
Checklist: Container Security
from Code to Runtime

Modern software development has shifted towards
microservices built on containers, Kubernetes, and
cloud, and at the same time, adoption of DevOps
culture is driving continuous software deployment
to rapidly meet business needs. Security in these
fast-moving cloud-native environments requires a radi-
cally different approach.

Software vulnerabilities, misconfigurations, and suspi-
cious activity at runtime are all areas of concern for
developers, operations, and security teams. As contain-
ers and DevOps practices blur the boundary between
code development and the production environment,
security solutions that satisfy the needs of develop-
ment teams or operations teams in isolation can leave
gaps and result in inefficient security practices.

Adopting a cohesive and automated approach to secu-
rity from development through production helps teams
stay vigilant against cyberattacks, reduce noise, and
tackle the unique risks of containers, Kubernetes, and
cloud. The right practices from source to run are critical
for securing your cloud-native environment, but will
also enable greater efficiency to help you ship applica-
tions faster.

The following checklist outlines key security strategies
and best practices to follow from source to run. These
key aspects of container security center around three
major themes:

Build Secure from the Start

Introducing security practices as early as possible in
the development phase of your software development
lifecycle (SDLC) helps you guard against issues that can
expose risk, delay, and cost in later stages. This “Shift
Left” approach encourages development teams to imple-
ment the required practices and tools to ensure they
build secure applications from the start.

Protect against runtime threats

While code, container, and IaC security best practices
provide protection from known issues and misconfig-
urations, these practices alone are not enough. A host
of security threats, by their very nature, only manifest
during runtime. Detecting and responding to mali-
cious activity such as privilege escalation attempts in
containers requires new vantage points and cloud-native
controls.

Prioritize security alerts that matter

Containers are often bloated with contents and pack-
ages, overwhelming developers with vulnerabilities.
Attempting to wade through an unmanageable number
of issues takes precious time away from coding and
leaves organizations open to risk. Techniques such as
using runtime intelligence will help developers prioritize
vulnerabilities for packages that are actually used when a
container runs, reducing the burden by as much as 95%.

1

Code Security
CONTAINER SECURITY FROM CODE TO RUNTIME

Delivering your applications faster is likely one of
the key reasons you’ve moved to containers in the
first place. Even with containers, application secu-
rity begins with your code. Source code is the aspect
of containerized applications that is most directly
controlled by developers. Tracking down all your code
dependencies and figuring out how to fix security
issues isn’t trivial.

Using purpose-built code security tools to do soft-
ware composition analysis (SCA) and static applica-
tion security testing (SAST) to analyze your code and
its dependencies will help you spot issues early in
development. In addition, integrating these tools with
your source code opens up the possibility to automate

this process and catch these issues directly in your git
commits and repositories.

Key aspects to look for when evaluating code security
tools include:

 • Real-time scan results to help you see results as
you code.

 • Integration with developer tools and workflows
through plugins.

 • Native Git scanning to test projects directly from
the repositories.

 • Daily monitoring for new vulnerabilities.
 • Clear context and details for findings to help

developers learn and prevent repeat issues.

2

In modern applications, it’s not unusual for 3rd party open source dependencies to make up the majority of the
lines of code in an application. Open source helps developers build faster. But how can you make sure your open-
source dependencies are secure?

Development teams need to be able to find, prioritize, and fix security vulnerabilities and license issues in the
open-source components they are using in their applications. Software composition analysis (SCA) tools for open
source will help you scan for open source dependencies and flag any packages that are vulnerable. Ideally, the
tool you use to identify open source issues will also integrate into the exact same processes that your developers
use, such as your Integrated Development Environment (IDE) or a Git-based workflow.

In addition to flagging issues, leading solutions, such as Snyk, will also simplify the search for the most secure open-
source packages available. A database of the more-than-a-million open-source packages helps you quickly identify
the most appropriate fix. To evaluate the available open-source packages, a number of criteria are used including:

Open Source Security
CONTAINER SECURITY FROM CODE TO RUNTIME

 • Popularity — Understand the prevalence of an open-source
package using metrics such as downloads and source code
repository stars to measure popularity.

 • Maintenance — Get insights about open-source dependency
health and assess the sustainability of the project.

 • Community — Is the community thriving for an open-source
package you use in your project or has it gone stale? Gauge the
status with project metrics.

 • Vulnerabilities and license security — Assess the security
posture of an open-source project and its past versions.

Containers provide a standard packaging format for
applications, but container images can be opaque,
leading to problems identifying the software and
vulnerabilities they contain. There are a number of
practices you can put in place to ensure the security
of your container images from selecting the right base
image to automating image scanning policies to help
you efficiently identify and fix known vulnerabilities.

One of the most important considerations for container
security is your base image. It’s easy to go to a public
registry like Docker Hub and find an image that
matches your use case, but you need to pay attention
to the provenance of the images you choose. Just like
you wouldn’t download and install software from an
untrusted website, you likely would not want to use
images from users you don’t know and trust.

Many trustworthy vendors provide container images
you can easily use, such as those from Verified
Publishers on Docker Hub. While this provides some
level of quality assurance, to further reduce the
number of packages and potential vulnerabilities you
should go a step further and choose minimal base
images matched to your needs. Since you inherit
whatever comes in the base image as you build up
your own image on top of it, a slim image can reduce
your security burden.

New vulnerabilities are disclosed continuously. To
meet the challenge of this reality, choosing a container
security solution that will alert you to new vulnerabilities
in previously scanned images, including those running in
production, is key to effective image security.

Image Security
CONTAINER SECURITY FROM CODE TO RUNTIME

3

 • Eliminate vulnerabilities by upgrading to a more
secure base image.

 • Use risk signals like exploit maturity and insecure
workload configurations to cut through container
vulnerability noise.

 • Add automated scanning to your CI/CD pipeline.

 • Monitor your running environment for newly
disclosed vulnerabilities.

 • Check for unsafe settings and image
misconfigurations that could raise the risk of
exploits and attacks.

 • Automated base image fixes via native pull
requests.

Infrastructure as Code Security
CONTAINER SECURITY FROM CODE TO RUNTIME

Modern cloud-native environments are defined,
changed, and managed using infrastructure as code
(IaC). In Kubernetes environments, for instance, teams
can use declarative IaC configuration files, such as
YAML, Terraform, and Helm to deploy consistent, and
repeatable configurations. Similarly, IaC solutions like
AWS CloudFormation, Azure Resource Manager, and
Google Cloud Deployment Manager, model, provision,
and manage cloud services and third-party resources
for public cloud infrastructure.

IaC security focuses on detecting and fixing IaC
misconfigurations such as overly permissive workload
configurations across IaC templates using policy-
as-code. It helps you strengthen both security, and
compliance by auto-detecting and auto-remediating
issues, including configuration drift. Drift occur when

4

your intended environment configuration becomes
different over time, usually due to manual changes and
updates.

State-of-the-art IaC security tools will help you apply
rules based on industry benchmarks and best practices
and add custom rules.

 • Test and monitor locally, in code repos, and as
you plan and test your configurations in CI/CD
pipelines.

 • Implement fixes with a simple pull request and
eliminate the guesswork of creating secure
configuration in minutes.

 • Configure and apply policies for compliance and
governance across environments with a policy
engine such as Open Policy Agent (OPA).

Runtime Security
CONTAINER SECURITY FROM CODE TO RUNTIME

5

Runtime security solutions help you detect and respond
to threats to your running containers. Operations and
security teams need to know if there is any abnormal or
unwanted behavior happening in or around container
workloads. Monitoring container activity can be tricky
since by their nature they are opaque, making it difficult
to see inside. Without the proper tools, containers are
black boxes.

Adding to challenge is the often short lifespan of contain-
ers. The recent Sysdig Cloud-Native Security and Usage
Report found that 44% of containers live less than five
minutes. To spot anomalies even during the short run of
many container tasks requires real-time visibility. What
you need is essentially the equivalent of a security camera
that detects activity and captures the incident while alert-
ing you to the event.

Attacks may exploit vulnerabilities that are not yet iden-
tified and access your environment in ways you haven’t
anticipated. Therefore, having an adaptable rules engine
to help you cast a wide net and define policies to monitor
activity across hosts, containers, and cloud is critical to
staying on top of threats.

Top aspects to look for:

 • Light-weight instrumentation: Gaining visibility
inside containers should not require modification of
your container images. A solution like open-source
Falco, for instance, monitors container runtime
activity from the Linux kernel by parsing system
calls.

 • Event alerts with context: Understanding “what”
is happening, but also “where” helps you quickly

address threats across complex cloud-native
environments. Enriching event alerts with context
such as cloud account, region, cluster, namespace,
image, etc., helps you quickly pinpoint where to
take action.

 • Pre-built and customizable policies: Having out-of-
the-box runtime security policies based on best
practices will help you save time and get started
quickly. Having the flexibility to tailor policies to
your specific environment is also key to help you
address risk for any use case.

 • Response actions: Automate security event
response aids in addressing risk without manual
intervention. The ability to automatically take
actions such as killing an impacted container to
stop threats can help limit the impact of breaches
and lateral movement attempts.

https://sysdig.com/2022-cloud-native-security-and-usage-report/
https://sysdig.com/2022-cloud-native-security-and-usage-report/
https://falco.org/
https://falco.org/

As outlined above, developers are increasingly manag-
ing application security, from code and dependencies
to the containers that ship and run. At the same time,
security and operations teams working with live envi-
ronments have to deal with the fallout from vulnera-
bilities present in production.

Developers find themselves overwhelmed with hundreds
of vulnerabilities and don’t know where to focus remedi-
ation efforts. Attempting to wade through an unmanage-
able number of issues is noise that takes precious time
away from coding and leaves organizations open to risk.

For container images, there are often alternate images
available that are more secure, updated, and slimmer.

Choosing a “better” image alone can cut out 70% or
more of initial vulnerabilities that would otherwise
weigh down developers. But that still leaves a large
number of the vulnerabilities — often numbers in the
hundreds that can be a daunting task for developers.

One of the most recent advancements in prioritization
techniques is to use runtime intelligence to identify
the software packages actually executed in the
running container to direct developers on what to fix
first to address real risk. By bringing this information
into the development pipeline, development teams
can instantly eliminate up to 95 percent of the
vulnerabilities that would otherwise demand their
attention.

Vulnerability Prioritization
Using Runtime Signals

CONTAINER SECURITY FROM CODE TO RUNTIME

6

Increasingly, enterprises are moving to a Zero Trust
approach to network security, requiring all entities and
users, whether in or outside the organization’s network,
to be authenticated, authorized, and validated for secu-
rity configuration before being allowed access to appli-
cations and data.

In Kubernetes, pods are short-lived, they jump between
hosts, have ephemeral IP addresses, and scale up and
down. Trying to configure classic firewall rules is labori-
ous, error-prone and an uphill battle since the environ-
ment is dynamic and constantly changing. For network
security to be effective, you have to look beyond the
physical communication layer.

The best strategy for network security with Kubernetes
and containers is to use native controls, such as
Kubernetes NetworkPolicy. Kubernetes network poli-
cies enable you to address the issue at the correct level
of abstraction network segmentation. Yet, DevOps
teams are often blind to how containerized apps are
communicating. This makes it difficult to create effec-
tive policies. A lot of time can be wasted going back-
and-forth between developers and ops to define the
proper rules.

To properly implement container network security,
you first need to have deep visibility into how contain-
ers and microservices are communicating with each
other and what is required to function properly. The
Kubernetes API provides metadata about namespaces,
services, deployments, etc. and can help you begin to
intelligently determine the proper rules for network
communications at the Kubernetes level.

Network Security
CONTAINER SECURITY FROM CODE TO RUNTIME

7

Creating these Kubernetes network security policies
can still be a tricky process, requiring a relatively long
YAML even for a simple app. To simplify this process,
solutions like Sysdig Secure provide tools to simplify
Kubernetes network policy creation. This includes:

 • Network topology maps: Visualize all
communication into and out of a particular pod,
service, and application based on Kubernetes
metadata.

 • Baseline network policies: Auto-generated
policies based on observed traffic enriched with
application and Kubernetes metadata that you
can directly refine and modify to match your
desired declarative state.

 • Automated network policy generation: Generate
declarative network policy YAML files for
network segmentation based on the topology
baseline and any customized allowed ingress and
egress adjustments.

https://kubernetes.io/docs/concepts/services-networking/network-policies/

8

Wrongly configured hosts, container runtimes, clus-
ters, or cloud resources can leave a door open to an
attack, or create an easy way to escalate privileges
and perform lateral movement.

Benchmarks, best practices, and hardening guides
provide you with information about how to spot
misconfigurations, why they are a security problem,
and how to remediate them. One source of this type
of information is the Center for Internet Security (CIS),
a non-profit organization that publishes free bench-
marks for many different environments, including
Kubernetes, and cloud. These benchmarks are based
on research as well as contributions from the commu-
nity. The information provided by CIS has become the
de facto standard for security benchmarking.

The best way to make sure you can check settings
for Kubernetes and cloud platform security is to
automate it as much as possible. Several tools exist
for this, mainly based on static configuration analysis,
allowing you to check configuration parameters at
different levels and providing guidance for fixing
issues.

Mature solutions provide features that help you
schedule, execute, and analyze a wide range of
infrastructure including Linux hosts, Docker,
Kubernetes, EKS, GKE, Openshift clusters, etc.,
as well as provide a lens into meeting compliance
standards, like PCI DSS, SOC 2, NIST 800-53, NIST
800-190, HIPAA, ISO 27001, GDPR and others, all in
a single centralized dashboard.

Kubernetes and Cloud
Platform Security

CONTAINER SECURITY FROM CODE TO RUNTIME

https://www.cisecurity.org/

9

Incident Response
and Forensics

CONTAINER SECURITY FROM CODE TO RUNTIME

When a security incident does occur, you’ll need infor-
mation surrounding the issue to investigate, respond,
and prevent future occurrences. Given the dynamics
of containers, they may prove elusive for traditional
incident response approaches. For instance, by the time
you’re able to start your investigation, the containers
may already be gone.

Will you have digital evidence of a security breach
and be able to carefully analyze and respond to an
attacks in a methodical and timely manner? Once you
detect something suspicious, you may want to go
in-depth and evaluate the risk of the event. The abil-
ity to record activity surrounding an event will ensure
you can explore an incident even after the container

or host is no longer alive. Sysdig Secure for instance
records activity across containers, Kubernetes, and
cloud, and captures syscall activity from which you
investigate a wide-range of activity to get a complete
picture, including:

 • User activity.

 • Suspicious commands.

 • Altered files.

 • Unexpected network traffic.

Having the right information at your fingertips will help
you respond quickly so you can minimize the impact of
an incident, take action to reduce the attack surface,
and prevent future episodes.

Copyright © 2022 Sysdig, Inc. All rights reserved. CL-024 Rev. A 5/22

Sysdig and Snyk bring together the industry-leading
container runtime and developer security tools, for
the first integration that bridges developer, DevOps,
and SecOps silos. Sysdig’s unique container visibility
and threat protection and Snyk’s developer-first
tooling pair accurate runtime threat protection

with early detection and vulnerability management.
By bringing this information into the development
pipeline, Sysdig and Snyk are in a unique position to
help development teams instantly eliminate up to 95
percent of the vulnerabilities that would otherwise
demand their attention.

Learn More

Container Security from Code to
Runtime with Snyk and Sysdig

https://sysdig.com/partners/snyk/
https://sysdig.com/partners/snyk/

