

Cindy Blake

10 Steps Every CISO
Should Take to Secure

Next-Gen Software

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-08288-0

[LSI]

10 Steps Every CISO Should Take to Secure Next-Gen Software
by Cindy Blake

Copyright © 2020 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Alicia Young
Production Editor: Deborah Baker
Copyeditor: Octal Publishing, LLC

Proofreader: Christina Edwards
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2019: First Edition

Revision History for the First Edition
2019-10-03: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 10 Steps Every
CISO Should Take to Secure Next-Gen Software, the cover image, and related trade
dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and GitLab. See our statement
of editorial independence.

Table of Contents

Foreword. v

10 Steps Every CISO Should Take to Secure Next-Gen Software. 1
Context: DevOps Principles That CISOs Often Overlook 1
Three Critical Shifts of Next-Generation Software and How

They Affect Security 7
What Lies Ahead for DevOps 54
Defining the Next-Generation Application Security Program 58
Practical Advice for Securing Next-Generation Software 60
Conclusion 76

iii

Foreword

My goal with this report is to ignite discussion and thought among a
group of professionals who are hypervigilant about managing risk.
Often managing risk takes a path of protecting the status quo. Yet, as
the saying goes, no decision is a decision itself. Change will be nec‐
essary—and perhaps risky. Software development itself is changing
rapidly and security programs must evolve if they are to be effective
in this next generation of software. This report looks at the security
implications involved in how software is changing: the code itself,
the methodologies by which it is developed, and the infrastructure
surrounding its use. I hope to provide some practical advice to help
security leadership remain relevant—and maybe even become an
innovative change agent—in this Agile world in which development
speed is the holy grail.

v

10 Steps Every CISO Should Take to
Secure Next-Gen Software

Context: DevOps Principles That
CISOs Often Overlook
Sometimes, it can feel like developers and security are each speaking
a different language. In some ways they are. Combine that with a
massive sea change in which developers themselves are grappling
with new and evolving development technologies, tools, and frame‐
works, and it’s a bit of the Wild West! Without going into too much
detail, let’s highlight some critical areas to quickly get the security
professional up to speed on the terms, what they mean, and why
they are relevant to security.

Git What? Knowing the Lingo
Git, GitHub, GitLab: are they all the same thing? Should you care
about the difference? It’s all for developers anyway, right? Why does
it matter to security? Let’s begin by demystifying the terms around
Git, understanding how it fundamentally changes the software
development life cycle (SDLC), and looking at the security implica‐
tions.

Git
Started in 2005, Git is a free and open source distributed version
control system, used to help multiple software developers work
on a given code base. The first distributed version control (Bit‐
Keeper) changed the workflow from the developer asking, “Can
you add me to version control?” to making their own copy,

1

changing the code, and then checking in their contribution.
This change was revolutionary in that developers no longer
needed to be invited to contribute to open source code reposito‐
ries as well as proprietary code. (Fun fact: Linus Torvalds cre‐
ated Linux and also created Git.) A boom in open source code
availability and code quality has resulted, as the number of con‐
tributors exploded and the code was more easily improved. At
the same time, the ability to essentially farm out pieces of code
among multiple developers has radically changed the way soft‐
ware is developed whether open source or proprietary.

GitLab and GitHub offer all of the distributed version control
and source code management (SCM) functionality of Git as well
as their own features with paid tiers of offerings. Although both
started as code repositories, and share “Git” in their names,
there are vast differences between the two.

GitHub
GitHub began in 2008 and was purchased by Microsoft in Fall
2018. GitHub has recently begun adding capabilities beyond the
code repository but its security features have been mostly
focused on securing the code itself, an area GitLab refers to as
Compliance. Somewhat ironically, GitHub hosts the most open
source projects (yet its code is proprietary), whereas GitLab
estimates it hosts two-thirds of enterprises’ proprietary code
while offering an open source option of GitLab itself.

GitLab
GitLab began in 2011 and remains an independent company
with a very transparent growth strategy. In 2018, GitLab was
ranked the fourth fastest-growing private software company on
the Inc. 5000 list, and now has more than 100,000 enterprises
using GitLab.

GitLab is the only application for the entire SDLC, covering a
larger scope of capabilities than other point-solution providers.
At the same time, GitLab takes a different approach than tradi‐
tional application security vendors. To truly “shift left” and
empower developers to find and fix vulnerabilities early (DevSe‐
cOps), GitLab automates app security within its own fast-
growing, already-popular developer tool, enabling a more
seamless path-of-least-resistance for secure coding practices
and a compliant, auditable process for securing the code itself.

2 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Other Git repositories
BitBucket, another popular Git code repository, has 3.5 million
build minutes per week, whereas GitLab has 100 million builds
per month! Additional Git repositories can be found in Jason
van Gumster’s article, “6 Places to Host Your Git Repository”,
which was published to address the need of GitHub users (who
are not fans of Microsoft) looking for alternatives.

Why You Need to Know Git
The use of Git and software code repositories has fundamentally
changed the way enterprises do software development, for propriet‐
ary code and open source code alike. In addition, open source soft‐
ware has blossomed because some of the Git repositories host open
source code for free. Most significantly, Git and code repositories
have facilitated the DevOps methodology that is so impactful to
software development, which puts enormous pressure on applica‐
tion security programs to evolve.

Additional important development security terms
In addition to the aforementioned terms, there are other security
terms that will be important for you to know as you work to secure
next-gen software.

Merge request and code commit. When using Git repositories, all of
the code for a group, and projects within a group, is stored and
managed by the repository. An individual developer “pulls” a copy
of the code. This becomes a “branch” off of the master file. The
developer is free to work on the branch, without affecting the master
code. In the branch, the code is altered or more code is created.
When a change is made, the code is committed to the branch upon
which the repository can run automated scans for code quality,
security, and more. Results of the scans are provided directly to the
developer in a merge request pipeline report that shows the impact
of their specific code changes—and only theirs.

With GitLab, a fully functioning review application is spun up with
which the developer can also assess the usability of the change and
run dynamic application security testing (DAST). These DAST
results, together with static application security testing (SAST),
dependency scans, container scans, and license compliance scans,
provide a breadth of security insight right to the developer, before

Context: DevOps Principles That CISOs Often Overlook | 3

their code ever leaves their hands. This makes a very tight cause-
and-effect feedback loop by which the developer can immediately
assess the success or failure of their code changes. The developer can
make additional tweaks, still on their own branch, until it works as
intended and passes all required tests. When the code is deemed sat‐
isfactory, the changes are then “pushed,” or checked back into the
repository where they are combined with everyone else’s changes.
The repository identifies merge conflicts such as if two developers
have been changing the same lines of code or created other conflicts
like deleting libraries. When conflicts are resolved, the branch is
successfully combined with the master file, delivering a functioning,
tested code change capable of delivering incremental business value.

Agile. The Agile software development methodology, popularized
by the Manifesto for Agile Software Development (2001), has as its
key principle rapid iteration through an automated and instrumen‐
ted SDLC in which processes can be improved using Lean method‐
ologies. This approach enables development to be more responsive
to rapidly changing business needs. It uses incremental, iterative
work sequences commonly known as sprints (these are frequently
two weeks long but can be of any length). Scrum teams are cross-
functional groups that focus on delivering code required by a sprint.
Kanban boards are frequently used to manage the work effort,
where projects are pulled by development and completed as capacity
permits, rather than work being pushed into a project based upon a
more traditional work plan; for example, the waterfall methodology.

Agile is a precursor to DevOps. Although Agile is the methodology,
DevOps takes the methodology further with cross-functional teams
and automation. In 2013, The Phoenix Project (IT Revolution Press),
by Gene Kim, Kevin Behr, and George Spafford, described how pro‐
cess discipline, helped by automation, along with measurements and
feedback can change the efficiency of the modern software factory.

Continuous Integration and Continuous Deployment. The multithreaded
development approach, enabled by both Git repositories and Agile
methodologies, allows a much faster velocity, or cycle time, for soft‐
ware development and has led to Continuous Integration (CI) and
Continuous Deployment (CD) to speed not only the development,
but the delivery and use of the code and its resulting business value.

4 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

With CI/CD, these small, incremental code changes can be tested
and deployed to test and to production. The process of code quality
testing, a review environment, and assigning compute resources is
all automated so that development is no longer at the mercy of an
operations queue to set up the environment for them. With automa‐
tion comes standardization and repeatability, along with closed-loop
metrics that are helpful for process improvement, frequently found
with Agile methodologies.

Secrets. Secrets are access controls that an application needs at
build and runtime, including things like user access credentials,
application program interface (API) keys, usernames, and pass‐
words. As applications become containerized and abstracted from
the hardware on which they run, managing secrets becomes a criti‐
cal part of securing your applications.

Secrets can be managed in a decentralized manner adjacent to code
(less secure) or through the use of a centralized, purpose-built solu‐
tion such as Vault by HashiCorp or Amazon Web Services’ AWS
Secrets Manager.

According to a recent Stackshare survey (results originally posted
here), “Vault, Docker Secrets, AWS Secrets Manager, Torus CLI, and
Keywhiz are the most popular tools in the category ‘Secrets Manage‐
ment.’ ‘Secure’ is the primary reason developers pick Vault over its
competitors, while ‘Multi-Host aware’ is the reason why Docker
Secrets was chosen.”

Some of the common mistakes in handling secrets (such as pass‐
words) include putting them in the code itself, not rotating them,
and not backing them up. In fact, one of the most frequently recur‐
ring mistakes related to application secrets storage is to simply store
these secrets in a plain-text configuration file that is a part of the
software project or in plain text as environment variables.

In his Infosecurity magazine writeup on a discussion at BSides San
Francisco 2018 “Managing Secrets in Your Cloud Environment”,
Michael Hill notes that the participants included the following as
good practices for secrets management:

Identity
Using strong identities and least privilege

Context: DevOps Principles That CISOs Often Overlook | 5

Auditing
Verifying the use of individual secrets

Encryption
Always encrypting before writing to disk

Rotation
Regularly changing a secret in case of compromise

Isolation
Separating where secrets are used versus managed

Traditional application security tools check for things like storing
passwords in the code, but they are useless for actually managing the
secrets themselves via rotation, isolation, and encryption. Therefore,
most enterprises are turning to software solutions to help them
manage their secrets.

Tools like HashiCorp’s Vault help teams to avoid secrets sprawl by
keeping their management in one location. Tools like this also pro‐
vide an audit log and enforce access-control policies on a least-
privilege basis. They can also rotate credentials or generate
temporary credentials that immediately expire upon task comple‐
tion, the credentials are revoked.

The Next-Generation Software Evolution
According to this Medium article by Sid Sijbrandij, the next genera‐
tion of software development is upon us. It involves DevOps, punc‐
tuated by extensive automation of the development and deployment
process. It also involves digital transformations with software-
defined infrastructure (or software-defined-everything), cloud
native applications, and newer technologies such as containers, that
come with amped-up use of open source third-party code and
microservices.

If you are uncertain about how much of DevOps is hype and how
much is real, you need only look at recent M&A activities in the
market. Investors and venture capitalists see it as a game changer,
offering up big money to bet on transformational solutions. Recent
acquisitions reinforce this point:

• TwistLock acquired by Palo Alto Networks for $410 million

6 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

• The 2018 GitHub acquisition by Microsoft for $6.5B, under‐
taken as an onramp to Azure and an attempt to win back devel‐
opers

• CloudBees acquired Electric Cloud to advance its CD

In addition to M&A, venture capitalists have plunged additional
investment in DevOps companies. XebiaLabs announced a $100
million funding round and CircleCI $31 million, whereas GitLab
raised $268 million in Series E funding and achieved a $2.7 billion
valuation in 2019. DevOps use affects security programs heavily as it
introduces new attack surfaces, brings new challenges for collabora‐
tion, and requires new skill sets.

Now that you have a better understanding of what all the terminol‐
ogy around this area means, let’s look at three key shifts involved in
next-generation software as well as the security impact of each.

Three Critical Shifts of Next-Generation
Software and How They Affect Security
Software code repositories and open source technologies are lower‐
ing the barrier of innovation at an accelerating pace, driving busi‐
nesses’ time to market to be their competitive advantage. Successful
companies are modernizing the business through software and IT as
both a cultural and technological shift. Enterprises need solutions
that empower their teams to adopt a flexible, continuous, and itera‐
tive culture toward improvement. Less successful ones struggle to
create processes inherently limited by tool choices made in advance
of thinking through overall IT policy and workflow changes.

As enterprises try to increase the speed with which they create busi‐
ness value via new and revised software, there are multiple variables
evolving, each with its own security impact, including:

• How software is composed and executed
• How it is delivered and managed
• How it complies with regulatory requirements

Now, let’s walk through these shifts and assess what you need to
know about each.

Three Critical Shifts of Next-Generation Software and How They Affect Security | 7

Shift 1: How Software Is Composed and Executed
Software was once created by a solo programmer. That person
would be assigned a new software program or an update, and they
were responsible for crafting the code, ensuring that it would prop‐
erly execute and taking it through a change management process to
move it to production. With the advent of software repository man‐
agers (aka “repos”), one program can be divided up and assigned to
multiple software engineers. The repo ensures version control so
that one person’s changes do not clobber another person’s updates.
This version control allows not only more people to concurrently
work on a given project, but with publicly accessible code libraries,
it has simplified the use of open source code written by third parties.

Software becomes a multithreaded assembly of building blocks
Next-generation software is increasingly crafted from third-party
software modules that are put together like building blocks to
quickly meet a business requirement. Public software repositories
typically house this open source code making it readily accessible to
both developers and hackers alike. Growth in the use of open source
and of code repositories goes hand in hand; they each fuel the other.

The 2019 TechCrunch article “How Open Source Software Took
Over the World” explains that open source is no longer an anomaly
but is now rapidly becoming mainstream. Demonstrating this
growth, Red Hat is being acquired by IBM for $32 billion, Mon‐
goDB is now worth north of $4 billion, and Elastic’s IPO now values
the company at $6 billion.

Much of this third-party code is open sourced wherein everyone has
access to it. In a democratized world of open source software, devel‐
opers basically vote with their feet. Only the good software survives.
The appeal for the developer is that it’s been well tested by many
users and it works. The expectation is often that security bugs have
been found and worked out, as well, although that is often not the
case. Even when bugs are widely reported, if your enterprise is using
an older version that has not been updated, you are vulnerable. As
described in this Brighttalk webinar, of those who have suffered a
breach from an external attack, more than 30% were due to exploi‐
ted software vulnerabilities. Such attacks are largely preventable
with timely patch installation. An additional concern for security is
that hackers, too, have access to the code and can easily plan

8 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

exploits. Open source code is an attractive target due to the sheer
“blast radius” of so many users.

According to the 2019 GitLab Global Developer Report, a decisive
95% of developers use Git for source-code control. Needless to say,
Git repositories are here to stay. And security professionals need to
understand which repositories their developers are using (most
likely GitHub, GitLab, or BitBucket, as the current market leaders)
in order to take appropriate measures to secure them.

Nearly 70% of the 4,000 developers responding to the GitLab Global
Developer Report, said they are expected to write secure code, but
it’s clear from the comments that the mechanisms to make that hap‐
pen remain elusive in most organizations. Comments included the
following:

• “It’s a mess, no standardization, most of my work has never had
a security scan.”

• “We’re starting to care about it, just now.”
• “We don’t have clear guidelines about security, so the different

services present different levels of security.”

At the same time, 45% of developers said they receive and are able to
address security feedback during the development process. From the
comments, it’s clearly not enough.

Security Challenge
So how does a security person get their arms around what third-
party code is used, what vulnerabilities it carries, and the state of
patches? You must worry not only about new code, but what lurks
within production already, along with what third parties have cre‐
ated beyond your enterprise. Technical debt accumulates every day
as the developers pull in more and more open source code without
testing it. Do you have a way to identify it? How do you ensure that
it is secure if you don’t even know what your enterprise has used?

Software execution becomes dynamic
Enterprises have learned valuable lessons from legacy software.
When software is tied closely to hardware, upgrades of hardware
and software become intertwined and interdependent. Companies

Three Critical Shifts of Next-Generation Software and How They Affect Security | 9

become beholden to sunsetting hardware, which forces sometimes
unwanted changes to the software. Similarly, software upgrades can
be held captive to hardware limitations.

Cloud computing avoids hardware vendor lock-in. In fact, top driv‐
ers of cloud service adoption include: low-cost elastic scalability,
flexibility of choice, and self-service capabilities. Furthermore, your
code can now run literally anywhere. It could be in one cloud pro‐
vider today and another one tomorrow, facilitated by containers and
orchestrators. This abstraction of software from hardware facilitates
software development while at the same time reduces costs of com‐
mercial software licenses. Technologies enabling this shift are
exploding, and CISOs should take note.

Cloud computing: The start of shared security accountability. It is impor‐
tant that the CISO understands that the movement to cloud com‐
puting is increasingly much more than a simple shift in compute
resources from onsite to offsite. That might have been the primary
driver 10 years ago, but today’s business drivers are much more
focused on flexibility and developer productivity to allow an enter‐
prise to capitalize on faster time to market. The cloud is only the
beginning. Cloud is the foundation that enables next-gen software
and the benefits it provides. The following studies provide evidence
of increasing reliance on cloud computing:

• According to a survey by LogicMonitor, 41% of enterprise
workloads will be run on public cloud platforms (AWS, the
Google Cloud Platform, IBM Cloud, Microsoft Azure, and oth‐
ers) by 2020. Suggesting an even more aggressive pace, the 2018
IDG Cloud Insights survey claimed that 73% of organizations
are using cloud computing.

• RightScale’s 2017 State of the Cloud report showed Azure adop‐
tion grew from 20% to 34% of respondents, whereas AWS
stayed flat at 57% of respondents. Google also grew from 10% to
15% to maintain third position. Azure also reduced the AWS
lead among enterprises; Azure increased adoption significantly
from 26% to 43%, whereas AWS adoption in this group
increased slightly from 56% to 59%.

• The subsequent 2019 report showed Azure adoption grew even
further to 52%, more or less splitting the market with AWS.

10 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

In addition to adoption, a Forrester study commissioned by GitLab,
“Manage Your Toolchain Before It Manages You”, found that, “This
flexibility is especially important as 77% of IT professionals agree
that their organizations are moving to the cloud and they want to
avoid cloud lock-in. With that in mind, leveraging a tool that is
cloud-agnostic will provide the highest level of cloud independence
and leveraging one that has that capability, out of the box, will accel‐
erate a team’s ability toward achieving a multicloud strategy.” This
hybrid cloud offers organizations many benefits but requires cloud
management solutions to maintain visibility and overcome com‐
plexity.

If you agree that securing applications in the cloud presents a shared
accountability with the cloud provider and does not inherently
make you more secure, feel free to jump to “Application execution
on multicloud” on page 14. If you are one of those who I’ve heard as
recently as the 2019 RSA Conference telling others that you are
inherently more secure because of the cloud, please read on.

Even with the surge in cloud adoption, security remains somewhat
of an afterthought with lingering concerns. In Flexera’s 2019 State of
the Cloud Survey, security came in a close third among concerns
about cloud challenges overall (Figure 1).

Figure 1. Four out of five enterprises are concerned about the security
of cloud computing.

Three Critical Shifts of Next-Generation Software and How They Affect Security | 11

At the same time, nearly one-third of the survey respondents strug‐
gle to know what software is run in the cloud (Figure 2). How can
you secure what you do not know you have?

Figure 2. Nearly one-third struggle to know what software their enter‐
prise is using in the cloud.

Most cloud users understand that security is a shared accountability
—a paradigm illustrated in Figure 3. The cloud provider takes care
of securing the underlying hardware and basic network that it uses
to provide cloud services, but the user must do plenty. Unless you
are using their serverless offering, cloud providers generally do not
provide network segmentation and perimeter security for your guest
virtual machines (VMs) out of the gate. Your engineer usually con‐
figures that. Your cloud provider might implement virtualization
and root access, yet engineers at GitLab report that they are involved
in every cell on the chart in Figure 3 in some way. So take this chart
with a grain of salt. Note that the purple boxes are primarily the
responsibility of the cloud provider and the white boxes are primar‐
ily that of the user, but the responsibilities are shared.

12 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Figure 3. Protecting applications in the cloud requires shared accounta‐
bility between the enterprise and the cloud service provider. As cloud
services add more security capabilities, the burden for configuration
settings will still fall to the user.

As if these aren’t already enough considerations for the cloud, you
will also need to be aware of the challenges presented when multiple
cloud providers become involved, which is increasingly common.
Let’s turn to that topic now.

Multicloud: Pushing shared accountability even further. With the flexi‐
bility afforded by containers and orchestrators, enterprises can use
multiple cloud providers. CI/CD simplifies the actual deployment of
code to a variety of environments.

Findings substantiated this trend in 2017 with RightScale showing
that 85% of enterprises had a multicloud strategy, up from 82% in
2016. Cloud users were already running applications in an average
of 1.8 public clouds and 2.3 private clouds. The most cited challenge
among mature cloud users is managing costs (24%), whereas among
cloud beginners, it is security (32%). The report was updated in
2019 by Flexera (which acquired RightScale), revealing that 84% of
the respondents are using more than four cloud platforms.

The Cloudability State of Cloud 2018 report, based on actual spend
data, collaborates this evidence, reporting that 84% companies have
multicloud plans.

Three Critical Shifts of Next-Generation Software and How They Affect Security | 13

Application execution on multicloud. There are two primary
approaches to creating the layer of abstraction that enables a multi‐
cloud strategy: cloud native computing and serverless. Serverless is
philosophically one step beyond cloud native, so let’s begin our dis‐
cussion with cloud native. It’s important to understand how these
approaches are achieved, the components involved, and the security
implications of each.

The first thing you need to know is that containers are the key ena‐
bler to next-generation software and the multicloud evolution, the
place where you begin this journey. They offer portability through a
flexible approach to running, packaging, and deploying code. We
discuss them as an attack surface in the next section, but, briefly,
here’s what you need to know up front.

Containers are used to package an application and its dependent
resources so that the application can run reliably on any Linux
server. This enables enterprises to achieve greater application flexi‐
bility and portability to run anywhere, including on-premises, in a
public cloud, or a private cloud. This not only avoids vendor lock-in
for compute platform, but it minimizes the risk of becoming locked
in to legacy hardware environments. Remember when music and
video was locked in to their respective hardware platforms—how if
you bought a phonograph, VHS/Beta, or cassette tape, you could
only listen to it or view it on those devices? As devices improved,
your previous music investments became outdated. Software has
been similarly held captive by the hardware environment for which
it was developed. With containers, software can enjoy portability
similar to that of digitizing your music so that you can enjoy it
regardless of hardware. With digitization, you might be locked into
a subscription service, but you are not beholden to a hardware tech‐
nology. Serverless takes this model a step further to where you don’t
even need to worry whether you have enough storage capacity to
store the songs, you simply subscribe and access them. When you
ask Alexa to play a song for you, you need only concern yourself
with whether you have a subscription to license its use, not where or
how it’s stored.

Now that you have a primer on containers, let’s look at some of the
security vulnerabilities for cloud native applications that containers
enable.

14 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Cloud native applications: New attack surfaces
According to the Cloud Native Computing Foundation (CNCF),
cloud native computing uses an open source software stack to
deploy applications as microservices, packaging each part into its
own container and dynamically orchestrating those containers to
optimize resource utilization. Cloud native technologies enable soft‐
ware developers to build great products faster.

The CNCF has spawned several technologies in support of its mis‐
sion as an “open source software foundation dedicated to making
cloud-native computing universal and sustainable.” Together the
technologies supported by the CNCF help enterprises avoid vendor
lock-in and gain flexibility to run their applications on any cloud
environment, whether private or public.

CNCF is hosted by the Linux Foundation, a nonprofit organization
whose mission is “to train the next generation of open source pro‐
fessionals.” Some of the open source technology projects created by
the CNCF include Kubernetes (orchestration), Prometheus (moni‐
toring), FluentD (logging), and more. To clear up a popular point of
confusion, note that like many other free and open source solutions,
these are hosted on repositories housed in GitHub. They are not
owned by GitHub (although the CNCF website could cause one to
believe that), and, in fact, Kubernetes, Prometheus, and others are
used extensively by GitLab, AWS, and others.

Although there is a plethora of tools available from the CNCF and
elsewhere, the three most significant building blocks, regardless of
provider, that characterize “cloud native” applications are containers,
orchestrators, and microservices. We summarize them here with a
much deeper dive to follow after a brief primer. Each building block
brings with it new risks with a new attack surface for potential
exploit.

Table 1. Containers, orchestrators, and microservices and service meshes

Purpose Popular vendors Risks

Container Containers make the applications
portable and can reduce costs of
commercial software licenses via a
shared operating system.

Docker, Linux
Containers

Vulnerabilities within
images,
misconfigurations

Three Critical Shifts of Next-Generation Software and How They Affect Security | 15

Purpose Popular vendors Risks

Orchestrator These direct how and where
containers run.

Kubernetes,
Docker Enterprise
Edition, Google
Kubernetes
Engine, Red Hat
OpenShift
Container
Platform,
Rancher

Exploit of these “keys to
the kingdom,”
misconfigurations.

Microservices
and Service
Meshes

Microservices an architecture in
which applications are composed
of smaller parts (microservices) to
make them easier to maintain and
scale based on load. A service
mesh is a communication layer
between services that handles
east-west traffic between
microservices.

Linkerd and Istio Exploit of permissions
between containers,
clusters, and apps.

The growing complexity and configurability of these components,
especially when taken together, represent a substantial new security
risk that must be incorporated into an enterprise security program.
Common security risks stem from misconfiguration, vulnerable
container images, and orchestrator exploits.

These components add to the complexity of cloud computing and
change the landscape of application security, as shown in Figure 4.
Now, let’s take a look at each in greater depth.

16 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Figure 4. The added complexity of cloud native applications presents
new risk from misconfiguration, vulnerable container images, and
orchestrator exploits. These new burdens rest primarily on the enter‐
prise today in a fragmented market of emerging vendor solutions.

Containers. Docker, which started in 2013, is probably the most
popular container software, but as described in this Container Jour‐
nal article, there are others. Datadog, whose software monitors
infrastructure and applications, published a useful research report
quantifying Docker adoption and usage among its customers. Here
are some of their findings, further punctuating Docker’s popularity
and growth:

• Nearly one quarter of companies have adopted Docker, whereas
approximately 21% of all hosts now run Docker, as of April
2018.

• Docker usage rates increase with infrastructure size. Among the
organizations with at least 1,000 hosts, 47% have adopted
Docker, as compared to only 19% of organizations with fewer
than 100 hosts. An additional 30% of organizations with 1,000
or more hosts are currently dabbling with Docker.

• 50% of Docker environments use an orchestrator (discussed
next) such as Kubernetes or Mesos, or a hosted orchestration
platform from AWS, Azure, or the Google Cloud Platform.

• At companies that adopt Docker, containers have an average
lifespan of about two days.

Three Critical Shifts of Next-Generation Software and How They Affect Security | 17

Similarly, Flexera’s 2019 State of the Cloud Survey found that 39% of
respondents are expanding the use of containers as one of their top
cloud initiatives.

Linux containers are implementations of OS-level virtualization in
which the Linux kernel’s functionality is used for resource isolation
for CPU and memory, and separate namespaces isolate the applica‐
tion’s view of the OS. Unlike a VM, containers are run by a single OS
kernel, and don’t require a separate OS. Using containers can there‐
fore reduce the cost of packaged software where licenses are tied to
an OS. Whereas containers can share a host’s OS, VMs require their
own, indicating the compelling reason why VMs, once the standard
for distributed computing, are being replaced by containers.

Securing Containers. With containers, the image and the registry
introduce new attack surfaces. The traffic between the applications
in a container does not cross perimeter network security but should
be monitored for malicious traffic between apps and their images.
For instance, an HR system probably shouldn’t communicate with a
point-of-sale app. Though orchestrators contain tools to help with
security (e.g., by setting policies for how long processes should run
or the maximum resources they should consume). But there are still
many ways in which attacks can succeed. After breaking down each
component, an attack scenario will help the CISO envision how
attack surfaces combine to represent new risks.

There are two schools of thought on container security. Some
believe containers to be inherently more secure because they com‐
partmentalize applications, whereas others believe them less secure
due to potential access to the host kernel. Let’s examine these ideas
further.

• Containers are isolated from one another and bundle their own
software, libraries, and configuration files. A program running
on an ordinary OS can see all resources (connected devices, files
and folders, network shares, CPU power, quantifiable hardware
capabilities) of that computer. However, programs running
within a container can see only the container’s contents and
devices assigned to the container. This isolation can provide
some element of risk reduction by limiting the access of a com‐
promised application. Although this might prevent some attacks
from traversing app to app, they can, however, communicate
with one another in a way prescribed by configuration settings.

18 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Those configuration settings are the weak link and offer addi‐
tional risk.

• Containers are created from images that specify their precise
contents including applications and their requisite resources.
Similar to images used to deploy the same PC configuration to
multiple desktop or laptop users, images are used to store and
deploy applications. One vulnerable image can have a signifi‐
cant blast radius via reuse. Images are often created by combin‐
ing and modifying standard images downloaded from public
repositories, which carry risks of their own. This assembly of
ready-made parts is another factor contributing to the growth
in open source software.

A Docker registry is a repository for Docker images. Docker clients
connect to registries to download (“pull”) images for use or upload
(“push”) images that they have built. Registries can be public or pri‐
vate. As with any software repository, container registries are subject
to misconfiguration and lax policies.

An incredibly short life span (such as the aforementioned two days)
requires an automated approach to securing containers. Further‐
more, containers can run on a single server or across multiple VMs.
Because their environment spins up and down so quickly, perimeter
security is useless, yet their super-dynamic nature can at least frus‐
trate hacking attempts. This Datadog article summarizes the chal‐
lenge: “Containers’ short lifetimes and increased density have
significant implications for infrastructure monitoring. They repre‐
sent an order-of-magnitude increase in the number of components
that must be managed and monitored, and the rapid churn of con‐
tainers makes it all but impossible to track and monitor containers
manually.”

In this CIO article, writer Paul Rubens offers: “Many people believe
that containers are less secure than virtual machines because if
there’s a vulnerability in the container host kernel, it could provide a
way into the containers that are sharing it. That’s also true with a
hypervisor, but because a hypervisor provides far less functionality
than a Linux kernel (which typically implements filesystems, net‐
working, application process controls, and so on), a hypervisor
presents a much smaller attack surface.”

Noting further complications, Rubens points out that “virtualization
and containers are also coming to be seen as complementary tech‐

Three Critical Shifts of Next-Generation Software and How They Affect Security | 19

nologies rather than competing ones. That’s because containers can
be run in lightweight virtual machines to increase isolation and
therefore security, and because hardware virtualization makes it eas‐
ier to manage the hardware infrastructure (networks, servers, and
storage) that are needed to support containers.”

Security Considerations of Containers
Given all of these considerations for securing containers, this is
what CISOs need to think about:

• Use container authentication to ensure authorized access.
• Use signed containers to prevent untrusted containers from

being deployed.
• Scan container images for vulnerabilities.
• Monitor and protect runtime behavior within and among con‐

tainers. Look for tools that profile a container’s expected
behavior and whitelist processes and networking activities
(such as source and destination IP addresses and ports) to alert
you of malicious or unexpected behavior.

Orchestrators. Just as containers have grown in popularity, so have
orchestrators. Orchestrators help you scale the use of containers and
automate the process of managing or scheduling the work of indi‐
vidual containers for applications based on a microservices architec‐
ture. Popular container orchestration platforms are based on open
source versions like Kubernetes, Docker Swarm, or a commercial
version from Red Hat called OpenShift.

The 2019 report by Flexera, The State of the Cloud Survey, summar‐
ized the sometimes explosive growth of container-enabling technol‐
ogies, as shown in Figure 5. Docker and Kubernetes lead the way
and their use is becoming mainstream:

• The use of Docker containers grew from 49% in 2018 to 57% in
2019 after growing from 35% in 2017 when they overtook Chef
and Puppet, when each had 28% of the market. An even higher
percentage of enterprises (versus small- to medium-sized busi‐
ness) use Docker (40%) with 30% more planning to do so,
according to the 2019 report.

20 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

• Similarly, Kubernetes, a container orchestration tool that uses
Docker, achieved even faster growth, increasing from 27% to
48% adoption in 2019 after growing from 7% in 2016 to 14% in
2017.

• At the same time, Azure Container Service adoption reached
28% in 2019, up from 20% in 2018.

Figure 5. Results from Flexera’s 2019 survey of container tools. Docker,
Kubernetes, and AWS lead the way, with Kubernetes having experi‐
enced explosive growth since 2018.

Kubernetes is arguably the most popular open source orchestrator.
First developed by Google and nurtured by the CNCF, it’s described
by the CNCF as “help[ing] users build, scale and manage modern
applications and their dynamic lifecycles...The cluster scheduler
capability lets developers build cloud native applications, while
focusing on code rather than ops. Kubernetes future-proofs applica‐
tion development and infrastructure management on-premises or in
the cloud, without vendor or cloud-provider lock-in.” Kubernetes,
Docker, and GitLab automatically test software changes against user
requirements and deploy to staging for feature branches and to the
production master.

Datadog’s research report on Docker adoption also addresses the use
of orchestrators. The key points in the report are as follows:

• The rise of orchestration correlates with a greater number of
containers per host. The typical organization that uses a con‐
tainer orchestrator runs 11.5 containers per host, versus 6.5

Three Critical Shifts of Next-Generation Software and How They Affect Security | 21

containers per host in unorchestrated settings. Orchestrators
can place workload containers on any node with sufficient
resources, leading to more efficient use of host resources and
increased container density.

• The rapid adoption of orchestrators associated with container
growth appears to be driving containers toward even shorter
lifetimes, as the automated starting and stopping of containers
leads to a higher churn rate. In organizations running an
orchestrator, the typical lifetime of a container is about 12
hours. At organizations without orchestration, the average con‐
tainer lives for six days.

Container orchestration automates the following tasks at scale:

• Configuring and scheduling of containers
• Provisioning and deployments of containers
• Availability of containers
• Identifying which containers a given application runs within
• Allocating resources between containers; connecting containers

to storage
• Load balancing, traffic routing, and service discovery of con‐

tainers
• Scheduling deployment of containers into clusters and deter‐

mines the best host for the container; after a host is chosen, the
orchestration tool manages the life cycle of the container based
on predetermined specifications

• Monitoring of containers
• Securing the interactions between containers.

All of these settings’ configurations are vulnerable to
human error or misuse.

Securing Orchestrators. The most recent CNCF survey asked users
about the general challenges they face in using containers. The New
Stack analysis of the CNCF survey Fall 2017 data, published in

22 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

“Kubernetes Deployment & Security Patterns”, shows security as a
top challenge, though this varied by size of enterprise (Figure 6).
The report shows that 55% of organizations with 1,000 or more
employees said security is a challenge, whereas only 39% of organi‐
zations with fewer than 100 employees said the same.

Figure 6. Security is a top challenge cited by Kubernetes users, with its
importance differing by size of enterprise.

Security Considerations of Orchestrators
Orchestration tools offer substantial automation. The automation
requires configuration and it is the configuration of all these set‐
tings that are vulnerable to human error or misuse. In “Knowing
your risk: An attack scenario” on page 26 we look at an attack sce‐
nario that describes how these vulnerabilities enable exploit.

Microservices and service meshes. In modern software, microservices
are an architectural design for building a distributed application in
which each function of the application operates as an independent
service. An application is split into modules such as the database,
the application frontend, and so on. A code repository (such as
GitLab or GitHub) is what enables version control, organization,
and collaboration among these various teams. It also allows concur‐

Three Critical Shifts of Next-Generation Software and How They Affect Security | 23

rent development by multiple teams in order to accelerate develop‐
ment.

Microservices are not new—just an old concept taken to a new
extreme. In an attempt to break down monolithic applications into
more manageable and maintainable apps, as far back as the late ’80s
and early ’90s, when modularity was in vogue, subroutines of soft‐
ware that each had one purpose were created. The academic terms
used for these were coupling and cohesion. Coupling refers to the
indication of the relationships between modules, and cohesion to the
indication of the relationships within a module, the degree to which
a component or module focuses on a single thing. Good software
design has high cohesion and low coupling. You wanted to decouple
subroutines (services) that could stand on their own. The overall
program reflected the logic flow that called subroutines (or micro‐
services in today’s language; what’s old is now new, it just goes by
different terminology).

Taking the old modularity a step further, today’s microservices
approach allows for each service to scale or update without disrupt‐
ing other services in the application. Applications designed this way
are also easier to manage because each module is relatively simple,
with a more singular purpose and less interdependency. As men‐
tioned, in traditional terms microservices have high cohesion and
low coupling. Changes can be made to modules without having to
rebuild the entire application.

Modern software development has taken this to a new extreme. By
taking advantage of the building blocks of third-party open source
code, development can be accelerated by reusing code created by
others. These subroutines/microservices tend to be used often, so
vulnerabilities discovered become well known—by the good guys
and the bad guys.

Microservices can be managed by a centrally orchestrated, universal
service mesh composed of a fabric of services providing dynamic
load balancing, service discovery, security, microsegmentation, and
analytics for containerized applications running in Kubernetes envi‐
ronments. Individual microservices can be initiated only when they
are needed and are available almost immediately.

The Codeship blog offers a good explanation of a service mesh,
describing it as a communication layer between microservices (han‐
dling what is called East-West traffic). It plays a network communi‐

24 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

cations–like role within the Kubernetes pods, providing load
balancing and service discovery among microservices.

Traditional network communication relayed messages from client to
server and back. You could easily trace the route that messages take
and debug latency issues and errors. But when an application is
made up of loosely coupled microservices where each microservice
is made up of multiple containers (or pods in the case of Kuber‐
netes), every message now touches multiple services, each of which
is dynamic. Containers are created and destroyed automatically as
the system changes and as deployments are made. A service mesh
helps manage this communication layer.

Security Considerations of Microservices
Microservices inherently tend to use more open source code. It is
critical that you have tools and processes for scanning open source
dependencies along with container images and custom code. Fur‐
thermore, as apps are broken down into smaller, more singular
functions, traditional application security that charges by the appli‐
cation could become even more costly and those costs less predicta‐
ble. Lastly, the network security investments of the past will likely
be replaced by investments at the service mesh layer in which the
“network” becomes APIs and function calls between the various
microservices. Even though perimeter defenses are still needed,
they become a less-relevant means of protecting applications that
are executed on more dynamic platforms.

Summary: Security challenges of cloud native applications
Each of the layers that we just examined has its own ability to inter‐
act with the applications, whether directly or indirectly. Each repre‐
sents a path for the adversary. And, today, each of the layers has an
array of user-defined settings intended to help you translate your
security policies into settings used by each element/layer. This man‐
ual configuration is fraught with opportunities for user error and
misconfiguration that opens the enterprise to potential exploit. One
recent example is the Capital One breach. In addition, even the
default settings are not always very secure:

Three Critical Shifts of Next-Generation Software and How They Affect Security | 25

• For instance, AWS, Google, and Azure all have settings for
cloud access—what can be run, for how long, under what sub‐
scription, and so on.

• Containers such as Docker also have settings that determine
parameters for how much resources they can consume, what
apps they hold, and more. By isolating apps within their own
containers and having those containers spin up/down fre‐
quently, you can indeed make traditional network-based attacks
more difficult. But that’s not where the puck is going. Attackers
can target the containers and exploit user configuration errors
and misjudgements.

• Orchestrators have their own settings vulnerable to misconfigu‐
ration and misuse. Tesla suffered a cryptocurrency mining mal‐
ware infection enabled by a misconfiguration in the Kubernetes
console that left the console without password protection.
Attackers were able to access one of the pods that included
access credentials for Tesla’s larger AWS environment.

Let’s look at an attack scenario to better understand the potential
vulnerabilities of a cloud native application. Then, we look at some
strategies for securing it.

Knowing your risk: An attack scenario
During a roundtable discussion on cloud security at RSA Confer‐
ence 2019, Jay Beale from Inguardians demonstrated a hack on
Kubernetes. In Table 2, I’ve summarized and somewhat condensed
the steps he took here, along with his advice on preventative meas‐
ures that would have stopped this attack.

Table 2. Example attack path on a cloud native app

Path of attack Prevention
Vulnerable plug-in allows remote code execution Dependency scanning
Lateral move to another pod Egress policy to whitelist pod

interaction (not default settings)
Other pod could talk to API server Role-based access control with minimal

permissions
From cluster, asks AWS who am I (using curl), which
provides AWS credentials

Minimal permission—pod should not
need metadata access

AWS S3 using default token can read (not write) every
container; secrets are not exposed

Minimal permissions; ecrets encryption

26 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

All of the vulnerabilities he demonstrates result from configuration
mistakes, and many are simply caused by using default settings. The
default that every pod can reach every other pod no matter where
they are physically brings a very real threat. As you can see from the
path of attack in Table 2, entry is made from vulnerable third-party
code. The attacker moves laterally until they find a pod with access
to the API server, and then from the API server accesses the AWS
credentials, simple storage service (S3) buckets, and eventually the
secrets used for access control.

Beale did point out that the Center for Internet Security (CIS)
benchmarks are very helpful. They cover a broad range of topics, so
it can be difficult to find relevant information. You can find Kuber‐
netes under Virtualization Platforms and Cloud. In Table 3, I’ve
summarized some of the benchmark recommendations relevant to
cloud native.

Table 3. Abstract from CIS benchmarks for securing Kubernetes

Threat Cause Prevention
External attacks API server, kubelet, or etcd

compromise
• Only expose necessary Kubernetes services
• Authentication
• Configure security policies for exposed

services

Compromised
containers

A container escalates
privilege to control another
container or the cluster

• Kubernetes isolation via namespaces or
network segmentation

Compromised
credentials

A malicious user gains access • Enforce least-privilege access, role-based
access control, and other access controls

Misuse of
legitimate
privileges

Misconfiguration • Harden system components
• Design and implement proper

authorization
• Kubernetes plug-ins that allow

sophisticated authorization logic

The CIS Benchmarks claims to be “the only consensus-based, best-
practice security configuration guides, both developed and accepted
by government, business, industry, and academia.” While Beale says
the benchmarks are useful, he also suggests that Security Configura‐
tion Guides fall short.

Three Critical Shifts of Next-Generation Software and How They Affect Security | 27

Beale does penetration testing and will tell you that traditional
network-based penetration testers will miss most of these vulnera‐
bilities. Some of this comes down to hygiene, like dependency scan‐
ning and applying the latest release patches. It also requires a Zero-
Trust approach—one that extends beyond traditional network
security and endpoints into the application infrastructure.

This great ebook offered by the New Stack, Kubernetes Deployment
and Security Patterns, offers similar advice, whereas Kubernetes has
put together a comprehensive security guide. Key themes here are
least-privilege access, utilizing the strength of Kubernetes, and care‐
ful configuration. It’s this configuration that’s troublesome. One
additional resource is “9 Kubernetes Security Best Practices Every‐
one Must Follow”, hosted on the CNCF blog and written by Connor
Gilbert, product manager at StackRox.

In addition to the challenges of securing individual components,
complexity is building. Cloud providers offer new settings (to learn)
and are starting to offer more and more security capabilities them‐
selves. Kubernetes is launching new releases frequently, and keeping
up with the changes alone can be daunting. Time and experience
have proven that people are generally not good at staying current
with their patches, yet patches might be easier to digest than a regu‐
lar diet of new configuration settings made available each month.

You need guidelines but you also need automation to abstract the
complexity. Watch the industry for capabilities to translate policies
into settings in each of these elements—and across cloud providers.
Vendors will need to fill in the gap until industry standards are
developed.

Beyond configuration vulnerabilities, infrastructure is created and
defined just-in-time by developers. It can spin up and spin down.
And, it can live on leaving vulnerabilities like open doors. It’s impor‐
tant that vulnerable code is identified and remediated.

The Docker security report “Shifting Docker Security Left” captures
data based on a survey of open source developers, data from public
application registries, publicly available Docker images, GitHub
repositories, and Snyk’s own vulnerability database. Key findings
reveal the following:

• 50% of developers don’t scan their Docker images for vulnera‐
bilities at all.

28 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

• The top 10 most popular Docker images contain at least 30 vul‐
nerabilities each.

• 45% of developers never discover new vulnerabilities disclosed
in their production containers.

• 44% of Docker images have known vulnerabilities for which
newer and more secure base images are available.

It’s clear that cloud native applications, and the new attack surfaces
that come with them, represent a new frontier for application secu‐
rity. Containers must be scanned, all components checked carefully
for misconfigurations, and vulnerabilities must not be allowed to
linger, waiting for the lucky attacker to happen upon them.

Now that you better understand the considerations for cloud native
applications, we can turn to serverless applications, which take the
concepts of cloud native a step further, pushing the security implica‐
tions along with it.

Serverless applications: When network security is irrelevant
Whereas cloud native is an operations paradigm, serverless is for
practical purposes, about not doing any operations. With serverless
computing, the cloud provider runs the server and dynamically
manages the allocation of machine resources. Pricing is more like
utility computing and is based on the actual amount of resources
consumed by an application rather than on prepurchased units of
capacity. Applications are designed to take advantage of this and are
made up of functions that are instantiated only when a user accesses
that part of the code and persist only while in use or for a maximum
interval. This affords radically optimized use of compute resources.
In addition, serverless simplifies code deployment for both the
developer and operations by abstracting away deployment and oper‐
ations tasks like capacity planning, scaling, and maintenance. A
serverless application accomplishes this by running the applications
in stateless compute containers (Function-as-a-Service [FaaS]). The
compute function is initiated and eliminated dynamically based
upon event triggers. Pricing is based upon function execution, not
prepurchased compute capacity.

The serverless framework, first introduced in October 2015, is a free
and open source web framework originally developed for building
applications exclusively on AWS Lambda, a serverless computing

Three Critical Shifts of Next-Generation Software and How They Affect Security | 29

platform offered by AWS. Applications developed as serverless can
be deployed to any FaaS providers such as Microsoft Azure with
Azure Functions, IBM Bluemix with IBM Cloud Functions (based
on Apache OpenWhisk), Google Cloud Platform using Google
Cloud Functions, or Kubeless, the Kubernetes-native serverless
framework. A serverless application can be a couple of Lambda
functions to accomplish a specific task (a microservice); an entire
backend composed of hundreds of Lambda functions; or a combina‐
tion of services managed by cloud providers (such as Amazon RDS
for DB or SQS for queues), with app functions as “glue code.” Serv‐
erless can also be done in a private cloud environment or even on-
premises, building upon the Kubernetes platform. For example, with
Kubernetes and Knative, an enterprise operations team can use an
on-premises infrastructure to act as a cloud provider, simulating a
serverless environment for their development teams. This also gives
companies full control over privacy while still providing advantages
to the developers.

The Flexera 2019 State of the Cloud Survey shows that serverless is
the top-growing extended cloud service for the second year in a row,
with 50% growth over 2018 (24% to 36% adoption). Let’s look at the
reasons behind this growth. Serverless has many advantages:

Cost
Dynamically scaling compute resources is more cost efficient
than setting aside resources and then managing their utilization
for optimum efficiency. Because with serverless you are charged
based upon the time and memory actually used when the func‐
tion executes, costs incurred are measured in milliseconds
instead of hours. (Note: because it is dynamic, costs can also be
less predictable and place a higher burden on monitoring the
app’s execution.)

Elasticity
The cloud provider scales the capacity to the demand; thus, it
scales down as well as up. This elasticity is what affords a lower
cost.

Productivity
You save not only on cost of the resources consumed, but also
on maintenance. Serverless eliminates the management over‐
head required in the resource optimization effort. Developers
can run the code themselves without waiting on service tickets

30 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

from infrastructure nor operations. The developer need not
worry about multithreading, because each function independ‐
ently consumes its own compute resources.

Given the advantages of serverless for the development teams, the
CISO can expect a push for greater adoption. Understanding the
security implications of serverless is paramount. Even though cloud
computing pushed more of the security burden to the cloud pro‐
vider, serverless pushes even more of the risk, and fundamentally
changes not only your application security program but your net‐
work security, as well. Let’s look at why this is so.

Securing serverless applications. Serverless, and sometimes cloud
computing in general, is mistakenly considered as more secure than
traditional architectures. Although operating system vulnerabilities
are identified and patched by the cloud provider, new attack surfaces
are introduced by the additional components (such as containers
and orchestrators) leaving each component an entry point to the
serverless application. Moreover, traditional network security solu‐
tions like an intrusion detection/prevention system (IDS/IPS)
become irrelevant to the serverless application, whose traffic is mul‐
tithreaded and bandwidth dynamically deployed. Serverless, FaaS
environments from AWS, Google, and Azure provide compute, stor‐
age, database, and network resources, whereas their IT user is
responsible for code, configuration, data, and endpoints. The chal‐
lenge for security is the inability to control anything below the appli‐
cation layer, leaving many entrenched security methods irrelevant.

You can expect cloud providers to add security capabilities to help,
potentially even monetizing the added capabilities. In the meantime,
however, the added complexity of these additional components puts
a greater burden on the CISO to understand and incorporate poli‐
cies into the security program.

The security complexity is additive. In addition to securing the com‐
ponents of cloud native applications (cloud, orchestration, microser‐
vices), serverless applications have additional security
considerations. The solution to securing serverless apps can be
equally complicated. Hackernoon offers a great explanation of the
pros and cons of serverless and I’ve incorporated some of their ideas
here to break serverless down further for a security perspective.

Three Critical Shifts of Next-Generation Software and How They Affect Security | 31

Serverless changes the attack surface and requires distribution of
security controls over a larger, more diverse set of systems that build
upon a microcosm of little functions. Serverless functions don’t
translate to entire applications that are human understandable, and
so a proper web application is used to tie all of the serverless func‐
tions and microservices together. The characteristics of serverless
that affect security include the following:

Everything becomes an API
• Serverless functions are accessed only as private APIs, not

directly through the usual IP. Are APIs part of your security
program scope? Many enterprises do not have a thorough appli‐
cation security scanning program, much less consideration for
securing the APIs used by the applications. The Open Web
Application Security Project (OWASP) offers a Cheat Sheet for
securing RESTful APIs.

• Traditional network security solutions like web application fire‐
wall (WAF) must be reconfigured. The WAF doesn’t become
entirely irrelevant, because the underlying request/response
architecture still runs on TCP/IP and some port and protocol is
still used, but changes are needed because the WAF might strug‐
gle with the protocols and complex message structures of a
more diverse ecosystem.

• To access these, you must set up an API gateway. This becomes
a single point of failure (target).

Secrets management
A Security Token Service (STS) generates temporary cloud ser‐
vice credentials (API key and secret key) for users of the appli‐
cation. These temporary credentials are used by the client
application to invoke the cloud API. As the attack scenario that
we presented earlier shows, access to secrets can lead to keys to
your cloud service kingdom.

Statelessness
• Because with serverless everything is stateless, you can’t save a

file to disk on one execution of your function and expect it to be
there at the next.

• Any two invocations of the same function could run on com‐
pletely different containers.

32 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

• There is a greater burden on the application itself for logging.

Ephemeral
Containers are designed to spin up quickly, do their work, and
then shut down again. They do not linger unused. As long as
the task is performed the underlying containers are scrapped.
Container security must be equally dynamic.

Event-triggered
Although functions can be invoked directly, they are usually
triggered by events from other cloud services such as HTTP
requests, new database entries, or inbound message notifica‐
tions. Rules used to automate security policies will need to be
reviewed and potentially modified.

Scalable by default
• With stateless functions, multiple containers can be initialized,

allowing as many functions to be run (in parallel, if necessary)
as needed to continually service all incoming requests.

• This scaling process for serverless is automatic and seamless.
Monitoring or configurations are needed to prevent runaway
processes and cryptomining.

Microapps
• Time limits on compute resource utilization force applications

to be segmented into more bite-sized functions, with the front‐
end and backend broken into separate pieces. The concept of a
web app (for application security scan charges and work effort)
becomes more piecemeal. Look at how scanning vendors are
charging for this rapidly growing number of smaller apps.

• Because single-function apps are reused across a variety of soft‐
ware solutions, a single flaw can be applied globally. Under‐
standing where they are used (via a Bill of Materials) can help
you quickly isolate vulnerable code.

• It goes without saying that breaking down apps into microapps
will increase the communication among them. Monitoring the
growing number of APIs becomes much more important.

Self-contained
• Most if not all of your projects have external dependencies that

rely on libraries for subroutines like cryptography, image pro‐

Three Critical Shifts of Next-Generation Software and How They Affect Security | 33

cessing, and so on. Without system-level access, you must pack‐
age these dependencies into the application itself.

• If you have instrumented your apps (e.g., RASP or IAST) to
monitor core library calls, their effectiveness will depend upon
the overall architecture but reconfiguration might be necessary.

Flexible environments
Setting up different environments for serverless is as easy as set‐
ting up a single environment. Given that it’s pay per execution,
this is a large improvement over traditional servers, you no
longer need to dedicate dev, staging, and production servers.
For security, it might no longer be as simple as protecting what
is moved into production. Policies will need to be added to con‐
sider this newfound flexibility and potentially monitor and
inspect development practices.

Composed
Debugging options for serverless-based applications are limited
and more complex. As a result, developers might use error mes‐
sages that divulge sensitive data. Data loss prevention and other
security methods should consider the connections between
applications and the logs that each creates.

The Cloud Security Alliance (CSA) together with PureSec (acquired
by Palo Alto Networks) have crafted a serverless security guide,
highlighted in DarkReading in March 2019. This guide, “The 12
Most Critical Risks for Serverless Applications”, was written for both
security and development audiences dealing with serverless applica‐
tions but goes well beyond pointing out the critical risks for server‐
less applications. It also provides best practices for all major
platforms. The risk categories are defined as follows:

1. Function Event-Data Injection
2. Broken Authentication
3. Insecure Serverless Deployment Configuration
4. Overprivileged Function Permissions and Roles
5. Inadequate [Application] Function Monitoring and Logging
6. Insecure Third-Party Dependencies
7. Insecure Application Secrets Storage
8. Denial-of-Service and Financial Resource Exhaustion
9. Serverless Business Logic Manipulation.

10. Improper Exception Handling and Verbose Error Messages

34 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

11. Legacy/Unused Functions and Cloud Resources
12. Cross-Execution Data Persistency

Traditional security has focused first and foremost on the network,
endpoints, and users. To protect serverless applications, investments
will be needed in nontraditional security solutions. These examples
explain why traditional security tools will be challenged, at best, and
obsolete at worst, in a serverless environment:

• Serverless functions consume data from a wide range of event
sources, such as APIs, message queues, cloud storage, and more.
This diversity increases the potential attack surface dramatically,
and some messages use their own unique protocols that cannot
be inspected by standard application-layer protections, such as
WAFs.

• Even though insecure third-party libraries are not unique to
serverless, being able to detect malicious packages is more com‐
plex in serverless environments given the inability to apply net‐
work and behavioral security controls.

• Serverless architectures bring automated scalability, but they
also bring risk of distributed denial of service (DDOS) attacks
and cryptomining because resources are scaled automatically as
consumed. Monitoring application execution becomes as
important as monitoring network traffic and traditional
resource consumption.

• Just as debugging tools can find it challenging to traverse appli‐
cations composed of many microservices, security scanners
might also encounter similar challenges. At the very least, appli‐
cation security scanners that charge by the application will find
it difficult to appropriately price their software and/or services
in this new environment dominated by bite-sized application
functions.

• Because serverless applications contain multiple distinct func‐
tions that are stitched together using event triggers and cloud
services (e.g., message queues, cloud storage, or NoSQL data‐
bases), SAST will fall short when analyzing data flow in these
new scenarios.

• DAST and interactive application security testing (IAST) can
also be impaired when serverless applications use non-HTTP
interfaces to consume input. Furthermore, depending upon the

Three Critical Shifts of Next-Generation Software and How They Affect Security | 35

IAST solution, the instrumentation agents might be impaired in
a serverless environment.

• One direction that some security vendors had started populariz‐
ing around 2016 was connecting endpoint security with server
security, using the endpoint as a sentinel. When one endpoint
encountered an attack, it could alert the network and protect
the servers. However, with serverless applications, not only does
this method not work, but because you do not have access to the
physical (or virtual) server nor its OS, you cannot deploy tradi‐
tional endpoint protection to the server, host-based intrusion
prevention, WAFs, and so forth. Additionally, existing detection
logic and rules have yet to be “translated” to support serverless
environments.

Serverless security is coming from nontraditional sources. The cloud pro‐
viders are working to help secure serverless applications. Analyst
firm 451 had a take on RSA 2019 that suggests that cloud vendors
and SDLC platforms will take on more application security respon‐
sibilities. It says, “These [traditional security] players face a direct
challenge, not from other vendors of stand-alone products in mar‐
kets segmented from the rest of IT, but from the cloud hyperscalers
and innovators with regard to how IT is developed, deployed and
run.” The report goes on to say, “These disruptors are redefining the
very nature of technology, and are incorporating security more
directly into concepts from ‘GitOps’ to cloud-native techniques.”

As evidence, Bill Kleyman advises the following in his article, “Serv‐
erless 101: Why It Matters for Data Center Professionals”:

• Amazon allows you to securely control access to your AWS
resources with AWS Identity and Access Management (IAM).

• Manage and authenticate end users of your serverless applica‐
tions with Amazon Cognito.

• Use Amazon Virtual Private Cloud (VPC) to create private vir‐
tual networks that only you can access.

• Azure Active Directory (Azure AD) provides cloud-based iden‐
tity and access management. Using it, developers can securely
control access to resources and manage and authenticate the
users of their serverless apps.

36 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

But be aware that with this service comes limitations, as well. Kley‐
man adds that “you will be very limited in the kinds of security tools
you can deploy within the network or the endpoint. For example,
data loss prevention (DLP), intrusion prevention and detection
(IPS/IDS), and even endpoint detection and response (EDR) may
not work with your serverless compute platform.”

Amazon provides an Architecture Overview for how a WAF is
included within its architecture. The AWS WAF acts as central
inspection and decision point for all incoming requests to a web
application. Currently its capabilities include whitelisting and black‐
listing IP addresses, SQL Injection, cross-site scripting (XSS), HTTP
Flood, scanners/probes, IP reputation, and bad bots. These capabili‐
ties have to be more generic than a WAF used by only one enterprise
and tuned uniquely for their applications.

At the same time GitLab and Microsoft are adding security capabili‐
ties to the SDLC. GitLab has not only embedded security scanning
into its CI capability, but has a vision to provide security monitoring
and remediation for cloud native and serverless applications in its
runtime environment.

Serverless and DevOps have a symbiotic relationship. The signifi‐
cant advantages of serverless are going to increase demand from
development teams whether they consider themselves “DevOps”
shops or not. Yet, the very framework itself will push a change
toward how software is delivered and executed and will drive enter‐
prises toward adoption of DevOps practices.

Recognize that serverless computing is still very new. Expect to see
many new startups jump into this vacuum, with healthy market con‐
solidation yet to follow. Be wary of single-purpose software making
claims that they will secure your serverless applications. Given the
breadth of the security challenges, a holistic security program will be
required.

Security Considerations of Serverless
Given the dynamic nature of serverless applications, the only way
to protect them will be through automation, embedded within
operations for monitoring and automated runtime response. Inven‐
tory the serverless applications used at your enterprise and evaluate
options for their runtime protection via runtime container security

Three Critical Shifts of Next-Generation Software and How They Affect Security | 37

tools. Watch the market for emerging tools that will protect FaaS
architectures that do not use containers. In the meantime, pay spe‐
cial attention to configuration settings across the ecosystem and
focus on good security hygiene like scanning all code changes
across the entire code base.

Also note that because serverless requires little or no coordination
between dev and ops for resources, traditional change management
processes might also become irrelevant. If security relies on change
management to notify security about new applications, new meth‐
ods of notification and engagement might become necessary.

Summary: How software is composed and executed
Cloud native and serverless are emerging architectures, still early in
their adoption. Yet, the benefit they bring is substantial and security
teams should expect this trend to continue rapidly. Entirely new
attack surfaces must be considered that will affect what is scanned
during development and what is monitored and protected in pro‐
duction. The makeup of next-generation software is important, but
so is the methodology used to deliver and manage it. This too will
affect security via new workflows and processes, which will chal‐
lenge traditional security tools.

Shift 2: How Software Is Delivered and Managed
The world is becoming dependent upon software. Delivering that
software faster and more efficiently is making a difference between
explosive growth and rapid irrelevance of startups and blue-chip
companies alike. Punctuating this sentiment, Marc Andreessen
famously said, “Cycle-time compression may be the most underesti‐
mated force in determining winners and losers in tech.”

To achieve cycle-time compression and increase software velocity,
businesses of all sizes, along with public sector, are modernizing
their software development and delivery through a combination of
changes involving people, processes, and tools. This change is often
characterized as DevOps. These DevOps methodologies rely on Lean
Six Sigma constructs of measurement, automation, and iteration to
improve processes to increase software velocity,

38 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

DevOps can be defined as the convergence of people,
processes and tools to enable adaptive IT and business
agility.

In The Phoenix Project book mentioned earlier, the authors describe
how process discipline, helped by automation, along with measure‐
ments and feedback, can change the efficiency of the modern soft‐
ware factory. DevOps empowers the developer to spin up hardware
environments, storage, requisite libraries, and other resources to
quickly begin building code while eliminating friction and depen‐
dencies with other departments.

Enterprises are rapidly adopting DevOps methodologies as a way to
speed deployment, improve efficiency of developers, and even
reduce risk to the business.

DevOps adoption
As far back as 2017, RightScale’s report on the State of the Cloud
showed rapid adoption of DevOps. It found that overall DevOps
adoption rose from 74% in 2016 to 78% with enterprises reaching
84%. 30% of enterprises were adopting DevOps company wide, up
from 21% in 2016.

DevOps and this new world of borderless IT and portable apps can
be scary, requiring new ways to manage and secure it. DevOps is
typically started by a somewhat rogue group within IT and often
seen by the CISO as running hell-bent to move faster without neces‐
sarily contemplating, nor understanding, the potential risks. When
security is added to the mix, it often takes one of two paths. Either
the speed and efficiency of DevOps grinds to a halt when it must
pass a more sequenced and traditional security gate at the end of the
process; or, DevOps is given a sort of hall-pass where it can push fast
and security flaws are removed after the code is pushed to produc‐
tion. Neither path is optimal.

To achieve more rapid velocity and reduced cycle time, automation
is key. The challenge has been that tools to provide the automation
have been very single-purpose tools with very narrow scope. Stitch‐
ing them together to solve the end-to-end needs of a modern SDLC
can consume countless resources. Yet new tools continue to spring
up and flourish.

Three Critical Shifts of Next-Generation Software and How They Affect Security | 39

This rapidly evolving environment of software development tools
makes integration a bit of a moving target. Many have tried to cap‐
ture the list of literally hundreds of tools, but the lists quickly
become outdated. For instance, though the image in this blog post
has become popular, but it doesn’t reflect the fact that GitLab now
has capabilities in most of the boxes, including CI, where Forrester
even placed it as a leader in the CI Wave in 2018. Zebia Labs’
attempt in its Periodic Table of DevOps tools is similarly behind.

According to the 2019 IDC Worldwide DevOps Software Tools
Forecast 2019–2023 abstract, “The worldwide DevOps software
tools market achieved a level of $5.2 billion in 2018. The market is
forecast to reach $15 billion in 2023, driven by continued enterprise
adoption of highly automated CI/CD, infrastructure provisioning,
DevSecOps best practices and advanced infrastructure, and applica‐
tion monitoring and analytics for production as well as dev and test
use cases,” impacted by “enterprise production support for DevOps-
driven applications.”

Corroborating this growth, this May 2018 Forbes article, “DevOps
Dollars: Why There’s Big Money In Fast Software Development”,
claims the DevOps market size could be $12.85 billion by 2025 say‐
ing, “These numbers are easily comparable with the 5G mobile net‐
work market and Amazon’s cloud business.”

What’s behind the growth of DevOps. The benefits of DevOps can be
broad, including not only speed and efficiency of the SDLC, but also
flexibility and response to market shifts and happier developers.
One of the more impactful benefits is how more rapid, iterative
development can help companies rapidly launch small but meaning‐
ful changes, assess their success, and frequently adjust. A DevOps
methodology is how they achieve these results.

GitLab is one example of a software business using advanced
DevOps methodologies with rapid iteration to achieve explosive
growth in both software capabilities and in associated revenue. With
a formal launch every month and production deployments averag‐
ing more than 60 per day, the company has honed the velocity of its
SDLC through automation (using its own GitLab software) and iter‐
ation (see GitLab values).

By making small, iterative improvements (as shown in Figure 7)
instead of lengthy, complicated software updates, the software’s suc‐

40 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

cess can be evaluated in terms of performance, usability, and pur‐
pose. These smaller steps, called Minimal Viable Changes (MVC) or
Minimal Viable Products (MVP), provide benefits while allowing
the software owner to evaluate results and quickly adjust next itera‐
tions, as needed.

Also within the DevOps methodology, cross-functional collabora‐
tion and concurrent, efficient workflows have contributed to
GitLab’s success. Although these capabilities can be achieved across
the entire SDLC, from collaborative planning, to multithreaded
development, to CI/CD, if we look solely on code development as an
example, the impact is easy to see.

Figure 7. Incremental improvement affords frequent goal calibration.
MVC requires more small, frequent software updates rather than
lengthy projects.

Because individual developers can check out a branch to work on
(essentially make a copy of the code they want to work on) and then
have the repository keep track of checking code back in and identi‐
fying conflicts, multiple developers can work on a given project con‐
currently. Figure 8 shows how this workflow is analogous to
working in Google Docs versus a more traditional single-threaded
document review. This more-collaborative approach allows more
developers to contribute to a given project and push more, smaller
code improvements.

Three Critical Shifts of Next-Generation Software and How They Affect Security | 41

Code repositories were just the beginning. The next big area of
impact has been CI/CD. InfoWorld has a great article, “What Is CI/
CD?” that concisely describes CI/CD, stating, “The CI/CD pipeline
is one of the best practices for DevOps teams to implement, for
delivering code changes more frequently and reliably.”

Figure 8. Concurrent development workflow analogous to using a code
repository to manage code among many developers.

The GitLab 2019 Global Developer Report, with feedback from
more than 4,000 respondents, reveals that CD—a cornerstone of
DevOps—is an area developers see as critical. Of those surveyed,
43% said their organizations continuously deploy (meaning on
demand deployment and/or multiple deployments each day) and
41% said deployments happen between once per day and once per
month. Just 13% reported deployments occurring between once per
month and every six months. These are aspirational results for most
and reflect the fact that many of the survey respondents are fairly
mature in their DevOps programs.

The benefits of CD are clear: developers surveyed go on to say prod‐
uct/project managers are 25% more likely to have a better sense of
dev team capacity in a CD organization than in a company that
deploys between once per month and once every six months. And
47% agree those same managers are more able to accurately plan
and scope features in a CD environment.

42 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Challenges remain for an immature DevOps. Despite the adoption of
DevOps methodologies, frustration remains. This May 2017 Tech‐
Target article, summarizing a more in-depth Gartner report, says
that despite $3.9 billion having been spent on DevOps software in
the previous year, more than half of the time spent on DevOps was
wasted on logistics and repeatable tasks. Although some aspects of
the life cycle have been automated, this is not moving the dial. In
fact, almost 90% of the organizations that have already adopted
DevOps report being disappointed with the results.

Although improvements have been made for specific Key Perfor‐
mance Indicators (KPIs) like deployment frequency and change fail‐
ure rate, the full transformational promise of DevOps has not yet
been realized. To fill the void, even more single-purpose DevOps
tools continue to race to provide solutions. The promise of improve‐
ment is significant enough to draw enterprises, vendors, and invest‐
ors alike.

Current DevOps tools are inefficient and complex
Fragmentation of so many new tools, most built for a single func‐
tion, only further complicates the DevOps situation. With so many
tools, integrated like a patchwork of rags into a makeshift blanket,
it’s no wonder that enterprises have not been able to achieve process
improvements and streamlined deployments.

A commissioned study conducted by Forrester Consulting on behalf
of GitLab, “to evaluate current toolchain management practices at
enterprise organizations,” provides interesting insight into the chal‐
lenges organizations face with regard to DevOps tools. The study,
“Manage Your Toolchain Before It Manages You”, was published in
June 2019 and concluded that “Dev and Ops teams agree: visible,
secure, and effective toolchains are difficult to come by.” The survey
polled “252 IT professionals across the US, UK, France, and Ger‐
many,” finding that:

[M]any software development teams are overrun with tools and
toolchains and struggle to maintain discrete toolchains. Out-of-the-
box toolchain management solutions are seen as a potential solu‐
tion to managing this complexity.

The survey’s key findings are as follows:

Three Critical Shifts of Next-Generation Software and How They Affect Security | 43

• Multiple toolchains and numerous tools are used across the
SDLC. Most businesses have two or more toolchains powering
their SDLC, and, for the majority, each toolchain comprises six
or more tools.

• This complexity creates visibility, security, and productivity
challenges for development and operations teams alike. Tool‐
chain managers struggle to contain the tool sprawl while at the
same time software delivery release cycles have not improved,
creating more pressure for development teams to find ways to
speed delivery.

• Out-of-the-box toolchain management solutions are seen as a
solution to the sprawl. In fact, improved security, increased
revenue, and improved quality were the top-seen benefits from
firms that have already implemented out-of-the-box toolchain
management systems.

In addition, “The key challenges are: visibility across toolchains;
maintaining security across tools; and ensuring that IT resources are
available to maintain toolchains.”

In its recommendations, Forrester notes, “this expansion of tools
has come at a cost in terms of complexity,” and, “All of this complex‐
ity robs resources from the main purpose of DevOps, to help soft‐
ware teams accelerate the delivery of innovation to the marketplace
in order to achieve business success.”

One of the most striking results of this study is that, “67% of
respondents agree that handoffs between teams using different tools
slows down delivery.” Without doubt, the challenges inherent in
complex toolchains have led to the dissatisfaction with DevOps
noted previously.

GitLab has highlighted this fragmentation of competitive DevOps
tools (as shown in Figure 9) by showing the multitude of tools and
the functional slice of the SDLC that each provides. Enterprises will
often stitch together a variety of tools to meet their end-to-end
needs, when the potential is there for using a single tool, and elimi‐
nating the complexity and integration requirements.

44 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Figure 9. GitLab’s chart showing competing tools for each function
punctuates toolchain fragmentation, silos, and complexity. There is an
abundance of point products for specific pieces of the SDLC.

When stitched together, these complex toolchains, like the example
in Figure 10, reinforce process silos, consume self-perpetuating
maintenance resources, and slow down software development and
deployment. In addition to the tools themselves, resources are
needed to design, build, and maintain the integrations, manage
upgrades, and establish high availability (HA) and disaster recovery
(DR) for each one. The integrations are brittle and can fail. Trans‐
parency and metrics become challenging across the silos. They can
also affect the security of the code itself and the integrity of its deliv‐
ery process.

Figure 10. Current DevOps toolchains are a patchwork of siloed apps
and functions that inhibit auditability and introduce more security
risk.

Three Critical Shifts of Next-Generation Software and How They Affect Security | 45

Let’s look at how this fragmentation and integration diminishes the
returns of DevOps.

Complications across the DevOps toolchain. The commissioned study
conducted by Forrester Consulting on behalf of GitLab, “Manage
Your Toolchain Before It Manages You”, also found that “Over a
third of toolchains are integrated with a combination of plug-ins
and scripts; one in five toolchains are integrated via manual, hard-
coded custom integrations, a process that is not only time-
consuming but rife with potential errors.”

Furthermore, “Almost half of all respondents (45%) noted that
maintaining security across the toolchain is a key challenge; each
tool has its own diverse set of requirements which creates significant
challenges for IT professionals to not only develop but also main‐
tain. Forty-six percent of respondents agreed that they spend too
much time and money integrating and maintaining this diverse
security landscape for each tool.”

Security tools complicate the already complicated DevOps tool‐
chain. Application security companies have built their portfolios
through acquisitions. At the same time, they have done a relatively
poor job of integrating their acquisitions, choosing instead to sell
each acquired scanning technology as an individual product and
uniting them with an overall dashboard that they are also happy to
sell to you as yet another product.

In addition to the multiple security products needed to complete
static and dynamic security scans, each tool must be integrated into
an already-complex DevOps toolchain (see Figure 11). Trying to
connect multiple security tools into the byzantine and ever-
changing DevOps toolchain is a bit like trying to run into a flying
jump rope. It’s constantly moving and you might have difficulty
finding the optimal point of engagement. It can quickly become a
nasty web of integrations that must be maintained and which con‐
sumes precious resources.

46 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Figure 11. Individual application security testing tools must each be
integrated with multiple DevOps tools.

While at Fortify, I designed and led a study using a third party to
assess the intersection between development operations and secu‐
rity. I had a third-party company study what development thought
about security, what operations thought about security, and all of the
tools that both Dev and Ops use in their DevOps toolchain. We
wanted to learn with which tools application security might need to
interface. At the time, there were more than 50 potential DevOps
tools identified with which we might need to interface! It became
evident that a marketplace with APIs and plug-ins was going to be
critical in the DevOps environment. But you need to ask whether
the objective of reducing application risk is getting lost in the pro‐
cess. What portion of your resources are spent integrating tools?
Maintaining their interfaces when one changes? Tracking vulnera‐
bilities instead of remediating them?

It’s not enough to simply integrate traditional application security
with DevOps tools and expect that you’re going to get a completely
different, improved outcome with greater speed efficiency and busi‐
ness value. You need to marry the tools with the process.

Security and DevOps processes and tools go hand in hand. You can‐
not have a smooth application security process in a DevOps envi‐
ronment if the two processes and tools are incongruent. To achieve
this integration, enterprises try to join traditional application secu‐
rity tools with DevOps tools and then mash this patchwork against a

Three Critical Shifts of Next-Generation Software and How They Affect Security | 47

desire for an efficient, streamlined DevOps methodology. Needless
to say, the approach falls short.

Security testing: A square peg in the round hole of DevOps
This speed of coding and deployment has challenged traditional
security approaches where code is tested at the end of the develop‐
ment process. This newfound speed of Agile development was
blocked by an essentially waterfall security process at the end. The
industry has attempted to arm developers to find and fix the vulner‐
abilities they create, but without uniting the dev and sec workflows,
the tools have been like fitting a square peg into a round hole.

Several classes of security tools have been introduced, each intend‐
ing to “shift left” and help developers find and fix vulnerabilities ear‐
lier in the SDLC (when it is cheaper to do so); for example:

• Spellcheck-like scanning, included in the developer’s IDE, was
intended to help developers find and fix vulnerabilities at the
point of creation, as the developer types. Yet these tools, often
referred to as SAST-lite, are limited in scope and not capable of
a robust SAST. Though they can remove some vulnerabilities,
their use alone is insufficient for application security scanning.

• DAST requires a working application to test. Frustrated by wait‐
ing to dynamically scan until code was deployed to a test envi‐
ronment, demand was created for IAST. While there is a bit of a
religious argument, as in this DarkReading article over the effi‐
cacy of IAST versus SAST, the fact is most enterprises continue
to use multiple scanning methods to identify software security
vulnerabilities.

To be truly impactful, shifting left requires a united workflow
between developers and application security. In fact, those who have
applied the benefits of a fully functioning review app in develop‐
ment have been able to apply DAST before the code leaves the
developer’s hands (an ability with the potential to obviate the need
for IAST). This is possible only by embedding security into the
developer’s workflow.

The discipline of DevOps alone can contribute to better security
practices. Those who have integrated security into DevOps have
found it worthwhile. The GitLab Global Developer Report found
that a mature DevOps model means teams are three times more

48 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

likely to discover bugs before code is merged, and they are 90%
more likely to test between 91% and 100% of code than in an orga‐
nization with early stage DevOps. Not doing DevOps well leaves
security teams 2.6 times more likely to need to deal with red tape
before finding or fixing bugs.

At the same time, there is significant room for improvement.

Testing is in the way. Half of those surveyed in the GitLab Global
Developer Report called out testing as the biggest source of delay in
the development process, reflecting an industry-wide struggle to
balance the benefits of manual testing with the need for automation.

In this same survey, respondents were asked about their opinions on
their security capabilities:

• For developers, just 25% rated security at their organization as
“good,” whereas 30% said it was fair, and 23% said it was poor.

• Like developers, operations professionals have mixed views on
their organization’s security efforts. 34% rated security as fair,
29% said good, and 20% called it poor.

• Least satisfied with their area of responsibility is security, with
only 20% of those surveyed rating their organization’s security
efforts as good, whereas 36% said they were fair, and 24% said
they were poor.

There is good reason for the dissatisfaction. Application security
testing, for the most part, continues to be applied without uniting
incongruent workflows. As Figure 12 shows, security testing contin‐
ues to be a sequential process.

Three Critical Shifts of Next-Generation Software and How They Affect Security | 49

Figure 12. Traditional application security is a sequential process that
reinforces silos and creates friction between security teams who run the
scans and developers who must take action to remediate the code.

Software is developed to a point at which it can be tested by security
professionals (code review for SAST, working app for DAST, manual
penetration testing in test or production) with results delivered back
to development in the form of vulnerability reports or work tickets.
Challenges of traditional app sec workflows include the following:

• Finding the developer who can remediate the vulnerability
• Finding the developer accountable for creating the vulnerability

for training and education
• Retesting to ensure the vulnerability was indeed remediated
• Prioritizing security flaws in developer backlog
• Visibility into vulnerability status (assigned for remediation,

etc.)
• Separate views for dev and for sec with difficulty tying vulnera‐

bilities found by security testing tools to tickets in dev backlog
• The entire app is scanned, making it unclear which vulnerabili‐

ties are new (for ticketing) and resulting in a heap of them to

50 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

prioritize and remediate. A developer doesn’t know whether
they or maybe a colleague created a vulnerability, or whether it
has been lurking in the code for years.

Contrast this to a DevOps developer workflow, which is very itera‐
tive. The developer selects a ticket from a Kanban board that will fit
within the time available. They check out the necessary code and
make updates, iteratively testing it until their change works satisfac‐
torily. This iterative effort often includes a review application during
which they can see the results of their changes and perform user
testing. Performance testing can be automatically performed before
the code is deployed.

Summary: How software is delivered and managed
Trying to marry security tools and processes with the newer DevOps
tools and processes is a bit of a square-peg-round-hole problem. It
won’t be solved by simply inserting sec in between dev and ops and
assigning security champions to Scrum teams. Security processes
must be married to development processes and embedded within
application CI/CD. Doing so not only solves process alignment chal‐
lenges, but can help with regulatory compliance, as well.

Shift 3: How Software Complies with
Regulatory Requirements
Compliance was once the low bar for security. You can certainly be
compliant with a host of regulatory requirements and still be
hacked. Retailing giant Target was merely one example of companies
that are compliant with Payment Card Industry (PCI) standards, yet
it was hacked. Application security compliance has been fairly sim‐
plistic, focused mostly on demonstrating app security scanning
practices to catch the OWASP top 10 exploits and WAF to block
obvious attacks.

So, why has compliance taken on more importance lately? The
European Union’s General Data Protection Regulation (GDPR) is
likely a key driver. GDPR reflects strict privacy laws and, as CSO
magazine explains, “places equal liability on data controllers (the
organization that owns the data) and data processors (outside
organizations that help manage that data). A third-party processor
not in compliance means your organization is not in compliance.
The new regulation also has strict rules for reporting breaches that

Three Critical Shifts of Next-Generation Software and How They Affect Security | 51

everyone in the chain must be able to comply with.” Protecting cus‐
tomer privacy means attention to data security—and the applica‐
tions that manipulate data. The result has been a greater awareness
of application security risks. Punctuating this fear, British Airways is
facing a record GDPR fine ($230 million) from a 2018 breach that
leaked 500,000 customer records.

With such high stakes, auditing becomes a way to identify compli‐
ance risks proactively. Auditors focus on common controls and love
automation and the consistency it provides. Auditors can inspect the
automation rules and do not need to see a large sample of results to
prove efficacy like they do for manual controls. In addition, tracea‐
bility and accountability become even more important capabilities
to track who changed what and when.

Beyond application security testing
Application security testing is only one small part of regulatory
compliance. With greater automation and cross-functional pro‐
cesses of DevOps, there is greater pressure on securing the software
development process itself to protect consumers from insider
threats, unfortunate mistakes, and fraud. Although each industry
has their own regulations with which to comply, there are some
common denominators among them. Following are some sample
controls to address:

• Segregation of incompatible duties
• Identity and access approval controls
• Configuration management and change control
• Access restrictions for changes to configurations and pipelines
• Protections on branches and environments
• Audit logs
• Licensed code usage
• Security testing

Fundamental industry standards like ISO, PCI, and others focus on
these common controls to secure access to the software itself
throughout its life cycle. These controls focus on protecting access
to the code itself and ensure that changes are logged, including who
made the change and when.

52 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Automation of the processes within the SDLC improves consistency,
stops casual intervention, and provides greater transparency than
manual processes.

Fragmentation creates real security challenges. The commissioned
study conducted by Forrester Consulting on behalf of GitLab,
“Manage Your Toolchain Before It Manages You”, cited security as
the number one process challenge faced by IT pros. The report
points out that toolchains often rely on credentials stored in scripts
in order to reduce process friction across functions; however, these
integrations create vulnerabilities themselves. The report suggests,
“Selecting a toolchain that is a complete solution allows identity and
authentication to be managed in a uniform way across each process
step, simplifying and strengthening toolchain security. It eliminates
stored credentials and simplifies developer and IT interaction with
the toolchain, making shortcuts and hacks no longer necessary.”

With the growth of cloud computing, cloud native, and serverless
apps, new attack surfaces arose, rendering many network controls
irrelevant or out of bounds, and directing a greater focus toward
application security. Security tools and compliance standards haven’t
yet caught up to next-gen software technologies.

Summary: How software complies with regulatory requirements
Beyond vulnerability scanning, prudent risk management requires
that you secure the application, your SDLC platform, and the appli‐
cation’s runtime environment. Partner with development to embrace
its Git repository and CI/CD, which together enable greater automa‐
tion of security policies. Encourage the use of one tool to provide
greater visibility across the SDLC and eliminate the trade-off
between easy access across tools and unsafe access methods.

Now that we’ve addressed these three major shifts that will affect
how you secure your next-generation software, let’s take a deeper
look at what lies ahead for DevOps. It’s important that CISOs really
understand this movement in order to design an application secu‐
rity program that will meet the needs of this evolving landscape.

Three Critical Shifts of Next-Generation Software and How They Affect Security | 53

What Lies Ahead for DevOps
As we saw earlier in the discussion on DevOps adoption, the
DevOps tools market will continue to explode in the near term.
Given the fragmentation, we can expect consolidations. Microsoft’s
acquisition of GitHub threw down the gauntlet for other cloud pro‐
viders by creating an on-ramp to its cloud services by cozying up to
the developers. So, who do you bet on?

Given the shortcomings Forrester documented in the study refer‐
enced earlier, their report concluded, “Maintaining toolchains is
necessary, but it shouldn’t consume whole teams, instead find an
out-of-the-box solution that offers a backbone of capability that
your team can build upon, rather than building one from scratch.” A
single application for the entire SDLC can benefit the speed and effi‐
ciency of software development. In fact, several GitLab customers
have demonstrated compelling results:

Customer Problem Result
Hammersbach Multiple tools and

communication inefficiencies
Increased build speed by 59 times; 14.4%
improvement in cycle time

Jaguar Land Rover Slow delivery and release cycles
taking four to six weeks

Decreased feedback cycle down from three
to six weeks to 30 minutes

Axway Software Legacy SCM and complex
toolchain limited worldwide
collaboration

26-times faster release cycle; from annual
releases down to every two weeks

At the same time, GitLab’s revenue growth speaks volumes.

Why the Single-App Dev Platform Will Lead the Market
There are at least three compelling reasons why a single application
development platform will continue to achieve momentum:

1. Simplicity and integration always win in the long term
Take the camera and the smartphone. If you always have your
phone with you, you’re much more likely to catch that cute pet
photo or gorgeous sunset. If after you run and get your camera
and adjust its settings, that gorgeous sunset might be gone. How
many of us rarely use cameras any more for this very reason?
Also, the camera doesn’t inherently share. Some models may
simplify sharing, but the cell phone has ubiquitous access to

54 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

your favorite social media and backup storage. This could mean
that you reserve a camera for special, prearranged occasions,
making the smartphone your go-to device for a multitude of
uses.

2. Collaboration and transparency across functions embody DevOps
When various functional groups are united around a single
application, they share a single source of truth and have ready
access to the data needed to make decisions. Conversely, if they
use different tools, the silos in which they work are reinforced.
The very heart of the DevOps methodology encourages cross-
functional work teams. Their tools must enable this.

3. A single end-to-end SDLC platform enables new capabilities
Just as network security has begun using endpoint security as
sentinels to identify threats to the greater network earlier, imag‐
ine how a single app to manage the SDLC could use a united
view of threats from development through production—and
back to development (Figure 13). When there is a single conver‐
sation and a single data store, there is no need to try to reconcile
data across tools and take extra steps to communicate. A single
permission model (user access), single interface, and shared
governance ensures consistency of policies across functions and
eliminates vulnerabilities created by gluing tools together.
Everyone can be on the same page for metrics and life cycle
analytics with easy-to-see contributions.

Security Considerations
Even though security embedded into the CI/CD process is ideal, the
CISO cannot dictate which CI/CD tools should be used by the
development teams. However, the CISO can reduce risk and reap
the benefits of a united effort by partnering to integrate develop‐
ment and security processes for better mutual outcomes. A single
application for the entire SDLC can help you build security into the
way the enterprise develops and deploys applications.

What Lies Ahead for DevOps | 55

Figure 13. A single platform that unites the code repository, CI, and
security enables new benefits not possible with disparate tools.

What Does This Mean for Application Security
Programs?
Security must be as iterative as your software development and
deployment. You cannot expect to successfully marry an iterative
development process with a security program rooted in a sequential
process.

A single application for the entire DevOps life cycle can enable radi‐
cally faster cycle times through not only automation but a single
source of truth. Developers, security, and operations can all have a
common understanding of the application, its vulnerabilities, and
the configuration of its operating environment. Complex toolchains
that knit together a variety of tools cannot achieve this. They are
fragile and resource intense. Examples include Microsoft Office,
which won out because it was one tool that could share data across
spreadsheets and documents, or SAP, which won out over People‐
Soft and others that focused only on one function. Microsoft and
SAP might not have been best in class, but integration won.

One example of new capabilities afforded by a single SDLC platform
would be the case of DAST versus IAST. With traditional app secu‐
rity tools, DAST could be done only near the end of the SDLC
because it requires a working application to test. The individual
developer’s work was already merged into the master branch and
typically in a dedicated test environment where QA tests would be
performed along with DAST. Because DAST occurs so late in the life

56 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

cycle, IAST was born. By instrumenting the application, the app
could be automatically tested for security vulnerabilities while QA
tests are done.

Contrast this with a single application. A review app is automatically
spun up upon code commit, prior to the merge with the master
branch. This functioning app, that reflects the code updates, can be
used for DAST analysis before the code ever leaves the developer’s
hands.

Another example of new capabilities afforded by a single SDLC plat‐
form is incremental scanning. When app security testing is done
within the CI process, the differential code change is clear. Scanning
can focus on only the code that changed and not the entire applica‐
tion. Such capabilities are possible when one application is used for
repository, security, and CI/CD.

Security Considerations
By embedding application security into the CI process, you can
achieve the following remarkable outcomes:

• Scan all code, every time
• Seamlessly for dev
• Using fewer tools
• With dev and security on the same page

Imagine what can also be achieved when development and produc‐
tion have a common point of view. Vulnerabilities found in devel‐
opment can be confidently blocked in production and exploits
against production apps can alert the responsible developer.

The automated software factory promises new ways to develop and
deploy more secure code with integrated feedback from apps
instrumented from conception, providing feedback from produc‐
tion to development to alter the process for better outcomes.

What Lies Ahead for DevOps | 57

Defining the Next-Generation
Application Security Program
Before we get to pragmatic steps to refine your security program,
let’s take a 100,000-foot view of the evolution. This strategic context
is critical guidance for your more tactical execution.

Application Security Is Difficult but No Longer Optional
If software rules the world, software vulnerabilities might bring it
down. Exploits against applications remain common. A Brighttalk
webcast, “The State of DevSecOps—Featuring Amy DeMartine of
Forrester Research”, reveals that 40% of firms suffered a breach as a
result of an external attack. The top two methods were web app
attacks and software vulnerability exploit.

Application security has traditionally plagued CISOs because it’s dif‐
ficult and presents many challenges:

• CISOs usually do not have a development background. Basic
security focuses more on perimeters and endpoints, so applica‐
tion security is often a weak link in understanding.

• Developers don’t want to become security experts, and security
pros don’t want to become developers. Individuals skilled in
both are like unicorns. Security finds vulnerabilities but often
doesn’t know how to remediate them in the code. This sets up
an adversarial relationship with developers.

• Traditional application security tools and/or services are expen‐
sive, whether manual penetration testing or automated scan‐
ners. Unique expertise is often required to translate the findings
into action.

• Do I want to find vulnerabilities that I am then aware of (liabil‐
ity) and must convince developers to go fix? The easier path is
to invest in a WAF that can offer some level of protection for all
of my applications for much less cost and expertise. It checks
the box for compliance despite providing only a thin veil of
application security.

• It’s more difficult than installing a firewall on the network with
a set it and forget it approach. It’s embedded into the develop‐
ment process—outside of the direct control of the CISO.

58 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Despite all of these difficulties, application security is no longer
optional, because threats are constant, widespread, and continually
evolving. Countless breaches prove this point over and over again,
and most usually come down to simply poor application security
hygiene.

Software Innovation Requires Security Innovation, Too
Hackers are some of the most innovative people out there. If you are
still relying on processes and technologies established 5, 10, or 15
years ago, you can be assured that your adversaries are not. So how
do you keep up?

Traditional app security tools were built 10 or more years ago—
before today’s modern software methodologies like DevOps with
daily deploys. Don’t try to catch up using traditional app security.
Traditional application security vendors, even the best of breed, are
siloed in a single function and will be squeezed out between cloud
providers and SDLC software with both sides taking on more of the
application security functions. The industry needs to get beyond the
simple shift left of giving dev a lite SAST in their IDE. Application
security programs scale only when security is baked into the SDLC
with a single application that is purpose-built for the modern soft‐
ware factory.

The next generation of software, along with the methodologies that
develop, deploy, and manage it, need to be looked at with a fresh
perspective. Sometimes, we get too close to the action or too emo‐
tionally attached to people, processes, and technology that we have
tuned into a well-oiled machine to recognize the potential impact of
changes around the bend. If you are truly managing risk, you must
reevaluate processes and outcomes given evolving software develop‐
ment and cloud native/serverless landscapes. While the app security
market has trusted, established tools, most were developed 10 to 15
years ago for a different world of software development. The tools
must now transition to support new processes.

Innovation is a delicate transition. In his book The Innovator’s
Dilemma (HarperBusiness), Clayton Christensen talks about new
products and technologies often running parallel to old ones until
the new ones are proven and credible. Cybersecurity is no excep‐
tion. Today’s rapidly changing business environment requires that
you innovate by not only looking for opportunities to improve on

Defining the Next-Generation Application Security Program | 59

existing security processes, but, more important, to rethink what
needs to be done and how. Have you considered what new risks are
posed not only by the applications themselves, but your processes
that create and deliver them, and composable infrastructure that
surrounds them? Or have you jumped straight to specific solutions,
promising to help developers identify vulnerabilities as they code,
secure your containers, and integrate DevOps tools. Now you are
stuck trying to make them all work together and realizing under‐
whelming returns. Step back and consider entirely new processes
and supporting tools for next-generation software projects. New and
old processes might both be used for a time as legacy apps are
retired.

Jeff Williams, one of the OWASP founders, shared his thoughts on
this challenge back in 2014. He said, “The goal is unprecedented
real-time visibility into application security across an organization’s
entire application portfolio, allowing all the stakeholders in security
to collaborate and finally become proactive.” He further predicts that
what’s needed is application security “technology that will scale mas‐
sively.” Clearly, even in 2014, he saw that existing app security tools
and approaches could not keep up.

The reality of application security is this:

• Applications are a prime target of cyberattacks.
• App security tools are expensive and require integration of both

technology and processes.
• Traditional app security processes struggle to test all code when

code changes faster and faster.

Practical Advice for Securing
Next-Generation Software
Although securing next-generation software might sound like a
quagmire, it’s also an opportunity. You must look at the problem as
one to be solved by automating policies and inspecting the excep‐
tions rather than inspecting every project. Automation applies both
standards and consistency to help compose secure code from the
beginning. Focus more on helping developers create better code
from here on, and less on retrospectively finding flaws. As software
velocity improves, more code will be touched more often, so oppor‐

60 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

tunities to improve its integrity will follow. According to the Bright‐
talk webcast, “The State of DevSecOps—Featuring Amy DeMartine
of Forrester Research”, “flaws persist 3.5x longer in apps only scan‐
ned 1–3 times per year compared to ones tested 7–12 times per
year.” It follows to reason that embedded, automated scans at the
point of code commit will result in more frequent scans and more
rapid vulnerability remediation.

Get in Front of the Change: “You Are Here”
With the rapid pace of change, the CISO needs to solve for the
future because if they solve for today’s legacy software using tradi‐
tional tools, they will already be behind given the rapid pace of
innovation with next-generation software.

As Wayne Gretzky put it, “Skate to where the puck is going.” Invest
your time to learn what new security challenges must be the focus in
the next generation of software development. Start with a “you are
here” approach and pick your path forward.

How fast does the business need to move to cloud, containers, or
serverless? Consider legacy software shifts to containers to free up
hardware lock-in. Is security an impediment? Can you take one path
for new cloud native software while phasing out the old processes as
old apps are retired? Invest in container and dependency scanning
and cloud infrastructure security strategically to stay one step ahead
of the business’s moves.

If you’ve not already invested heavily in traditional SAST and DAST
scanners, rely on security scanning embedded in a single platform
for the SDLC, and focus on scanning every code commit starting
from now forward. If you lack the resources to find and fix vulnera‐
bilities already lurking in production, you can still prevent new ones
from escaping development.

Application scanning is only one part of your risk mitigation. Risks
can also come from the application’s next-generation infrastructure
(as we’ve seen), from the SDLC platform itself, and from the plat‐
form’s ability (or inability) to enforce policies for security, compli‐
ance, and auditability.

Practical Advice for Securing Next-Generation Software | 61

Rethink Security as an Outcome, Not a Department
Security must become everyone’s responsibility and must become a
natural part of the development and operations workflows. In fact,
at the 2019 RSA Conference, the CISO of VMware made this terrific
point in his keynote: “Your most important security product won’t
be a security product.”

A close partnership between developers, DevOps, and app security
will be paramount. Finding a balance where developers don’t own
security, but they aren’t absolved from responsibility either, requires
innovation. Enablement will be possible only when application secu‐
rity is looked at within the context of how the applications are cre‐
ated, delivered, and managed.

Metrics can be incredibly powerful to drive behavior and align
incentives. At a CISO roundtable on security, a couple of innovative
marquis companies shared how they are using bug bounties to align
dev and security. Bug bounty programs pay hackers to find and
responsibly disclose software vulnerabilities. Typically, these pro‐
grams are funded by the security or risk management department.
However, these companies are requiring that when bugs are found,
the bounties are funded by the application’s owner. This ensures that
the business function is incented to resolve vulnerabilities and will
assess the potential business cost alongside the value of the desired
software updates.

Although not as directly linked to costs as bug bounties, risk metrics
such as number of releases to fix a vulnerability and number of criti‐
cal vulnerabilities found and fixed in development versus number
that escaped can also be helpful to ensure development places ade‐
quate importance on remediation. Metrics can help you manage the
risks not the silos.

Start with the Process: Use Tools to Enable Change
Partner with development or DevOps to use value-stream mapping
(a capability of some DevOps tools) to identify process bottlenecks
in the SDLC. Although some might be intuitive, others might be
more subtle and best revealed through this end-to-end mapping of
actual critical paths and cycle times. Look for opportunities for
security to contribute to developer productivity and faster releases.

62 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Consider entirely new processes in which security scans are automa‐
ted. Yes, I said automated. That doesn’t mean pick a tool first. It
means design the process around exception handling and assume
the mundane work that can be automated is abstracted away. Don’t
forget audit and compliance processes. How much of that process
can be automated, again leaving exception handling?

Solve for Obvious Cases: Breadth over Depth
Often, we become so focused on one aspect of security that we go
very deep on those protections and leave many other, sometimes
obvious, aspects completely exposed. Are you putting many locks on
your door and leaving your window wide open, as our friend in Fig‐
ure 14 demonstrates?

• Are you using a very powerful scanner for your mission critical
apps but not scanning others?

• Maybe you’re not scanning your third-party code because you
expect it’s in widespread use so it already checked out? (Think
Apache Struts 2.)

Solve for the obvious cases. Given that most exploits tend to (as
described in this Security Boulevard article) reuse historically suc‐
cessful vulnerabilities, it’s better to scan everything for the most
common vulnerabilities than to scan only your mission-critical apps
looking for every little thing.

Figure 14. Don’t ignore the obvious. Test all code changes, automati‐
cally, every time.

Practical Advice for Securing Next-Generation Software | 63

Consider a process similar to a TSA screening at the airport. Every‐
one is scanned for the obvious things like knives, metal, and sharp
objects. Frequent travelers are prescreened in advance to reduce risk
and then enjoy a simplified screening effort at the airport. Only
exceptions and random samples require a more rigorous assess‐
ment.

Analyst research supports this approach. From the Brighttalk web‐
cast, “The State of DevSecOps—Featuring Amy DeMartine of For‐
rester Research”:

There are just too many vulnerabilities for organizations to tackle
all at once, which means it requires smart prioritization to close the
riskiest vulnerabilities first. For the first time, our report shows a
very strong correlation between high rates of security scanning and
lower long-term application risks, which we believe presents a sig‐
nificant piece of evidence for the efficacy of DevSecOps. In fact, the
most active DevSecOps programs fix flaws more than 11.5 times
faster than the typical organization, due to ongoing security checks
during continuous delivery of software builds, largely the result of
increased code scanning.

On top of broad-based scanning for common vulnerabilities, apply‐
ing good hygiene is still the key. Use automation to enforce it.

Unite the Workflow of Development and Security
The process that unites the workflows of development and security
needs to be automated, iterative, and exception-based to be congru‐
ent with DevOps. It must put the developer at the center, with ena‐
blement focused on removing straightforward vulnerabilities and on
helping the developer find and fix what they have introduced. The
key is making this enablement before the code is merged. Let’s look at
how this is achieved.

Automated and iterative
What does this mean, “before the code is merged”? The developer
sees the results immediately of every change they made with very
clear cause and effect. It means that as a developer, I made this
change in code, and I immediately see the results of that change. I
don’t see results from my colleague three desks down, nor vulnera‐
bilities that have been lurking in the code for several years. This very
tight, iterative feedback loop makes the results far more actionable.
It narrows down where the developer must look.

64 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Vulnerabilities and license risk are shown within their pipeline as
part of their natural flow (Figure 15). They can see that everything
passed—and if it did not, they would see that, too, along with infor‐
mation to help them remediate the flaw.

Figure 15. Continuous security = Iterative app sec testing at code com‐
mit. By testing the code change and showing resulting vulnerabilities to
the developer before the code leaves their hands, the cause and effect is
very clear.

In addition to greater code coverage in app security scans, such an
approach improves the workflow of both dev and app security while
reducing friction and frustration. Here’s how:

• Continuous security scanning will empower dev to identify vul‐
nerabilities that they just created, before it ever leaves their
hands—or gets mixed up with vulnerabilities resulting from
other engineers’ changes. It provides clear accountability and
tracking within the context of their existing workflow. The
developer doesn’t wonder where the vulnerability came from,
and security doesn’t struggle to find the responsible owner.

• Everyone sees the end-to-end flow, delivery, and results and
resolves remaining vulnerabilities together (single source of
truth).

• No hand-offs between tools and departments. No waiting for
status updates concerning testing or remediation.

Practical Advice for Securing Next-Generation Software | 65

• The day-to-day risk tracking is automated and becomes a
byproduct.

• Security teams can focus on exceptional security challenges,
with mundane tracking and communicating across functions
eliminated.

It also enables capabilities that couldn’t otherwise happen, including
autoremediation and DAST at the point of code commit: vulnerabil‐
ities that can be automatically remediated are also within the context
of their existing workflow.

Autoremediation can be done well only when detection is embedded
in CI. A complete autoremediation can do the following:

• Identify necessary fixes when vulnerabilities are detected in the
app.

• Download patches.
• Set up a new branch to test the patch in a background pipeline

to reduce noise.
• Verify changes for production readiness, and auto-revert if

changes don’t meet performance- or service-level objectives.
• Provide validated updates that can be pushed automatically to

production.
• Provide audit trail with merge.

With a single app for the SDLC, a review application is spun up at
code commit—before the individual developer’s code is merged to
master. The developer can see and test the working application and
DAST can scan the review app. The developer can quickly iterate to
resolve vulnerabilities reported in their pipeline report.

Exception-based
The developer can resolve the vulnerability with another code com‐
mit or can create an issue to resolve it later, having it documented in
the work queue. Or they can dismiss the vulnerability, determining
if it is a false positive or if there is a compensating control. The dis‐
miss can trigger the exception process for review by security, as
depicted in Figure 16.

66 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Figure 16. Automation can remove work for both developers and secu‐
rity alike. Developers can resolve what they can, and security can focus
on the exceptions.

The app security team might not see many vulnerabilities because
they can be identified and resolved before the code ever leaves the
developer’s desk. When even the resolved vulnerabilities are
reported, the resulting metrics can demonstrate the value of the
approach.

Iterative
How do you swallow an elephant? One bite at a time. Security too
must be incremental and iterative. Enterprises that scan an entire
application only to find 10,000 vulnerabilities will find it difficult to
prioritize and digest them all. The traditional approach of a big
monolithic security scan toward the end of a software’s development
cycle simply does not work in the iterative workflow of Agile devel‐
opment and DevOps. However, if application security scanning is
iterative, congruent, and contextual within the developer’s code
commits (code changes) and CI/CD processes, vulnerabilities can be
found as they are introduced and assessed and/or resolved at the
point of origin, as demonstrated in Figure 17.

Practical Advice for Securing Next-Generation Software | 67

Figure 17. Embed security scanning into CI for seamless and automa‐
ted workflow.

Security can be implemented in small, iterative steps when automa‐
ted as part of CI.

Collaborative
Not only do developers and security need to collaborate, but they
need to do so using common tools and views of the security scan‐
ning results. Today’s teams struggle to communicate what the vul‐
nerability and its risk is, where it is in the code, and how can it be
remediated. Developers are frustrated that security only points out
the flaw but cannot help resolve it. Security is frustrated that they
are spectators to remediation efforts. For those enterprises working
to engage security pros into Scrum teams, separate tools can be a
hurdle. By having both disciplines use a united view, they can spend
more time on value-added efforts rather than reporting and inter‐
preting.

The cumulative effect of this new, united workflow brings the fol‐
lowing benefits:

Contextual
• Within CI/CD dev workflow—accountable person
• MR pipeline for dev
• Shared view between Dev and Sec

Congruent with DevOps processes
• Iterative within dev, tests every code change

68 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

• Immediate cause/effect of code changes

Integrated with DevOps tools
• Create issues
• Autoremediation
• Production feedback

Efficient and automated
• Eliminate work wherever possible
• No context-switching
• Less tracking/triaging and more value-added security help

Monitor and Protect Applications in Production
As serverless brings new components into the framework, applying
policies to the various components becomes more tedious and error
prone. What’s needed is a policy translator for which security poli‐
cies are set in English and then automatically translated into indi‐
vidual component settings (such as AWS, Docker, Kubernetes, etc.).
In short, composable infrastructure requires composable and auto‐
mated security.

Applying Zero-Trust principles to protect applications
Composable application security should be thought of as similar to
Zero-Trust principles, but for applications rather than the network.
Traditionally, Zero Trust assumes that you do not trust the user nor
the user’s device. The user must prove that they are who they say
they are and that they meet policy requirements to perform the
actions they are wanting to perform. The user is authenticated and
authorized. In addition, the device must prove that it is what it says
it is, including patch levels. The device is authenticated and author‐
ized. Furthermore, data is encrypted.

To apply Zero-Trust principles to applications, additional effort
must be taken beyond traditional Zero Trust. Evaluation is needed
to see whether the process is permitted and automation should be
extended to include remediation whenever possible. System pro‐
cesses such as APIs that connect microservices need to prove them‐
selves, in much the same way as individuals and devices. Similarly,

Practical Advice for Securing Next-Generation Software | 69

container management (that determines how applications can com‐
municate within containers) must be evaluated. The system-
generated transactions should be valid and the processes allowed to
perform the actions they are performing. Whenever exploits are
encountered, protections should be automatically triggered. Doing
so requires monitoring and protection during runtime.

Design for failure
To protect applications regardless of where they run entails data
security (encryption is a traditional part of Zero Trust) but also
security wrapped around the application logic that works on the
data and the application infrastructure within which it runs. The
ability to monitor applications in production, detect exploits, and
take action to stop them becomes paramount. Attention must be
paid to access at every point along the way; no longer just at the net‐
work or endpoints, but also the application and its containers,
orchestrators, APIs, and dependencies. Often, teams stop at who can
access the code (access controls), but this is not enough—more
dimensions are needed to authenticate access, and access alone does
not protect against malicious insiders nor viruses that can ride
alongside the legitimate user. Applications represent the very logic
that legitimately (or illegitimately) alters the data. It’s becoming
more important than ever that app security be included in a solid
security and risk-management program.

One added consideration: this is not just the code in production any
longer. In the old days, you could protect the production code by
limiting who had access to the production servers. Now you must
think about the application in the same way you think about the
data—it moves, it has many different points of engagement, and so
on. Its environment spins up and spins down. There is no longer a
stable, physical box you can protect to secure the applications
within. The traditional environments (dev, test, production) that
separate access, code quality, and testing become less rigid. Applica‐
tion security programs that rely on traditional division of environ‐
ments with a rigid flow from one to the other will find it incredibly
challenging to secure next-generation applications.

70 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

Start with the basics of Zero Trust and build from there
Traditional Zero Trust requires endpoint security, data security, and
access controls. A more recent addition to Zero Trust is the concept
of secrets management, which we explored earlier in this report.
Data security begins with classifying your data to understand what
sensitive data you have and where it resides. Acceptable use policies
are developed to determine which roles should have access to what
data and then Role-Based Access Controls (RBAC) and Multifactor
Authentication (MFA) are used to evaluate each data request. Let’s
look at authentication and encryption a little further.

Authentication. RBAC is a critical element in securing not only serv‐
erless applications, but any cloud-based applications. Unlike tradi‐
tional Access Control Lists (ACLs) that would grant or deny write
access to a particular system file, RBAC can control how that file
could be changed. It checks roles and privileges of authorized users,
validating that a user is who they say they are and whether they have
authorization to access the requested resources. Enterprises have
been moving away from simple password systems to multistep
authentication. After the person is authenticated, they need to pass
an authorization check and gain access to different types of informa‐
tion.

Encryption. Increasingly, businesses encrypt information from
inception to deletion. Previously, data was encrypted at rest and
then in motion, when moving from place to place on the network.
With encryption, if the bad guy gets in, the data is useless to them.
Given the new entry points, encryption must be more holistic. To
effect this change typically requires changes to the code itself that
are not easily nor quickly accomplished but rather worked in bit by
bit as applications are modernized and updated. Scanners should
check that encryption is used.

RBAC and end-to-end encryption are more a set of principles than a
piece of software that you can buy. Software can augment the effort,
but the principles should be applied to the way software is designed.
These things are not as easy as slapping a tool like Auth0 or Micro
Focus Voltage in place; they also must be taught and implemented
over time. The challenge for the CISO is that most of the application
of the principles is beyond the scope of the security team. The best

Practical Advice for Securing Next-Generation Software | 71

way for the CISO to assist is to set policies for the development team
to follow and provide tools to inspect the adherence.

Stepping beyond these more traditional Zero-Trust methods, there
are additional elements to consider for cloud native applications.
Monitoring, detection, and protection are needed for microservices’
APIs/functions, administration of the cloud service, and containers
and their orchestrators. Containers, functions, and APIs must be
authenticated as automated system “users” in much the same way
that a human user must be authenticated. Their credentials must be
validated and privileges determined based upon roles or policies.
Although only fledgling attempts have been made, eventually
machine learning will be applied to security between apps, data,
containers, and the cloud, similar to the newer cooperative intelli‐
gence between endpoints and the network in which each can pro‐
vide feedback to the other.

Lastly, autoremediation, also an emerging area of capability, can
automate a self-healing response to vulnerabilities and exploits.
Automation such as this can greatly improve time to remediation,
improve consistency, and provide educational feedback to develop‐
ment to improve coding practices.

These capabilities should be built upon a foundation of standardiza‐
tion, policy automation, control, and CI. Just as it’s important to
standardize endpoints to ensure consistent behavior, development
pipelines can also benefit from standardization. With consistent
SDLC tools and pipelines, policies can be consistently applied with
more predictable outcomes. Similarly, end-to-end visibility is
improved for consistent measurement and process improvement.
And finally, consistency simplifies compliance and auditability. We
dive deeper into auditability when we discuss the importance of hav‐
ing a secure SDLC.

Final thoughts on Zero Trust
To recap, there are several advantages of a holistic Zero-Trust
approach:

• Lateral movement is much more difficult. Each service must be
authenticated so the internal network is not permissive.

72 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

• Stolen credentials are less valuable. Strong authentication
requirements increase the cost of credential theft and man-in-
the-middle attacks.

• Known vulnerabilities that are easy to exploit will be rarer
resulting in better ecosystem hygiene.

• Nontargeted attacks have less value. This forces targeted attacks
to exact a higher cost from the attacker.

Data is the crown jewel and applications are their caretaker. You will
never be right 100% of the time. The hacker needs to be right only
once. So, expect that you will be hacked. The key to keeping your
job and protecting your company is to minimize (or even eliminate)
the impact and speed remediation. It’s not enough to protect end‐
points, data, and access. The applications that apply business logic to
the data are critical, as well.

Align with Development Objectives
Software development reflects the business objectives. If the busi‐
ness decides that it needs to create a new business application or
overhaul an existing one to better meet competitive threats or to
capitalize on a revenue opportunity, security shouldn’t be the road‐
block. To be the hero, instead partner with development to find ways
to take advantage of the broader manpower of development (versus
security) and empower them.

No one wants to be “The One”: the one who got the company
hacked. The one who made a simple but careless mistake like
including a password in the code. Developers are certainly no
exception to this. Except for nefarious insiders, IT people don’t wake
up and say, “Hmm, I think I’ll create a software vulnerability today,
or misconfigure a cloud or container setting, leaving a gaping hole
for attackers.” Yet it happens every day.

A small focus group of developers validated this point. When asked
what most motivated them to develop more secure code, most cited
the fear of being “The One.” This was a more powerful motivation
than job performance objectives, bug bounty costs, or compliance.
Yet at the same time, they all felt almost powerless to do anything to
avoid this risk to their personal career. They feel very accountable
but not empowered to take action. They are generally frustrated by

Practical Advice for Securing Next-Generation Software | 73

the lack of security assistance available to the developer, whether
automated or human expertise.

Security teams could improve this situation by partnering with
development around security while placing the developer at the cen‐
ter of the action. After all, it’s usually the developer who can remedi‐
ate the application vulnerability, not the security pro. But how, you
might ask? To secure the next generation of software, you will need
to take risks by doing things differently (no longer protecting status
quo). You must reimagine security in the next generation of soft‐
ware without being bound to methods from the past. Consider the
following suggestions:

• As you move to embrace the new, try things in small, controlla‐
ble environments, measuring carefully before and after.

• Align security tools and processes into the development work‐
flow. Providing actionable insight about security vulnerabilities
at the point of code commit is key. Cofunding solutions might
be necessary, especially when security is embedded into CI.

• Align motivations. As just mentioned, if business leadership
needs incentives to care about security, consider having them
fund the bug bounties of vulnerabilities found in their applica‐
tions.

• Develop security expertise within the development teams so
that they have someone to turn to when having difficulty under‐
standing how to remediate a security flaw.

• Developers and software engineers are naturally good at process
design. Bring them into the redesign of your application secu‐
rity process.

• Embrace standardization, often disguised as reusable compo‐
nents. This may take the form of standard pipelines, standard
containers, and standard code modules.

Embrace open source
From a security perspective, open source code has the advantage
that more people use it, test it, and improve it to remove vulnerabili‐
ties. The downside is that because it is readily accessible, hackers can
also evaluate it and look for exploits. In addition, open source code

74 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

is an attractive target because of the number of users. The targets
and blast radius can be extensive.

Yet repeatability is good. It brings consistency. With reuse, when one
vulnerable library is remediated, the effort can fix many vulnerable
applications. Having a Bill of Materials (or inventory of where
dependencies reside) capability can help you to measure the risks
and prioritize remediation efforts. Another related approach would
be to have a pretested, preapproved list of third-party code.

Secure the SDLC
In most cases, a breach is usually a case of poor hygiene, like not
applying a security patch or ignoring a critical software vulnerabil‐
ity. Sometimes, it’s due to ignorance or misinformation like believ‐
ing that applications run in containers or on cloud services are
inherently more secure.

The best way to reduce application security risk from ignorance and
neglect is through automation. By automating application security
scanning, vulnerability remediation, and monitoring the applica‐
tion’s infrastructure, the element of human error is removed and
consistency applied. Auditors love the approach because automation
enforces security policies while exceptions can be easily identified
and documented.

In fact, compliance is essentially about ensuring the integrity of the
software development process/pipeline. The best way to reduce risk
of noncompliance with regulatory controls is by automating the
controls and having traceability along the way to capture who
changed what, when, and why. Building this automation into the
SDLC can protect against not only careless mistakes and mistakes
due to increased complexity, but also insider threats and external
exploits alike. Securing the SDLC requires the following:

• Basic security hygiene
— Scan every code change for at least the OWASP Top 10, com‐

pleting all of the following types of scanning: static, dynamic,
dependencies, container, and images

— Scan code for license compliance
• Complying with compulsory industry regulations
• Monitoring, detecting, and automating response

Practical Advice for Securing Next-Generation Software | 75

• Building on standardization, policy automation, validation,
common controls, and CI

Hygiene and compliance are foundational. Standardization ensures
consistent application of policies. By following common controls
like separation of duties and ensuring a clear audit trail of who
changed what, risks of inside attacks and human error can be miti‐
gated.

With a secure and consistent software factory, or SDLC, software
can be developed with fewer security flaws and deployed in an envi‐
ronment that is monitored for security incidents. By using these
prudent efforts, you can manage risk within your tolerance levels.

Now that we’ve looked at pragmatic steps that you can take to secure
next-generation software, let’s wrap up with 10 key principles that
you can apply to your security program.

Conclusion
Next-generation software is different and so is the process to
develop and deploy it. Securing it brings a new set of challenges and
requires more focus on not only delivering secure applications but
securing them in a new infrastructure and securing their SDLC.

Security Considerations
End-to-end application security needs to automate the following:

• Application security testing and remediation
• Production application protection
• Policy compliance and auditability
• SDLC platform security

DevOps and modern software development embrace iteration
instead of programming an application to do an entire function all
in one go. You bite off a much smaller piece of that elephant and do
what can fit within a sprint, whether the sprint is two weeks, a
month, or a day. You rely on microservices wherever possible to
reduce investment and speed time-to-results. The guiding premise is
this: what can I do today that will add business value? I can make

76 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

that one small change and get it out the door (minimal viable
change). How I test that small change is infinitely different than how
I test a much larger change. It must be iterative and it needs to be in
the hands of the one that can modify the code. Inspection for poli‐
cies and requirements must become automated to be applied consis‐
tently and quickly as a natural part of the process.

10 Steps to Secure Next-Generation Software
For the CISO, this means:

1. Start with “you are here” approach and pick your path forward.
Invest in dependency scanning, container, and cloud infrastruc‐
ture security. Apply SAST and DAST to every new code.

2. Rethink security as an outcome, not a department. Align met‐
rics. Manage the risks, not the silos. Finding more vulnerabili‐
ties might be less important than fixing the ones that are known.

3. The tools and the processes absolutely must go hand-in-hand.
Start with the process and then apply the tools that will help you
achieve the desired outcome.

4. Go broad, not deep, when testing software. Test every change, at
least for most common security vulnerabilities, rather than nar‐
rowly focusing on “critical” apps. Everything is a weak link now.

5. Unite the workflow applying continuous security scanning with
iterative development for Continuous Application Security-like
bites of the elephant.

6. Test for security flaws at the point of code commit, to break down
the work into smaller, actionable scanning and remediation
cycles.

7. Automate, allowing security to focus on exceptions.
8. Align with development objectives. Embrace open source. Align

security testing to the developer’s workflow. Standardize pipe‐
lines, code, and more for consistent, predictable results.

9. Apply Zero-Trust principles to applications and their infrastruc‐
ture. Work from the familiar perimeters and endpoints that pro‐
tect the data, to the apps that apply business logic to the data, to
the users that interface with the data.

Conclusion | 77

10. Protect the integrity of the software development and delivery
process by ensuring proper audit controls are in place and
seamless across the SDLC.

Software development is changing rapidly, and security programs
must also evolve if they are to be effective in this next generation of
software. Security implications result from changes to how software
is composed and executed, the methodologies by which it is devel‐
oped, and the infrastructure surrounding its use.

My wish is that security leaders will apply this new, deeper under‐
standing of the next-generation software evolution to become the
change agent that helps their enterprise deliver software faster as
well as more securely.

78 | 10 Steps Every CISO Should Take to Secure Next-Gen Software

About the Author
Cindy Blake is the senior security evangelist at GitLab, the fastest-
growing single application for the entire DevOps life cycle. Target‐
ing rapidly evolving DevSecOps initiatives, Cindy Blake collaborates
around best practices for integrated application security solutions
with major enterprises. With nearly a decade of cybersecurity expe‐
rience, Blake provides leadership and guidance to GitLab product
teams, marketing, and sales to facilitate growth and bring maximum
value to GitLab customers.

	Copyright
	Table of Contents
	Foreword
	Chapter 1. 10 Steps Every CISO Should Take to Secure Next-Gen Software
	Context: DevOps Principles That CISOs Often Overlook
	Git What? Knowing the Lingo
	Why You Need to Know Git
	The Next-Generation Software Evolution

	Three Critical Shifts of Next-Generation Software and How They Affect Security
	Shift 1: How Software Is Composed and Executed
	Shift 2: How Software Is Delivered and Managed
	Shift 3: How Software Complies with Regulatory Requirements

	What Lies Ahead for DevOps
	Why the Single-App Dev Platform Will Lead the Market
	What Does This Mean for Application Security Programs?

	Defining the Next-Generation Application Security Program
	Application Security Is Difficult but No Longer Optional
	Software Innovation Requires Security Innovation, Too

	Practical Advice for Securing Next-Generation Software
	Get in Front of the Change: “You Are Here”
	Rethink Security as an Outcome, Not a Department
	Start with the Process: Use Tools to Enable Change
	Solve for Obvious Cases: Breadth over Depth
	Unite the Workflow of Development and Security
	Monitor and Protect Applications in Production
	Align with Development Objectives
	Secure the SDLC

	Conclusion
	10 Steps to Secure Next-Generation Software

	About the Author

