 public void addPropertyChangeListener(PropertyChangeListener

listener) {

 this.pcs.addPropertyChangeListener(listener);

 }

 public void addPropertyChangeListener(String propertyName,

PropertyChangeListener listener) {

 this.pcs.addPropertyChangeListener(propertyName, listener);

 }

 public void removePropertyChangeListener(PropertyChangeListener

listener) {

 this.pcs.removePropertyChangeListener(listener);

 }

 public void removePropertyChangeListener(String propertyName,

PropertyChangeListener listener) {

 this.pcs.removePropertyChangeListener(propertyName, listener);

 }

 }

}

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 29 | June 2023

Appendix C: FIPy Controller Code
The following Python script manages interactions with the target device, asks the Spider tool to trigger a
glitch, and stores the results.

from time import sleep, time

import pyvisa as visa

import subprocess

import sys

import os

from threading import Thread

try:

 from queue import Queue, Empty

except ImportError:

 from Queue import Queue, Empty # python 2.x

ON_POSIX = 'posix' in sys.builtin_module_names

def enqueue_output(out, queue):

 for line in iter(out.readline, b''):

 queue.put(line)

 out.close()

import serial

from fipy.parameters import (AttemptsParameter, FloatParameter,

IntParameter,

 Parameters, SerialPortParameter)

from fipy.scriptutils import ResultColor, fipy_script

from spidersdk.chronology import Chronology

from spidersdk.spider import Spider

from fipy.parameters import *

from fipy.scriptutils import ResultColor, fipy_script

from spidersdk.chronology import Chronology

from spidersdk.spider import Spider

from fipy.transformutil import TransformUtil

PARAMETERS = Parameters(

 ('attempts', AttemptsParameter('Attempts')),

 ('xyz_scanner', SimpleXYZScanParameter('XYZ scanner')),

 ('glitch_power', IntParameter('Glitch Power', unit='%')),

 ('glitch_delay', IntParameter('Glitch delay', unit='ns')),

 ('spider_com_port', SerialPortParameter('Spider COM port')),

)

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 30 | June 2023

EMFI_PULSE_AMPLITUDE = Spider.VOLTAGE_OUT1

EMFI_DIGITAL_GLITCH = Spider.GLITCH_OUT1

EMFI_GLITCH_VOLTAGE = 3.3

EMFI_GLITCH_LENGTH = 52e-9 #Glitch length parameter is fixed for the EMFI

Transient probe, we will use a 52ns pulse to trigger the EMFI probe;

output pulse length is 40ns with the 1.5mm probe tips

EMFI_GLITCH_DELAY = 0 # During this test we are not looking for the right

Delay just the Amplitud and position parameters

@fipy_script

def execute_script(util):

 counter = 0

 v = visa.ResourceManager()

 r = v.list_resources()

 if not r:

 print("NO POWER SUPPLY")

 exit(-1)

 dp832 = v.open_resource(r[0])

 # Inform the Inspector FI Python framework of our parameters, and

setup the database.

 util.set_termination_timeout(5)

 util.parameter_init(PARAMETERS)

 db = util.create_database_table('database.sqlite', 'database')

 util.add_to_cleanup(util.close_database)

 # Hardware initialization (see Spider API documentation for more

details)

 spider_com_port = serial.Serial()

 spider_com_port.port = PARAMETERS['spider_com_port'].value

 spider_com_port.open()

 util.add_to_cleanup(spider_com_port.close)

 spider_core1 = Spider(Spider.CORE1, spider_com_port)

 spider_core1.reset_settings()

 try:

 glitcher = Chronology(spider_core1)

 except IndexError as e:

 raise Exception(str(e) +

 "\n\nDid you select the right COM port for Spider?

Is it powered on?")

 glitcher.forget_events() # clear spider memory

 xyz_interface = util.get_xyz()

 tu = TransformUtil('table', xyz_interface.get_reference_points())

 # Initialize the digital glitch output

 glitcher.setVccNow(EMFI_DIGITAL_GLITCH, 0)

 # Initialize the pulse amplitude output

 glitcher.setPowerNow(EMFI_PULSE_AMPLITUDE, 0)

 transform = util.get_warping_tool()

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 31 | June 2023

 do_reset = 0

 potential = 0

 pre_result = ''

 # Each iteration out paramaters receive new values here.

 for p in PARAMETERS:

 # Check if the stop or pause button has been pressed.

 if not util.process_commands():

 break

 # Record the timestamp for this iteration.

 tstamp = time()

 glitcher.setPowerNow(EMFI_PULSE_AMPLITUDE, p['glitch_power'])

 chip_pos = p['xyz_scanner']

 table_pos = tu.from_chip('table', chip_pos)

 xyz_interface.move_abs(table_pos.x, table_pos.y, table_pos.z,

hop_height=100)

 if reboot:

 localgdb = subprocess.Popen("C:\msys64\mingw64\bin>gdb-

multiarch.exe")

 \"/sbin/dji_verify -n 0100 -o /tmp/test

/cache/wm220_0100_v02.06.56.66_20171208.pro.fw.sig-fill-with-A 2>&1 \"",

stdout=subprocess.PIPE, start_new_session=True)

 q = Queue()

 t = Thread(target=enqueue_output, args=(localgdb.stdout, q))

 t.daemon = True

 t.start()

 resadb = ''

 localgdb.write("set architecture arm\n\r")

 localgdb.write("set exec-file /sbin/dji_verify")

 localgdb.write("target extended-remote localhost:9999")

 while True:

 try:

 resadb = q.get_nowait()

 print(resadb, cntloop)

 except Empty:

 break

 exit(-1)

 glitcher.forgetEvents()

 glitcher.glitch(

 EMFI_DIGITAL_GLITCH,

 EMFI_GLITCH_VOLTAGE,

 p['glitch_delay'] / 1e9,

 EMFI_GLITCH_LENGTH)

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 32 | June 2023

 glitcher.start()

 cntloop = 0

 resadb = ""

 while True and cntloop < 40:

 try:

 resadb = q.get_nowait()

 print(resadb, cntloop)

 except Empty:

 glitcher.forgetEvents()

 glitcher.glitch(

 EMFI_DIGITAL_GLITCH,

 EMFI_GLITCH_VOLTAGE,

 0,

 EMFI_GLITCH_LENGTH)

 glitcher.start()

 cntloop += 1

 else:

 print("-->", repr(resadb), table_pos.x, table_pos.y,

chip_pos.x, chip_pos.y)

 break

 # Block for 1 second or until Spider reaches final state.

 spider_timeout = glitcher.wait_until_finish(1000)

 if spider_timeout:

 color = ResultColor.PINK

 elif cntloop == 40:

 print("Maybe reboot?")

 dp832.write(":OUTP CH1,OFF")

 sleep(1)

 dp832.write(":OUTP CH1,ON")

 color = ResultColor.YELLOW

 sleep(20)

 elif resadb.find(b'[dji_image_verify') == 0:

 color = ResultColor.GREEN

 else:

 color = ResultColor.RED

 print("-->", repr(resadb), table_pos.x, table_pos.y,

chip_pos.x, chip_pos.y)

 adb.terminate()

 result = Parameters(

 ("id", counter),

 ("timestamp", int(tstamp)),

 ("iter_t (ms)", int((time() - tstamp) * 1000)),

 ("attempts", p['attempts']),

 ("x", chip_pos.x),

 ("y", chip_pos.y),

 ("z", chip_pos.z),

IOACTIVE.COM

©2023 IOActive, Inc. All Rights Reserved. 33 | June 2023

 ("tx", float(table_pos.x)),

 ("ty", float(table_pos.y)),

 ("tz", float(table_pos.z)),

 ("glitch_power", p['glitch_power']),

 ("glitch_delay", p['glitch_delay']),

 ("Data", resadb),

 ("Color", int(color))

)

 pre_result = result

 counter += 1

 # Send the results to the UI and the database.

 util.monitor(result)

 db.add(result)

	Abstract
	Summary
	Introduction
	Attack Surface
	OcuSync
	Mobile Apps
	Assets
	Firmware
	No-fly Zones
	Sensitive Information

	Drone Architecture

	Technical Background
	XYZ Table
	EM Probe
	Oscilloscope
	Spider and EM-FI Probe
	Target Drone
	Drone PCB Preparation

	First Approach
	Second Approach
	Future Work
	Mitigations
	Appendix A: Additional Information
	About IOActive
	About the Author

	Appendix B: Java Code
	Appendix C: FIPy Controller Code

